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Abstract

The Smoluchowski coagulation with additional linear terms is formulated on an
explicitly weighted space. The use of such a space extends the ideas behind the mass
flow algorithm [A. Eibeck and W. Wagner, Ann. Appl. Prob. (2001) 11:1137-1165]
and allows the derivation of a range of new stochastic particle algorithms. Two such
algorithms, which seem particularly natural, are implemented and successfully val-
idated. The weighted algorithms are then compared to each other and to a version
direct simulation algorithm, which uses particle doubling as a variance reduction
technique. One weighted algorithm is found to consistently outperform the other by
a significant amount. Applications for which the better weighted algorithm outper-
forms direct simulation are demonstrated, along with situations where the converse
is true.
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1 Introduction

In the basic Direct Simulation Monte Carlo (DSMC) approach to the Smoluchowski and
Boltzmann equations, every computational particle represents the same number of phys-
ical particles. The accuracy with which a quantity is computed depends on the number
of computational particles used. In spatially resolved gas simulation, regions with few
physical particles are not accurately simulated. To deal with this problem Rjasanow and
Wagner [28] introduced a Stochastic Weighted Particle Method (SWPM) in which com-
putational particles were tagged with a statistical weight—the number of physical parti-
cles they represent. Using this technique a larger number of computational particles with
smaller statistical weights could be used in regions of low density than was the case with
basic DSMC, without increasing the time spent simulating regions of higher density. As
a result, computational accuracy could be controlled separately for each spatial cell (for
example kept approximately equal at all locations) and independently of the values of
physical properties being simulated.

A similar kind of difficulty can occur in spatially homogeneous particle coagulation prob-
lems. For these problems it is found that the resolution of the high end of the particle size
distribution in a DSMC simulation can be inadequate because there are very few compu-
tational particles and thus the statistical noise is great. A particle weighting designed for
such coagulation problems was proposed by Eibeck and Wagner [6], in which the statisti-
cal weight of a computational particle was a function of the physical particle it described
and so there was no need to explicitly tag the computational particles with their statistical
weights. The particular statistical weight used was the inverse of the physical particle
mass, which has the useful consequence that each computational particle represents the
same mass of physical particles per unit volume. In systems with constant total mass
one would therefore expect the number of computational particles to remain constant in
mean. By some judicious algebra the Mass Flow Algorithm (MFA) was derived so that
the number of computational particles was constant in an absolute rather than just mean
sense [6].

The MFA effectively redistributes computational particles over the size space, placing
more computational particles at larger particle sizes and fewer at smaller sizes as com-
pared with the constant weighting DSMC method. Consequently the high end of the
particle size distribution is calculated more accurately at the expense of the low end cal-
culations. A more general consideration of statistical weights as functions of the physical
particle properties was undertaken by Kolodko and Sabelfeld [16], whose comparisons
included the special case of the Mass Flow Algorithm (MFA) [6], but the greater gen-
erality came at the price of coagulation events that sometimes increased and sometimes
decreased the number of computational particles.

Wells and Kraft [34] applied the MFA to a coagulation (and sintering) problem in nanopar-
ticle dynamics. Consideration of systems of engineering interest inevitably led to a de-
sire to simulate systems which exchange mass with their surroundings and thus a MFA
cannot be expected to maintain a constant number of computational particles, even in
mean, without continual resampling of the distribution. Nevertheless in [21, 22] MFA
was successfully extended to systems with particle inception and where individual parti-
cle masses changed by interaction with the environment. The treatment of this last class of
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processes—surface growth—is set out in [22]. In essence, surface growth was simulated
as two separate processes. In one, the mass of physical particles referred to by a computa-
tional particle is changed and in the other, new computational particles are introduced to
the system to account for the increase in mass. Analogous processes which remove mass
from the system would be treated by having the second process remove computational
particles.

In [5], where the physical motivation was atmospheric aerosols, computational particles
were assigned weights that were not simply functions of the physical particles they rep-
resented. Using operator splitting and deterministic integration, surface processes were
treated by updating the statistical weight of a computational particle so that it represented
the same number of physical particles before and after the surface events. Coupled with
the MFA approach to coagulation this meant that the only change in the number of com-
putational particles during simulations was due to processes of particle inception.

Maintaining a constant number of computational particles, or at least bounding their num-
ber below, is essential for controlling the variance of the Monte Carlo sample solutions,
that is, it is essential for maintaining computational accuracy [18, 20, 31]. A simple
DSMC algorithm for simulating a coagulation process does not have this property—the
number of computational particles decreases at the same percentage rate as the number of
physical particles—and thus simulation accuracy is quickly lost [16]. Direct approaches
to solve this problem include resampling the particle population at every stop to maintain
a constant number of computational particles [19, 31] and particle doubling [18, 20] with
resampling to avoid overflow when processes that add particles are present. The work
of Eibeck and Wagner [6], referred to above, took the more indirect and mathematical
approach of formulating a new stochastic process that could solve the same coagulation
problems as before but without the drop in computational particle numbers associated
with basic direct simulation. Variance control was also addressed by Haibo et al. [12],
who introduced statistical weights to arrive by a slightly more informal route at the ‘w2’
method (independently) derived in this paper. The same authors introduce a very similar
method for the same purpose in [36]. Having firm bounds for the number of computa-
tional particles also enables simulation software to be made less complex and therefore
more suitable for adaption to new problems.

The purpose of this paper is to describe two stochastic algorithms with explicitly weighted
computational particles for physical particle coagulation and growth problems, principally
soot formation in laminar premixed flames [3]. These algorithms are of interest because
they provide ways of simulating coagulation and growth problems with constant numbers
of computational particles, which is valuable for the reasons discussed above.

The remainder of this introduction will outline the structure of the problems to be solved
and the general stochastic solution approach. The next part of the paper develops the
explicit statistical weighting methods that enable coagulation and surface reactions to
be simulated stochastically for the first time, without a change in the number of com-
putational particles. In the final part of the paper two possible weighting schemes are
compared to each other and a Direct Simulation Algorithm (DSA) with particle doubling.
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1.1 Soot simulation

The population balance problems considered in this paper are taken from work on soot
formation and growth although it is easy to see how other physical processes lead to equa-
tions with the same structure [17]. To put the algorithmic work in its context an overview
of the soot simulation methodology will be useful. Consideration of soot formation is
restricted to premixed laminar flames for this work (physically they present a promising
basis for model development). In such a system a perfect mixture of carbon based fuel,
oxidiser and an inert gas flow into a flame through a device similar to a school bunsen
burner. Under suitable conditions a steady flame forms, which is approximately uniform
across any horizontal planes, that is, the flame is a 1-dimensional system and a point can
be adequately described by its height above the burner through which the gas enters the
flame. Chemical species concentrations in the flame are found by solving a boundary
value problem. The solution, which consists of species concentrations on a non-uniform
grid, is stored in a text file which can be reused for every simulation of the flame with
linear interpolation between the points.

The 1-dimensional structure of the laminar gas flow in the flame means that there is a
one-to-one transformation between the residence time of a small volume of gas in the
flame and the height of that volume above the burner through which it entered. The
soot simulation is performed by calculating the time evolution of the soot population in
such a closed, homogeneous volume as it moves through the flame. Initial results are
therefore expressed as a function of time but are usually transformed back to be functions
of height. Within such a volume, as it moves up the flame expanding and contracting
the following random processes can occur (all particles are assumed to be spheres with
density 1.8 g cm−3):

1. Soot particles are incepted as spheres containing 32 carbon atoms at a rate It, which
is a function of the precalculated chemical species concentrations.

2. Each soot particle of type x coagulates with particles of type y at rateK (x, y)n (y),
where n (y) is the concentration of particles of type y. The form of K used is the
‘transition regime kernel’, see [24] for details.

3. Pyrene molecules (16 carbon atoms, hydrogen is ignored) condense on the surface
of a soot particle of type x at rate β(pyr)

t (x), the new particle type is g(pyr) (x).

4. Acetylene molecules react with the surface of a soot particle of type x at rate
β

(acet)
t (x) causing the soot particle to grow by 2 carbon atoms, the new particle

type is g(acet) (x).

5. Oxygen molecules react with the surface of a soot particle of type x at rate β(oxy)
t (x)

causing the soot particle to lose 2 carbon atoms, the new particle type is g(oxy) (x).

6. OH radicals react with the surface of a soot particle of type x at rate β(OH)
t (x)

causing the soot particle to lose 1 carbon atom, the new particle type is g(OH) (x).
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This description is intended to explain the numerical problems studied in this paper. Read-
ers interested in the soot model in its own right are advised to consult papers such as
[2, 24, 30, 33] from where the information was originally taken.

1.2 Linear Process Deferment

For most flames surface reactions occur far more frequently than coagulation and incep-
tion events. This led to very large amounts of computer time being spent simulating them,
an issue which was addressed in [25] by the introduction of the Linear Process Deferment
Algorithm (LPDA); the work reported there was based on the DSA but is equally appli-
cable to weighted particle methods. Before formulating the population balance equation
with deferment let

1. the particle type space be E, addition on this space corresponds to particle coagula-
tion,

2. E be an σ−algebra on E,

3. φ : E → R be drawn from an appropriate class of measurable test functions,

4. U = {acet, oxy, OH, pyr} be the set of surface processes,

5. U ′ = {acet, oxy, OH} ⊂ U be the subset of deferred processes,

6. Rt be the deferred process operator. For any particle type x,Rtx is distributed as the
value at time t of the Markov chain defined by jump, rate pairs

{(
g(l), β

(l)
t

)
: l ∈ U ′

}
that started from x at the time the particle was last updated. Computationally this is
achieved by a time stamp on the particles, see [25] for details.

The (unweighted) weak form of the population balance equation to be solved is

d

dt

∫
x∈E

φ (x)λt (dx) =

∫
x∈E

φ (x) It (dx)

+
∑

l∈U\U ′

∫
x,ξ∈E

[
φ

(
g(l) (ξ)

)
− φ (x)

]
β

(l)
t (ξ) P (Rtx = dξ)λt (dx)

+
1

2

∫
x,y,ξ,ζ∈E

[φ (ξ + ζ)− φ (x)− φ (y)]Kt (ξ, ζ)

P (Rtx = dξ) P (Rty = dζ)λt (dx)λt (dy)
(1)

for λt, a time indexed family of measures over [0, T ] for some T > 0 and with λ0 = 0.
Solutions to this equation need any outstanding deferred events performing before they
can be properly be related to the physical problem. The update operator Pt [25], which
maps one measure on E to another is defined by

Pt (λ) (A) =

∫
x∈E

P (Rtx ∈ A)λ (dx) ∀A ∈ E (2)
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so that if λt is a solution of (1) at time t then Pt (λt) is a solution to the undeferred
population balance equation. That is, the mean concentration, at time t, of particles with
types in A in an infinite, random physical system with the processes defined above.

1.3 Majorants

As it stands (1) and any weighted version of it would be difficult to simulate by a jump
type Markov process because the jump process rates depend on functions of unknowns
like ξ and ζ . A second complication is the infinite number of possible outcomes of a jump
from x to g(l) (x). These issues are considered in [25] and the solution is to introduce
majorants K̂t and β̂t such that

K̂t (x, y) ≥ Kt (Rtx,Rty) (3)

β̂t (x) ≥ βt (x) (4)
and to perform fictitious jumps when the inequalities are strict. In fact, (3) and (4) can
rarely be satisfied with probability 1 but only a small error is introduced if they are satisfied
with probability close to 1. This error may be controlled and monitored by breaking the
calculation of λT into smaller steps and solving (1) for each step and then applying Pt to
the solution before continuing.

2 Weighting

Let W be a set and Ω : W → R+ a map that defines how many physical particles an
element of W indicates. In practice W = R+ and Ω = id would seem to be the natural
choices. Let W be a σ−algebra on W which makes Ω measurable. Note that it is not
possible to talk about statistical weights at this stage since there are no statistics—(1) is
a deterministic equation. However, one can look for maps ν analogous to λ, but taking
values that are measures on W × E and satisfying∫

W×E

Ω (w)φ (x) νt (dw, dx) =

∫
E

φ (x)λt (dx) (5)

for all t ∈ [0, T ].

It is convenient to extend the Rt to act on W × E and to extend the It to be measures on
the product σ−algebra onW ×E. The extensions, R̃t and Ĩt must have the same physical
interpretation as the original forms, so one requires∫

E

φ (x) It (dx) =

∫
W×E

φ (x) Ω (u) Ĩt (du, dx) (6)

and

Ω (u)

∫
E

φ (ξ) P (Rtx = dξ) =

∫
W×E

Ω (w)φ (ξ) P
(
R̃t (u, x) = (dw, dξ)

)
∀ (u, x) ∈ W × E. (7)
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The simplest form for R̃t is
R̃t (u, x) = (u,Rtx) (8)

and this from will be used throughout this work. It is clearly the most natural extension—
R represents the effects of processes that act on individual particles independently and
therefore would not be expected to alter the number of physical particles being modelled.

Extensions of1 β and K so that their final arguments can be measures on W × E rather
than just E are also needed. If ν is a measure on W × E then let λ be the measure on E
given by

λ (A) =

∫
W×A

Ω (u, x) ν (du, dx) ∀A ∈ E (9)

and
β̃ (x; ν) := β (x;λ) , (10)

K̃ (x, y; ν) := K (x, y;λ) . (11)

A simple extension of It is also possible:

Ĩt (du, dx) :=
δw (du)

Ω (u)
It (dx) . (12)

This approach will be used in this paper but it should be noted that u may vary with time
and with x [29].

2.1 Dynamics of the New Measure

To proceed to a stochastic particle algorithm one requires the dynamics of ν from (5).
Consider

ψ : W × E → R; (w, x) 7→ Ω (w)φ (x) (13)

so ∫
W×E

ψ (w, x) νt (dw, dx) =

∫
E

φ (x)λt (dx) ∀ t (14)

and in particular

d

dt

∫
W×E

ψ (w, x) νt (dw, dx) =
d

dt

∫
E

φ (x)λt (dx) . (15)

By expanding the right hand side of (15) according to (1), repeatedly substituting (14) and
assuming νt ({(u, x) : Ω (u) = 0}) = 0 ∀ t one has

d

dt

∫
W×E

ψ (u, x) νt (du, dx) = J1 + J2 + J3 (16)

1The labels (l) on β and g will be omitted from the following presentation to avoid the notation becoming
too cluttered.
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where
J1 :=

∫
(u,x)∈W×E

ψ (u, x) Ĩt (du, dx) , (17)

J2 :=

∫
(W×E)2

[
ψ (w, g (ξ))

Ω (w)
− ψ (u, x)

Ω (u)

]
βt (ξ; νt) Ω (u)

P
(
R̃t (u, x) = (du′, dξ)

)
νt (du, dx)

(18)

and

J3 :=
1

2

∫
(W×E)4

[
ψ (w, ξ + ζ)

Ω (w)
− ψ (u, x)

Ω (u)
− ψ (v, y)

Ω (v)

]
K̃ (ξ, ζ, νt) Ω (u) Ω (v) P

(
R̃t (u, x) = (du′, dξ)

)
P

(
R̃t (v, y) = (dv′, dζ)

)
νt (du, dx) νt (dv, dy) .

(19)

In (18) & (19) the variables w appear as free parameters so (16) holds whatever values
of w (provided Ω (w) > 0) are substituted into J2 and J3. Therefore one may choose the
rules for calculating the w from the u′ and v′ to optimise the stochastic particle algorithm
that is being derived. To derive such an algorithm one wants to express all the integrands
in (17)–(19) in the form

∑
i ψ (ui, xi)−

∑
j ψ (vj, yj) multiplied by some rate expression

and to integrate over all the (vj, yj). The differences of sums become the definitions of
the jumps of the particle algorithm and the rest of the integral becomes the jump rate. The
variables u′ and v′ found in (17)–(19) are dummy variables, which represent the weight
component of R̃t (u, x) and R̃t (v, y) respectively.

As stated in (8) u′ = u and v′ = v with probability 1 so (18) can be simplified by choosing
w = u′ = u to give

J2 =

∫
E×(W×E)

[ψ (u, g (ξ))− ψ (u, x)] βt (ξ, νt) P (Rtx = dξ) νt (du, dx) .

(20)

There is more than one way to proceed from (19), two approaches that lead to different
simulation procedures are given here. Both, by exploiting symmetry in (u, x) and (v, y),
yield, for their respective definitions of w,

J3 =

∫
E2×(W×E)2

[ψ (w, ξ + ζ)− ψ (u, x)] K̃ (ξ, ζ, νt) Ω (v)

P (Rtx = dξ) P (Rty = dζ) νt (du, dx) νt (dv, dy) .

(21)
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The first approach is to choose w such that

1

Ω (w)
=

1

Ω (u)
+

1

Ω (v)
. (22)

(This is a possible choice for at least the simplest choices ofW and Ω—considerW = R+

with Ω a positive multiple of the identity then w = (u−1 + v−1)
−1.) The second approach

is to choose w such that

Ω (w) =
Ω (u)

2
, (23)

which is also possible if W = R+ and Ω is a positive multiple of the identity. The idea of
halving the statistical weight has previously been used by Haibo et al. [12] as mentioned
in §1.

2.2 Simulation Algorithms

All the equations considered above can be thought of as deterministic, mean field equa-
tions [1]. Stochastic algorithms are derived (see, for example, [27, §4.6]) by taking (16) as
defining the generator of a Markov process [13, ch 19], after introducing a scaling param-
eter to control the level of discretisation. The relationship of pure jump Markov processes
to the mean field equations has been extensively studied in papers such as [4, 7–9, 11, 23]
and their references. These and other papers typically prove that the trajectories of a
sequence of pure jump Markov process converge in some sense to a solution of the deter-
ministic mean field equation. The present paper was conceived as a more practical attempt
to improve a computer program already in use for solving soot problems in chemistry and
engineering. As such investigation of convergence is confined to numerical tests.

In this work the discretisation level or scaling may be controlled through Ĩt as follows:
Choose a sequence (wN) in W such that Ω (wN) > 0 and Ω (wN) ↘ 0; define

ĨN
t (du, dx) :=

δwN
(du)

Ω (wN)
It (dx) . (24)

Then replacing Ĩ with ĨN and substituting (21)&(20) for J1 and J2 in (16) leads to a
sequence of equations

d

dt

∫
W×E

ψ (u, x) νt (du, dx) =

∫
(u,x)∈W×E

ψ (u, x) ĨN
t (du, dx)

+

∫
(W×E)2

[ψ (u, g (ξ))− ψ (u, x)] βt (ξ, νt)

P
(
R̃t (u, x) = (du′, dξ)

)
νt (du, dx)

+

∫
(W×E)4

[ψ (w, ξ + ζ)− ψ (u, x)] K̃ (ξ, ζ, νt) Ω (v) P
(
R̃t (u, x) = (du′, dξ)

)
P

(
R̃t (v, y) = (dv′, dζ)

)
νt (du, dx) νt (dv, dy) .

(25)
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A sequence of generators for pure jump Markov processes can then be derived from (25)
in the standard way. The rates of the events which make up the Markov processes are given
in table 1. In table 1, and for the rest of the paper, W = R+ and Ω is the identity map-
ping. Under reasonable conditions, the trajectories of these processes can be expected, as
N → ∞, to converge to solutions of the mean field problem. Throughout the remainder

Table 1: Process summary

−→ (wN , x) ĨN
t ({(wN , x)})

(u, x) −→ (u, g (ξ)) P
(
R̃t (u, x) = ξ

)
β (ξ) ν ({(u, x)})

(u, x) −→ (w, ξ + ζ)
K̃ (ξ, ζ, ν) P (Rtx = ξ) P (Rty = ζ)

×ν ({(u, x)}) ν ({(v, y)})

of the paper the two rules for calculating w for coagulation products will be denoted ‘w1’
and ‘w2’ as specified in table 2.

Table 2: Coagulation weight rules

w1 w−1 = u−1 + v−1

w2 w = u/2

3 Numerical Tests

3.1 Initial Validation

Validation of the new weighted algorithms began using problems from [24], for which the
entire particle size distribution can be calculated using an ODE solver. Direct solution
of the population balance equations is possible because all but the first few thousand size
classes can be neglected. Initial tests simulated only inception and coagulation processes,
specifically the conditions were

1. physical particle inception rate It = 2.63× 1013 ×
(

0.05−t
0.05

)2 cm−3 s−1,

2. constant temperature of 500 K

3. constant pressure of 600 bar.

These are the same test conditions that were used in [24]. The particle size distributions
are presented in figure 1 and show good agreement between the ODE solver results and
all the stochastic weighted particle methods. Both rules for the weight of the coagulation

11



100

104

106

108

1010

0 500 1000 1500 2000 2500 3000

ODE solution
w1
w1 modified inflow
w2

pa
rt

ic
le

 n
um

be
r 

de
ns

ity
 / 

cm
-3

particle size / # C atoms

Figure 1: PSD for coagulation and inception test problem
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Figure 2: Statistical noise for coagulation and inception test problem

product (see §2.2, table 2) were used with computational particle inflow proportional to
the inception rate for physical particles, that is, with w from (12) constant. These two data
sets are labelled ‘w1’ and ‘w2’ in the legend of figure 1. In the nucleation and coagulation
only case considered here, w1 corresponds to the mass flow algorithm of [7]. The w1 co-
agulation rule was also tested with a modified inflow rule; in this case the rate of inflow of
computational particles was constant throughout the simulation, but the statistical weight
of the new computational particles was automatically adjusted to simulate the physical
particle inception rate. Adjustment of the statistical weight of particles entering a system
has previously been used in simulations of the Boltzmann equation [29].

The statistical noise associated with the methods was also considered. Figure 2 sum-
marises the results. The 95% confidence interval sizes were calculated from a central
limit theorem estimate based on 30 realisations of the Markov chain for each simulation
method, each realisation used just under 216 computational particles. The results in fig-
ure 2 indicate that w2 is generally more noisy than w1 and that there is little difference
between the two inflow methods used with w1. The data is an initial indication that w1
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is to be preferred to w2 since fewer realisations of the w1 Markov chain than of the w2
Markov chain would be needed to obtain the same size of confidence interval.

Further comparisons to the particle size distribution produced by the ODE solver were
performed for a test problem including a surface reaction (pyrene condensation). Good
agreement was found between the weighted particle methods and the deterministic solu-
tion of the size distribution for the limited case for which this was possible.

3.2 LPDA and real flames

Having established that the algorithms and their implementations worked correctly, in
limited cases for which the population balance equations could be solved directly, testing
moved on to premixed laminar flames. For these tests the LPDA as described in §1.2 was
used throughout, including for the DSA calculation used to provide a reference solution.
The first flame based test compared the accuracy of the moments of the soot particle size
distribution calculated with the w1 and w2 weightings for the flame JW10.68 [15]. The
second moment of the mass distribution is shown in figure 3, 95% confidence intervals for
the DSA and w1 data are within±2% of the plotted values and so confidence intervals are
only shown for w2. The calculations for the weighted algorithms were performed with 30
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Figure 3: Second moment of JW10.68 mass distribution
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runs using around 2000 computational particles from the end of the inception peak until
the end of each simulation. To ensure no error was introduced by the deferral of processes
all computational particles were updated every time the simulation covered 5× 10−4 s of
real time. The large difference in the statistical variability generated by the two weighting
methods should be observed. The w2 method leads to a variance for the second moment
of the size distribution that is more than 10 times larger than that obtained with the w1
method. The situation with the zeroth and first moments is similar.

The real attraction of stochastic particle methods is that they provide an explicit estimate
of the particle distribution. As a test case for the distribution the flame JW1.69 [15] was
used. This flame is known to have a bimodal particle size distribution [3] and therefore to
present an interesting test case for the way in which the w1 weighting method transfers
computational effort to larger particle sizes. The w2 method was not used for this compar-
ison, because the results above suggest that far more realisations of the w2 Markov chain
would be required than of the w1 Markov chain in order to achieve the same precision.
Therefore, to meet any particular error tolerance, less computer time would be required
using the w1 method.

Densities were calculated using the statistical computation package R [26] by performing
Gaussian blurring of the observations with a bandwidth of 0.0245. The densities presented
here were calculated in logarithmic size space, that is, they are (estimates of)

d

dlog10 x
N (log10 x) (26)

where N (log10 x) is the number of particles per cubic centimetre comprising no more
than x carbon atoms. Data calculated from 50 repetitions of the w1 Markov chain with just
under 213 computational particles are compared to data from high precision DSA (without
LPDA) calculations which used 30 repetitions with between 216 and 216 computational
particles.The results in figure 4 show a very high degree of agreement between the two
algorithms, these particular data apply to the top of the flame—about 4.2 cm above the
burner.

In figure 4 large oscillations in the density generated from the w1 data can be seen for
particle sizes between 300 and 10,000 carbon atoms. These oscillations are a symptom of
the way the weighted algorithm transfers computational resolution to large particle sizes
as discussed in the next paragraph and illustrated in figure 5. The weighted method clearly
would be rather unsuitable for this flame if the number of particles containing 300–10,000
carbon atoms was the main quantity of interest. In such a case a DSA method with particle
doubling [18, 20] as a variance reduction technique should be used if possible. However,
as will be seen for other measures of solution accuracy, the weighted method can offer as
good or better performance than the un-weighted alternative.

It is also interesting to look at the distribution of computational particles on the size spec-
trum since the number of particles is what controls the precision of the calculation. In
figure 5 the normalised densities of the computational particle distribution for the calcu-
lations used for figure 4 are plotted. The normalisation ensures that the area under both
the w1 and the DSA curve is 1 (when integrated against d (log10 x)) and so there are no
effects due to the different numbers of computational particles used with the two algo-
rithms. Figure 5 gives a very clear view of the way in which w1 and DSA concentrate
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computational effort on different parts of the size range. This shows that the choice of
algorithm will depend, to some extent, on the problem that is being solved. Problems
that mainly concern the largest particles are likely to be addressed best using a weighted
algorithm, problems concerning the smallest particles should be tackled with a DSA. The
remainder of this paper attempts to investigate this choice in a quantitative way.

3.3 Performance

Simulations of the flame HWA3 [35] were performed using DSA and the w1 weighting.
The first set of tests reported ignored the acetylene, OH and O2 surface reactions since
simulation of these processes takes a significant amount of time and is the same whether
or not weighted particles are used. The results obtained in this way give no information
about the soot produced by the flame but provide a comparison that should focus a little
more on the properties of the weighted algorithms. Simulation size is described by the
maximum number of computational particles in the simulation, settings were chosen so
that most of this capacity was used. The initial sample volume (DSA) and the weighting in
It were chosen to use almost all the capacity of the binary tree, in which the computational
particles were stored, at the point when the physical particle number peaked. For DSA
particle doubling [25] was used so that the tree was never less than 50% full. For the
weighted methods doubling was not needed as the number of computational particles did
not decrease, this being one of the attractions of the weighted method, see (21).

Table 3 summarises performance on the simplified flame; run times were measured on the
same desktop PC which has a 2 GHz Athlon XP CPU (2400+). The memory requirement
of the simulations are low, only a few MB are required, even for the largest simulations.
In table 3 the standard deviation of the population of samples for certain functionals of

Table 3: Variability of algorithms for reduced HWA3

tree method time per population std. dev. /%
size run / s m0 m1 m2 m3 5–6×103

212 w1 0.6 9.7 6.4 15.0 25.4 11.1
214 w1 2.5 4.4 3.6 7.7 12.0 6.5
216 w1 10.4 3.0 1.8 3.9 6.0 2.9
212 DSA 0.5 5.4 4.2 14.6 34.9 24.4
214 DSA 1.9 2.7 2.3 7.6 19.5 11.7
216 DSA 7.6 1.5 1.1 4.0 9.6 7.4

the solution are given for 1.34 cm above the burner, which is approximately the end of
the flame. The functionals used are the zeroth, first, second, third moments of the mass
distribution (denoted m0, m1, m2, m3 respectively) and the number of particles containing
5000–6000 carbon atoms.

From table 3 one sees that, for a given tree size, DSA simulations take around 75% of
the computational time. For the zeroth moment DSA yields an estimate that is only half
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as variable as the w1 approach. However, the advantage of DSA drops as one moves to
higher moments and by the third moment DSA is significantly inferior to w1. The value
of the higher moments is primarily determined by the larger particles in the distribution
and it is not surprising the w1 offers an advantage in this case since it increases the com-
putational resolution for this part of the distribution. The variance in the estimates of the
number of particles containing 5000–6000 carbon atoms is an even more extreme exam-
ple of the way in which w1 resolves the larger sizes better (at the expense of the smaller
ones) compared with DSA.

For all the functionals both algorithms appeared to have converged in mean to the true
value for the largest tree sizes reported in table 3. This was verified by performing larger
simulations on other hardware, which were not timed, and so are not reported in detail.
These results suggest that, for some functionals, which heavily emphasize the distribution
of larger particles w1 offers a faster way of getting good estimates than DSA.

3.4 Further Comparison

The same tests were carried out, with the same flame, HWA3, but including all reactions
on the surfaces of soot particles by means of the LPDA (compare §1.2). A couple of
results for w2 are included for interest but fit the pattern discussed above and will not
receive any further attention. Stochastic simulation of this flame is of considerable interest
because measured particle size distributions have been published in [35]. Computational
times are not comparable to those from table 3 because different hardware was used.
The simulations with the full flame model take much longer because of the high rates of
surface reactions and so Opteron 252 processors running at 2.6 GHz in 64 bit mode were
used for the computations. The results are summarised in table 4.

Table 4: Variability of algorithms for physical system

tree method time per population std. dev. /%
size run / s m0 m1 m2 m3 9–10×105

212 w1 4.4 9.6 1.9 3.8 6.2 18.9
214 w1 18.0 5.2 1.1 2.3 3.6 9.8
216 w1 73.7 2.4 0.6 1.3 2.1 4.9
218 w1 274 1.1 0.2 0.4 0.7 2.1
214 w2 18.9 5.3 3.3 2.3 7.5 36.1
216 w2 75.1 2.2 1.5 3.4 5.7 16.8
212 DSA 3.0 4.6 1.1 2.9 7.1 39.1
214 DSA 12.2 3.0 0.5 1.4 3.3 19.6
216 DSA 49.5 1.3 0.3 0.6 1.8 9.3
218 DSA 213 0.7 0.1 0.4 1.0 5.3

In common with the results for the simplified problem DSA is seen to be around one third
faster than the w1 approach for a given tree size. All the sets of simulations produced
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reasonably accurate estimates of the quantities considered in table 4: For the moments
the mean from 80 repetitions with each tree size was within 1% of the values from ex-
tremely high precision calculations. For the number of particles containing 9–10×105 C
atoms, the difference between the mean and the high precision solution just reached 4%
in some cases, which is not statistically significant. As in the simplified case DSA gen-
erates less statistically noisy estimates for the first few moments of the size distribution
but w1 becomes more attractive for functionals that place a greater stress on the largest
sizes of particles. However, for the reduced case, w1 was significantly less noisy for the
third moment (m3) than DSA for a given tree size, but for the full flame the crossover is
only just beginning at m3. It can be seen that for the number of particles in the size range
9–10×105 the w1 algorithm produces an estimate with roughly the same variance as the
DSA with 4 times the number of particles. Examination of the ‘time per run’ column of
table 4 shows that w1 can therefore provide an estimate, of any given precision, of the
number of particles in the size range 9–10×105 in roughly one third of the time of DSA.

3.5 Potential Applications

While the weighted particle algorithm presents an alternative to the DSA with particle
doubling for simulations of Smoluchowski’s coagulation equation for spatially homoge-
neous systems, it also has other potential applications where it might clearly distinguish
itself from the DSA. One application which has already received considerable attention
for the purposes of gas dynamics simulation is the simulation of particle populations in a
grid of cells. For such problems that ability to explicitly control the weighting is impor-
tant to capture effects in regions with low particle densities [14], when a small proportion
of the population has very important effects [29]. Weighted particle methods would there-
fore seem attractive for simulations of spatially resolved coagulating systems, a purpose
for which the MFA has already been used [10].

Explicit weights offer options for the implementation of particle transport between cells
by accounting automatically for differences in the statistical weight assigned to computa-
tional particles in different cells and facilitating conservative resampling of particle pop-
ulations [32]. It is also possible to exploit weighting to adjust computational resolution
independently of the main kinetic simulation process by resampling the computational
particle population. An application of resampling would be to construct a different com-
putational resolution profile from the one shown in figure 5 in order to move the statistical
noise seen at particle sizes in the range 300–10,000 carbon atoms in figure 4 to a different
size range.

4 Conclusion

A general weighted form of the Smoluchowski coagulation equation with additional linear
terms has been formulated. From this equation two new weighted particle simulation al-
gorithms have been derived. Implementations of these algorithms have been successfully
validated against direct solutions of the population balance equations of simple systems.
Further results for complex laminar premixed flame systems show close agreement with
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data from calculations with more established stochastic methods. The statistical noise
generated by the two weighted algorithms has been compared showing one weighted al-
gorithm to be consistently better than the other. Finally, run times to achieve fixed error
tolerances for a real flame system have been measured on a desktop PC and the better
weighted algorithm has been found to be up to three times faster than direct simulation.
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