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Abstract

In this paper a multidimensional model for binder granulation is presented. The
particles undergo different transformations such as coalescence, compaction, and
breakage. Further chemical reaction in the granules is taken into account in order to
incorporate binder solidification which is observed to be a significant transformation
in many industrial applications. The equations of the model framework are solved
numerically with a direct simulation Monte Carlo (DSMC) algorithm. In addition
to the comparison between experiment and simulation, the model framework also
enables the study of critical parameters in binder granulation such as reaction rate
(solidification of binder) and size of the added binder droplets, which demonstrates
its promising potential.
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1 Introduction and background

Granulation is a common industrial process which transforms fine powders into coarser
grains that are user-friendly for handling, storage, post-processing, re-dispersion, and
other processing or usage needs. Benefits include improved flowability and compaction
behaviour for subsequent industrial processes (pharmaceutical tabletting, ceramic dry
forming, minerals processing), storage stability, handling and re-dispersion required by
end-use applications (foods, detergents, agricultural chemicals, etc.). Besides the im-
provement to powder handling, granulation is also used to create ordered micro-mixtures
of different components [18], to prevent segregation and to control dissolution [11, 27].

Granulation is often accomplished using a liquid binder to create a composite structure of
fine particles connected by a binder phase. In the granular product, the binder is usually
converted into a stable solid phase, for example by drying, cooling or reaction of the
binder with the particulate substrate. The conversion of the binder from a liquid to a solid
state can be done as a post-process (e.g., a separate drying step) or it can be an integral
part of the granulation process. In the latter case, the rate of the binder transformation
from liquid to solid is critical to the granulation process.

Binder granulation is typically achieved by adding a liquid binder to small solid particles
in a mixer-granulator, fluidised bed or other appropriate unit operation. The binder can
be atomized as individual droplets contacting the particle bed [8] or as a liquid stream
that is dispersed by contact transfer in a mechanically-induced shear field. Alternatively,
a binder can be added as a solid particulate, and then brought to a liquid or soft-solid
state during the granulation process, as in hot melt [22]. Flow and shear fields within the
process induce collisions between particles and further the dispersion and transfer of the
binder [23]. The stress associated with these collisions and the dissipation of energy by
viscous binder layers and/or plastic deformation of the granular structures is fundamental
to the mechanics of the granulation process. While the particles are bound due to capillary
pressure, surface tension and viscous forces related to the binder phase [9], the critical
properties of the binder itself are often changing during the process. On the one hand,
the transformation of the binder can be advantageous for process control; on the other,
it adds additional complexity to a system that is already undergoing multiple concurrent
transformations. Similarly, breakage may be desired to limit the growth of the granules
[25], so that the product is more homogeneous in size [20] and composition [26], but the
stochastic nature of breakage adds a lot of complexity to the modelling and processing.

Previous work suggests an approach to analyse and optimise binder granulation processes
in terms of micro-scale transformations [16]. It is suggested to first identify the critical
transformations relating to a specific product specification and/or process operation; then,
wherever possible, to strategically separate these transformations in order to optimise the
control of the process. Further, a practical example of process optimisation and control
by the spatial and/or temporal separation of critical transformations has been documented
[17].

In the current work, the authors aim to further the scientific approach to granulation prod-
uct optimisation and process control through a stochastic modelling framework. This
modelling framework provides a multivariate population balance capable of concurrent
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transformations while tracking multiple product attributes. The output of the model is
a set of predictive process trajectories for distributed product attributes including size,
granule density and composition. While the modelling work is still at a research stage,
the mathematical algorithms are of reasonable efficiency for application to process opti-
misation and control.

The stochastic modelling framework permits the use of both continuous descriptions
(based on empirical approximations applied to the bulk system) and discrete events (based
on micro-scale models). Relevant transformations include binder atomization, binder dis-
persion, nucleation, granule coalescence, layering, compaction, binder solidification (e.g.,
by reaction, drying, cooling), and breakage (fragmentation, abrasion). Significantly, the
description of transformations as discrete events on a micro-scale allows the direct incor-
poration of mechanistic models in the overall process model framework. As such, the
stochastic method enables a significant bridging of scales from first-principle micro-scale
to the process unit operation.

A significant outcome of the current work is the incorporation of an explicit binder trans-
formation rate within the granulation process. In practice, binder transformation (e.g.,
from a liquid to solid phase) is observed in reactive binder systems (reaction rate), ag-
glomeration with concurrent drying (drying rate) and hot melt granulation (cooling rate).
In all cases, the relevant rate processes occur on a per granule basis, as a function of the
granule composition and process history. Whereas previous empirical models may ap-
proximate the effect of such transformations on a bulk scale, the current modelling frame-
work allows the use of detailed mechanistic models on a micro-scale using fundamental
physical and chemical properties.

Overall, the potential to bridge the micro (i.e., granule) and unit-operation scales using
the stochastic modelling approach is a very promising development. Enabling the use of
first-principle models as elements in an overall process description can help to supplant
the empiricism that pervades much of the current practice in particulate processes [2],
with the potential to both improve process efficiency and product quality.

2 Details of the model

2.1 Particle description

Historically, particle size has been used as the primary attribute in population balance
models [13, 21, 1]. The current work takes a more comprehensive perspective, tracking
compositional and structural features of the granules, giving rise to the size, porosity and
compositional distributions of the granules.

In general, the current model tracks the volume of solid, liquid and vapour phases in a
representative sampling of individual granules. The solid volume includes the particulate
volume associated with constituent particles (original solid) along with any solid reaction
products of binders (reacted solid). Liquid binder is partitioned by location, either on
the surface of particles or internal to the granule structure. In the latter case, the internal
binder occupies granular pore volume. The remaining pore volume is filled with a vapour
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Table 1: Variables describing a granule

dependency variable notation
independent original solid volume so

reacted solid volume sr

external liquid volume le
internal liquid volume li

pore volume p
dependent total volume v

external surface area ae

internal surface area ai

porosity ε

phase. The shape of a granule is assumed to be spherical. In total, a granule is described
by five independent variables. From these it is possible to express other properties such as
the total volume (particle size) or the surface area. Table 1 summarises the variables that
describe a particle.

The vector x of independent variables which describe a granule therefore has the form:

x = (so, sr, le, li, p) (1)

and is an element of the type space E. There exists relationships between the different
variables, which are summarised in the following equations. The total granule volume v
is obtained by

v = so + sr + le + p. (2)

As the particle is a sphere, the external surface area ae can be derived from the total
volume v,

ae = π1/3 (6 v)2/3. (3)

The internal surface area is considered to be proportional to the pore volume,

ai = C p2/3 with C ≥ π1/3 62/3 ≈ 4.836, (4)

and the porosity ε becomes

ε =
p

v
. (5)

2.2 Transformations and their rules

The granular ensemble changes during the granulation process due to transformations
taking place, i. e. events and mechanisms. We consider following transformations to take
place in the current model:
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1. Addition of binder

2. Coalescence of particles

3. Compaction (porosity reduction)

4. Chemical reaction

5. Mass transfer of liquid into the pores (penetration)

6. Breakage

2.2.1 Addition of binder

In the present case we consider the binder liquid to be added into the process by an implied
process of droplet formation followed by contacting the solid particles with the liquid
droplets. Together, the particles and droplets are the constituents of the granular ensemble.
For the purpose of modelling, the droplets are represented as a special case of a particle;
the vector of the independent variables for a droplet becomes

xdroplet = (0, 0, le, 0, 0). (6)

The addition of binder is determined by the liquid flowrate and the droplet size distribu-
tion. For example, in a practical application using binder atomization, the droplet pop-
ulation depends on the nozzle configuration and operating parameters. In addition, the
model allows for further droplet breakup and contact spreading in the process shear field,
as described in the breakage section.

2.2.2 Coalescence of particles

For the further modelling it is assumed that the particle system of our granulation process
is ideally mixed. The coagulation kernel K(x, x′), which gives the rate for the coalescence
of particles with properties x and x′ respectively, can be split into two parts

K(x, x′) = K0 K̃(x, x′). (7)

The term K0 is independent of the properties of the two colliding particles and lumps the
general conditions of the flow field in the process. It is also referred to as collision rate.
The term K̃ accounts for the probability of a successful coalescence and becomes either
1 (coalescence) or 0 (no coalescence). The physically based STOKES criterion [4] is used
to decide whether or not two particles coalesce. According to this criterion, a collision
leads to coalescence if the kinetic energy of the two colliding particles is dissipated in
the viscous binder layer. The solution of the momentum balance [4] leads to the viscous
STOKES number Stv:

Stv =
collision energy

energy of viscous dissipation
=

m̃ U

3 π η R̃ 2
, (8)
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where m̃ is the harmonic mean granule mass, U is the collision velocity, η is the binder
viscosity, and R̃ is the harmonic mean particle radius.

Coalescence takes place if the critical STOKES number St∗v is bigger than the viscous
STOKES number Stv.

Stv ≤ St∗v : K̃ = 1 : coalescence

Stv > St∗v : K̃ = 0 : no coalescence.
(9)

The critical STOKES number St∗v is defined by:

St∗v =

(
1 +

1

ecoag

)
ln

(
h

ha

)
, (10)

where ecoag is the coefficient of restitution, h is the thickness of the binder layer, and ha

is the characteristic length scale of surface asperities. The coefficient of restitution in
eq. (10) is defined as the geometric average of the coefficients of restitution of the single
particles (j, k),

ecoag =
√

ej · ek. (11)

A mass-weighted arithmetic average is used for the calculation of the coefficient of resti-
tution ej of each particle core,

ej =

∑
α∈{so,sr,li}

eα mα∑
α∈{so,sr,li}

mα

. (12)

The coefficient of restitution e is the ratio of rebound energy to impact energy, and hence
it takes values between zero (totally plastic impact) and one (totally elastic impact). We
assume that the coefficient of restitution e for liquid is zero.

If the two particles (j, k) coalesce, the properties of the new particle are calculated as
follows:

so = so,j + so,k, (13)
sr = sr,j + sr,k, (14)
le = le,j + le,k − le→i, (15)
li = li,j + li,k + le→i. (16)

In equations (15) and (16) it is taken into account that a certain amount of external liquid
becomes internal liquid due to the coagulation. This volume is computed by

le→i =
le,j + le,k

2

1−

√√√√1−

(
6
√

(vj − le,j) · (vk − le,k)
3
√

vj + 3
√

vk

)2
 . (17)

This formulation satisfies that the converted volume le→i is low for vj − le,j → 0 and
for the other particle respectively. Finally the pore volume of the new granules has to be
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defined. Therefore, we follow an approach from [7], where it is proposed that the external
surface area and the pore volume of the new granule depend on the softness of the two
former particles. The coefficient of restitution ecoag, which is a measure of the softness
of the particles, is used for the calculation of the external surface area of the new formed
granule:

ae = (1− ecoag)
(
a

3/2
e,j + a

3/2
e,k

)2/3

+ ecoag (ae,j + ae,k) , (18)

so that the pore volume of the newly formed particle becomes

p =
a

3/2
e

6
√

π
− so − sr − le. (19)

2.2.3 Compaction

Each collision of particles leads to compaction and will be described by an adapted ap-
proach using the findings of [10]. This means compaction is considered to be a subevent
of coalescence and shall happen in the current model irrespective of whether coalescence
is successful or not. The approach in [10] uses an empirical model which predicts the av-
erage porosity of a particle ensemble. For the time being, it is assumed that this approach
can be followed for single granules too, so that the porosity change ∆ε due to collision is
described by:

∆ε =

{
kporred U (ε− εmin) , if ε−∆ε ≥ εmin

0 , otherwise,
(20)

where kporred is the rate constant of porosity reduction, U is the collision velocity, and
εmin is the minimum porosity.

In the current model, compaction causes transfer of internal liquid to the external surface
once the pores are totally saturated by internal liquid.

2.2.4 Chemical reaction

Chemical interactions between the different components of the granules have to be taken
into account for many applications in industrial practice. For example, hydration of sub-
strate powders by aqueous binder systems and acid-base reactions are well known in in-
dustry. Variations in the chemical and physical characteristics of the raw materials can
have a significant effect on the process. So far, this transformation has not been incorpo-
rated explicitly into a general process model framework.

For the present case we consider the formation of reacted solid from liquid binder, i. e.
the solidification of the material. This continuous process happens when original solid
material is present. It is assumed that the incremental conversion is proportional to the
reaction interface, i. e. the surface area. Additionally, the reaction rate may be limited by
transport across a product layer [12]. These considerations lead to the following equations
for the reaction rates rreac:
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Reaction on the external surface:

rreac,e =

 kreac,e ae
le

le + sr

, if so > 0 and le > 0

0 , otherwise.
(21)

Reaction on the internal surface:

rreac,i =

 kreac,i ai
li

li + sr

, if so > 0 and li > 0

0 , otherwise.
(22)

Due to the reactions the particles become harder as the coefficient of restitution changes.
The amount of external liquid will be reduced so that coalescence is less likely. Further-
more, the conversion of internal liquid into reacted solid leads to a reduction of the pore
volume/porosity. In the current case, these reaction rates are simple, but in general any
conceivable reaction can be defined in the model. If we assume that the densities for ex-
ternal and internal liquid, and the reacted solid are the same (ρle = ρli = ρsr), the changes
of the independent properties of a particle due to chemical reaction are obtained by

dso

dt
= 0, (23)

dsr

dt
= rreac,e + rreac,i, (24)

dle
dt

= −rreac,e, (25)

dp

dt
=

dli
dt

= −rreac,i. (26)

2.2.5 Penetration

A liquid droplet which coalesces with a “real” particle will increase the amount of external
liquid of the new particle. If this particle is porous, external liquid will probably penetrate
into the pores. To deal with this process, the following equation for the penetration rate
rpen is proposed:

rpen = kpen le (p− li) . (27)

The penetration rate rpen is proportional to the amount of external liquid le and depends
also on the remaining empty pore volume (p − li). The rate law is rather simple for the
moment, but as before there are no restrictions on the incorporation of a more compli-
cated law in the future. The changes of the independent properties of a granule due to
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penetration are given by

dso

dt
= 0,

dsr

dt
= 0, (28)

dle
dt

= −rpen, (29)

dli
dt

= rpen, (30)

dp

dt
= 0. (31)

2.2.6 Breakage

While breakage has been identified to be a significant process in high shear and drum
granulation [2], the modelling of breakage in granulation processes is not so advanced.
For instance, experiments in order to investigate the breakage behaviour of single wet
granules have been performed [5], but a model was not derived. In the current work, a
general event-driven description of wet granule breakage is used to account for operating
conditions, the constituent material properties, and the granule properties.

For the characterisation of a breakage process, the likelihood of breakage of any particle
and the properties distribution (e. g. size distribution) of the newly formed particles have
to be known. The likelihood of breakage is described by the breakage frequency g(x).
The breakage frequency is seen to be proportional to the particle volume v, for parent
particles larger than a minimum size vparent,min. In [11] it is mentioned that granules with
high porosity are weak. This means that the probability of their breaking should be higher
than for less porous particles. The granules are covered by external liquid on the outer
surface. It is expected that a particle with a considerable amount of external liquid is
weaker than a particle without it. These considerations lead to the breakage frequency of
a particle with the properties x and is calculated by the following equation:

g(x) =

{
katt (ε + χ) v , if v ≥ vparent,min

0 , otherwise
, (32)

with ε =
p

v
, χ =

le
v

.

We assume that the breakage of wet granules has binary character. This means that break-
age of a particle leads to one daughter particle and the remaining parent particle. The
probability density fatt of the volume of the abraded daughter particle is modelled with a
beta distribution.

fatt(Θ) =
1

B(a, b)
Θa−1 (1−Θ)b−1 with B(a, b) =

∫ 1

0

Θa−1 (1−Θ)b−1 dΘ (33)

The parameter a and b determine the skewness of the function. The volume of a fragment
will be in the range [vfrag,min; vfrag,max] and depends on the material properties and loading
conditions. For the use of the beta distribution in the described model, the variable Θ is
defined as followed:

Θ =
vfrag − vfrag,min

vfrag,max − vfrag,min

, (34)
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where vfrag denotes the total volume of the new fragment. The minimum fragment size
vfrag,min is a constant value for all parent particles, whereas the maximum fragment size
vfrag,max is dependent upon the total volume of the parent particle according to

vfrag,max = νmax vparent (νmax ≤ 0.5). (35)

As the maximum fragment size can not be smaller than the minimum fragment size, a
further constraint has to be introduced, namely that

vfrag,max ≥ νmin,max vfrag,min (νmin,max ∈ [1;∞)). (36)

The combination of eqs. (35) and (36) gives a definition of the smallest parent particle,

vparent,min =
νmin,max

νmax

vfrag,min. (37)

Although the total size of the daughter particle is now defined, the composition is still
unknown. We keep the model simple and assume that the composition of the new particles
is the same as that of the parent particle, unless the parent particle is not porous. In this
case, the daughter particle consists of external liquid only.

2.3 Numerical solution

The above model can be written in the form of a multidimensional population balance
equation with five independent variables. Due to the complexity it is necessary to solve
these equations numerically. In principal any methods can be chosen, although finite el-
ement approaches/sectional methods have the drawback that the computational effort re-
quired to obtain a solution grows exponentially with the number of independent variables
[14]. We decided to use a Monte Carlo method to solve the model and chose a direct sim-
ulation algorithm (DSMC), because the particles of the real system can be represented by
a smaller number of computational particles [6, 24, 15]. The structure of our coagulation
kernel allows us to make use of fictitious jumps [3], which further increases the efficiency
of the algorithm. Further reduction of the computational effort can be achieved by the
application of the Linear Process Deferment Algorithm [19]. As our model also includes
linear processes such as chemical reaction, we use this algorithm to obtain solutions of
the model.

3 Discussion of simulation results and experimental vali-
dation

In this section we show the applicability of our model with a comparison between exper-
imental and simulation results, and perform parameter studies for the reaction rate and
the droplet size. Given that the multidimensional model is significantly dependent on
binder distribution within the granular ensemble, an experiment was chosen to measure
both granule size and granule binder concentration. The size was measured directly by
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Figure 1: Normalised number (q0) and volume density function (q3) of the dry feedstock

automated image analysis. An optical tracer was added to the binder and granule colour
was used as a proxy measure of binder concentration. A reactive binder-powder system is
used to investigate the reaction sub-model.

To examine the model’s capability to describe binder distribution as an event-driven pro-
cess, we used a binder droplet size that is an order of magnitude larger than the particulate
solids. Thus, the full dispersion of binder relies on events leading to contact-spreading.
The reliance on contact spreading is common in many industrial applications, especially
for fine-powder granulation.

3.1 Comparison between experiment and simulation

The experimental system used anhydrous sodium carbonate particles (FMC Soda Ash
Grade 260) and a 25 wt% PEG-4000 aqueous solution binder in a bench scale high shear
mixer. To track the distribution of the binder, a small amount (2 wt%) of an ultrama-
rine blue pigment was added to the binder solution. Semi-automated optical measure-
ments (Solids Sizer, JM Canty, Lockport, NY) were performed at different time intervals
throughout the process, collecting both size and colour data of∼10000 particles per inter-
val. The relative amount of reflected blue light was measured, averaged on a per-particle
basis. The relative blue level (%B) is a proxy indicator of the binder amount/coating level,
because the binder contains blue pigment. The light reflection was measured as an RGB
composition so that a non-coated/white particle reflects red, green, and blue light equally.

The anhydrous powder reacts with water in the binder to form a monohydrate phase, ef-
fectively converting one mole of liquid water to a solid monohydrate (Na2CO3 + H2O →
Na2CO3 · H2O). This reaction occurs at the interface between the solid and liquid reac-
tants, i. e., at the surface of the carbonate particles when contacted by the aqueous binder.
Thus, the rate of the reaction is significant as it directly effects the liquid layer thickness
on the particles, and therefore the value of the critical Stokes number.

The experiment started with a dry feedstock of non-porous particles. The normalised
number and volume density functions of the feedstock are shown in fig. 1. The granu-
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binder
total

Figure 2: Profile of the total binder amount

Table 2: Binder amounts after the different stages

stage binder amount [wt%]
t0 0
t1 5
t2 10
t3 15
t4 20

lation was performed in four equally timed stages. During the first two-thirds of each
stage binder was added dropwise from a syringe, whereas during the rest of the stage
no binder addition took place. The droplet size from the syringe was ∼ 1 mm in diame-
ter. The process profile of the total binder amount added over four intervals as shown in
fig. 2 was chosen to allow for intermittent sampling of the material. After each interval,
the mixer was switched off and a sample was taken to measure the size and the binder
amount/coating level of the particles. Table 2 summarises the binder amounts which are
obtained after every stage. The results of the particle measurements after each stage are
shown in fig. 3. The particle distributions are plotted as a function of the particle size and
the coating level in terms of the relative intensity of blue light reflected (%B). The increase
in blue colour at small binder amounts is evidence of coating; however, a significant onset
in granular size growth does not occur until ∼10 wt% binder is added.

Simulations with the same conditions and profiles were performed. Many rate constants
and material properties are contained in the model. Some of these parameters are known
or can be reasonably approximated; others (e. g. , breakage functions) require empirical
adjustment and/or further investigation. The predicted evolution of the binder dispersion
and granule growth distributions are shown in fig. 4. We refer to this simulation in subse-
quent considerations as the ‘reference case’. The simulation results also allow the volume
mean size and standard deviation of this measure to be deduced. A comparison for both of
these characteristics of the particle ensemble is made in fig. 5. From the previous figures
it can be concluded that there is close agreement between the trends of the experiment and
the simulation (reference case). The characteristic particle measures of the simulation are
of the right order of magnitude follow similar trends. Although there is a remarkable dif-
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Figure 3: Normalised volume-binder amount-densities of the experiments (t0–t4)
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Figure 4: Normalised particle distributions of the reference case (t1–t4)
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Figure 5: Comparison between experiment and simulation (reference case) for the geo-
metric volume mean size and the standard deviation thereof

ference between experiment and simulation for the t2 stage, especially for the standard
deviation, the model gives a promising qualitative prediction of the process evolution.
An hypothesis for the divergence at the t2 stage is that the model assumes perfect bulk
mixing in the vessel while the experiment may have suffered localised heterogeneity in
flow fields, thus increasing the standard deviation of the binder distribution due to contact
spreading.

3.2 Parameter variations

A new feature of the model is the incorporation of chemical reactions in a single granule.
As in the present case this can be the solidification of binder. If the reaction rate varies
(e. g. due to different process conditions like temperature), the outcome of the granulation
process is different from the reference case. The reaction rate constants were decreased
and increased by an order of magnitude, so that the evolutions of the volume mean size
and the standard deviation as in fig. 6 can be obtained. A reduction of the reaction rate
leads to the formation of bigger final granules, whereas a higher reaction rate inhibits
the size enlargement process. Not only the volume mean size of the particle ensemble
increases with a reduced reaction rate, also the spread of the particle size rises. A pos-
sible explanation for this finding might be that a granule with the same composition can
undergo more successful collisions in the first case, as more external liquid is present on
the external surface. Furthermore, this particle is softer (lower coefficient of restitution),
because the amount of internal liquid is higher for a lower reaction rate. These findings
are supported by a plot of the mean critical STOKES number St∗m versus time (fig. 7(a)).
The mean critical Stokes number is calculated as particle volume weighted measure. This
avoids the overestimation of small particles in an ensemble with large particles. Fig. 7
suggests that as lower the reaction rate is, as higher is the mean critical STOKES number
St∗m, i. e. the likelihood for the formation of granules increases. A negative mean critical
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Figure 6: Geometric volume mean size and standard deviation in dependence of the re-
action rate
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Figure 8: Geometric volume mean size and standard deviation thereof with a variation of
the droplet size

STOKES number St∗m means, that the majority of the particles has not sufficient enough
binder on the external surface in order to allow damping after a collision with a particle
without binder. While the reduction of the reaction rate constant has hardly any influence
on the standard deviation of the critical Stokes number, there is a remarkable increase
in the standard deviation at higher reaction rate (fig. 7(b)). The increase in the critical
Stokes standard deviation at high reaction rates reflects the increased variation of the liq-
uid phase binder layer thickness due to the competition between contact spreading and
the solidification reaction.

Indeed, the dispersion of the binder is of critical importance in the reactive granulation
process. One may ask what happens, if the droplet size is changed, i. e. another nozzle
configuration is used for the process. If the droplet size is changed by an order of mag-
nitude with respect to the reference case, the results shown in fig. 8 are obtained. The
addition of smaller droplets leads, on average, to smaller product sizes. A possible expla-
nation for this finding might be that finer dispersion of the binder leads to a greater total
interface between liquid and original solid, so that the binder solidifies faster and there is
less coalescence of the particles. This is also shown by the mean critical STOKES number
St∗m plotted in figure 9(a). The combined effects of a higher binder solidification rate and
smaller binder droplets is consistent with particle coating practise, where a uniform film
is desired and agglomeration is suppressed.

4 Conclusions

This paper presents a stochastic population balance model for binder granulation. The
model is capable of using discrete event-driven sub-models to describe individual micro-
scale transformations within an overall process model framework. As such, the stochastic
method framework serves as an integrator of transformations within the overall process.
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Figure 9: Mean critical Stokes number St∗m and standard deviation in dependence of the
droplet size

A significant outcome of the current work is the incorporation of an explicit binder re-
action rate (transformation from liquid to solid phase) within the granulation process
as well as the combined dispersion of binder by both droplet atomization and contact-
spreading mechanisms. The particles are described by five independent state properties to
describe composition and structure, enabling consideration of multiple concurrent trans-
formations including binder atomization, dispersion, coagulation, binder-substrate reac-
tions, compaction and breakage. First comparisons between experiment and simulation
show a promising agreement, and further in-silico case studies show significant effect of
binder-related transformations on the product distributions, both in size and composition.
Overall, the potential to bridge the micro and unit-operation scales using the stochastic
modelling approach is a very promising development, and the authors foresee expanding
opportunities to use this approach with more complex transformational models.
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