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Abstract

In this paper we introduce an efficient stochastic approach to solve the pop-
ulation balance equation which describes the formation and oxidation of soot
particles in a laminar premixed flame. The approach is based on a stochas-
tic particle system representing the ensemble of soot particles. The different
processes contributing to the formation and oxidation of soot particles are
treated in probabilistic manner. The stochastic algorithm, which makes use
of a very efficient majorant kernel and the method of fictitious jumps resolves
the entire soot particle distribution (PSDF) without introducing additional
closure assumptions. A fuel rich laminar premixed flame of acetylene is com-
puted using a detailed kinetic soot model. Solutions are obtained for both, the
stochastic approach and the method of moments combined with a modified
version of the code Premix which is part of the CHEMKIN package. In this
manner, for the first time, the accuracy of the method of moments in a real
flame is investigated. It is found that the accuracy for the first moment is
excellent (5% error), and mean error for rest of the moments is within 25%.
Also the effect of the oxidation of the smallest particles (burnout) has been
quantified but was not prominent in the flame investigated. The time evolu-
tion of computed size distributions as well as integral values are compared to
experimental measurements and the agreement was found to be satisfactory.
The results show that the PSDF of soot particles is bimodal. Finally, the
efficiency of the method is studied.
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Introduction

When modelling the formation of soot in flames, one is interested in the spatial and
temporal evolution of the size distribution of the soot particles. Hence the prob-
lem of solving the population balance of soot particles has to be studied [1]. For
this purpose we have to model the mechanisms of particle formation, growth and
oxidation [2] and we need to solve the corresponding population balance equation.
Several approaches have been developed to find a solution to the latter problem.
Frenklach et al. applied the method of moments [3, 4], which is based on the fact
that the solution of the population balance equation is equivalent to the solution of
an infinite set of equations for the moments of the size distribution. The method of
moments is computationally very efficient and it provides integral quantities such
as mean number density and volume fraction that are normally available from mea-
surements. The information of the exact shape of the size distribution is however
lost and approximations (interpolation schemes) have to be made to close the sys-
tem of equations for the moments, which are introduced by coagulation and surface
reactions. The knowledge of the shape of the size distribution might however be
desired in some cases, in particular in the light of recent findings that ultra-fine
particles might be responsible for effects of diesel exhaust on human health [5].
Numerical methods that approximate the size distribution rather than its moments
include discrete sectional [6, 7], stochastic [8, 9] and Galerkin methods [10]. Hith-
erto, only the sectional method and the Galerkin method have been applied to model
the soot PSDF. In Ref. [11], a two-dimensional laminar diffusion flames is simulated
with a sectional method, and in [12] a Galerkin method has been employed to model
a one-dimensional premixed laminar flame. While these methods deal with the size
distribution at different levels of resolution, they require by far more computational
time than the method of moments. Both approaches, however, have the drawbacks
that there is no information about the history of single particles and that the treat-
ment of higher dimensional size distributions to account for several internal variables
is not straight forward and are likely to be of very high numerical complexity.
The purpose of this paper is to present an alternative approach to solve the pop-
ulation balance of soot particles, that removes some of these limitations. The new
method is based on a stochastic description of the particle ensemble. All processes of
soot formation and oxidation are treated probabilistically using Monte-Carlo tech-
niques. The method makes use of the new concept of fictitious jumps employing a
majorant kernel and hence is much more efficient than previously used Monte-Carlo
methods [13, 14]. Another important property of this algorithm is the fact that
there exists a mathematical prove that the stochastic particle system converges to
the exact solution of the population balance equation. Furthermore, the modelling
of higher dimensional distributions is straightforward and the sizes and the age of
particles is known explicitly.
The new stochastic particle method is coupled to a detailed kinetic soot model to
simulate soot formation and oxidation in laminar premixed flames. The detailed
kinetic soot model used was developed by Frenklach et al. [4, 15, 16] and Mauss et
al. [17, 18] in fuel rich laminar premixed and counterflow flames but has also been
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used to model soot formation and oxidation in more complex systems such as 2D
laminar and turbulent non-premixed flames [19, 20], diesel engines [21, 22] and gas
turbines [23, 24]. In this study, we focus on two different issues. The accuracy of the
method of moments is assessed and numerically computed PSDFs is compared to
measured PSDFs. In particular, the oxidation of the smallest particles, which leads
to an unclosed term in the method of moments, is investigated and the associated
error is quantified. This is of importance in diesel engines and gas turbines where the
number of emitted particles is determined by oxidation and burnout. Finally, some
remarks on the efficiency of the stochastic method are made. It is however not the
intention of this study to thoroughly assess and compare the stochastic method to
other numerical methods. Details of this new algorithm will be published elsewhere
[25].
This paper is organized as follows. First the model describing gas phase chemistry
and the formation and oxidation of soot particles is briefly presented. Then the
new algorithm for solving the the dynamics of the soot particles is introduced. The
next section contains the specification of the simulated flame and describes how
the stochastic model is coupled to a one-dimensional flame code. Finally, differ-
ent case studies are presented and discussed in detail. These case studies address
the accuracy of the method of moments, the rôle of the oxidation as a source of
computational error, and the comparison of measured and simulated PSDFs.

1 Modelling

The soot particle size distribution is described by the following equation:

∂

∂t
N(t, k) = R(t)δ∗in + G(t, k) + W (t, k), (1)

with the initial condition
N(0, k) = N0(k) ≥ 0, (2)

where N(t, k) is the number density of particles of size k at time t, R(t) the rate
of particle inception, δ∗in is the size of the incepted particles, G(t, k) is the rate of
coagulation and W (t, k) the rate of surface reactions. The following section presents
the physical models for the terms on the right hand side of eq. (1) followed by a
description of the method of moments and the new stochastic particle algorithm.

1.1 Soot Formation, Growth and Oxidation

The modelling of the gas phase chemistry and the formation and oxidation of soot
particles is taken from Frenklach et al. [4, 15, 16]. The gas phase mechanism [15, 16]
describes the oxidation of the fuel and the formation of polycyclic hydrocarbons
(PAHs). Soot particles are formed by particle inception, which in this study is
modelled as dimerization of two pyrene molecules:

R(t) =
1

2
βpyreneNpyreneNpyrene, (3)
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where βpyrene is the coagulation kernel of two pyrene molecules and Npyrene the
number concentration of pyrene. Soot particles grow in size by coagulation, which
is described by Smoluchowski’s [26] equation:

G(t, k) =
1

2

k−1∑

j=1

β(t, k − j, j)N(t, k − j)N(t, j) −
∞∑

j=1

β(t, k, j)N(t, k)N(t, j), (4)

where β(t, k, j) is the coagulation kernel. Soot particles interact with the gas phase
by surface reactions. Surface reactions include surface growth by acetylene, con-
densation of PAHs, i.e. pyrene, on to the soot’s surface and oxidation of particles
by molecular oxygen and hydroxyl radicals. They are described by the following
equation:

W (t, k) =
4∑

l=1

[
wl(t, k − δk)N(t, k − δk) − wl(t, k)N(t, k)

]
, (5)

where wl(t, k) is the rate of surface process l acting on particles of size k and δk the
change in mass induced by the process, e.g. condensation, l = 1, δk = 16; surface
growth, l = 2, δk = 2; oxidation by O2, l = 3, δk = −2; oxidation by OH, l = 4,
δk = −1. The rates wl(t, k) are modelled as reported by Frenklach et al. [4, 16].
Condensation is modelled as coagulation of a pyrene molecule and a soot particle
[17, 16]. Surface growth is assumed to occur due to addition of acetylene to a radical
site on the soot’s surface, i.e. the hydrogen abstraction acetylene addition (HACA)
mechanism is used. Surface oxidation is considered as reactions of O2 with surface
radicals and reactions of OH with the surface of the particles.

1.2 The Method of Moments and the New Stochastic Par-
ticle Algorithm

As mentioned in the introduction one aim of this paper is to compare the results
of the well established method of moments with a new stochastic particle algorithm
which solves equation (1), In the method of moments eq. (1) is transformed into
equations for the moments of the soot PSDF, where the moments are defined as:

Mr =
∞∑

i=1

irNi. (6)

However, the rates of the moments can not be obtained in closed form and have to
be approximated. Fractional moments, that appear in the rate terms, have to be
calculated by interpolating between the integer-order moments and a double interpo-
lation scheme has to be introduced to close the coagulation rate term. Furthermore,
since the number density of the smallest size class is not known, the oxidation rates
for the 0th moment, i.e. the burnout of small soot particles, can not be taken into
account explicitly. For technical details refer to [4].
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Instead of solving the equations for the moments, the ensemble of soot particles can
be approximated by a stochastic particle system. The different processes of particle
inception, coagulation, and surface growth determine the dynamics of this stochas-
tic particle system. In the following we describe the direct simulation Monte Carlo
algorithm to demonstrate how a stochastic algorithm works. Then the actual new
algorithm is stated in algorithmic language.

The rates of the different events, i.e. particle inception, coagulation, condensation,
surface growth, oxidation by O2 and oxidation by OH, are calculated corresponding
to the detailed soot model as mentioned above. Using these rates the size of the
individual time steps or the waiting time is determined according to an exponen-
tially distributed random variable [8]. Next, one of the possible events is chosen
probalistically relative to their rates. Depending on which of the events has been
selected, the appropriate number of particles needed to perform this event is chosen
according to the particles’ individual rates. For coagulation e.g. two particles of
size i and j are selected in line with the coagulation kernel β(t, i, j). Once a step
is performed the state of the particle system is updated and a new time step is
determined. For oxidation by O2 e.g. a particle of size i is removed from the system
and another particle of size i − 2 is added. This cycle of steps is repeated until the
final simulation time is reached.
The system of stochastic particles in the algorithm does however not represent the
full ensemble of soot particles. Thus one stochastic particle represents a certain
number of soot particles depending on a numerical parameter N , which must be
specified for each calculation. The choice of this numerical parameter N is de-
termined by a tradeoff between accuracy and computational time needed for one
simulation. As mentioned before a property of the algorithm is that it converges
to the solution of the master equation for the parameter N approaching infinity
[13]. Therefore if we choose N in such a way that specifically chosen functionals of
the solution, like the fifth moment for example, do not change with increasing N
we know that we are sufficiently close to the solution of eq. (1). To enhance the
performance of the algorithm as compared to a direct Monte-Carlo simulation [8],
the concept of majorant kernels and fictitious jumps presented in [13] is used. In
this concept the actual coagulation kernel is replaced by a majorant kernel, which
always exceeds the real kernel. An efficient majorant kernel for coagulation in the
free molecular regime [14] is applied here. Using these concepts the computational
time increases approximately linearly with the number of stochastic particles N ,
whereas it is proportional to N2 using a straightforward treatment of coagulation.
The new simulation algorithm reads as follows:

1. Generate the initial particle system.

2. Wait an exponential distributed time step τ with parameter ρ̂(p), which is the
sum of all rates at that time.

3. Select which event to perform based on its probability calculated from rate of
the event.
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4. If

(a) particle inception is selected go to step .

(b) coagulation is selected go to step 6.

(c) condensation is selected go to step 7.

(d) surface growth is selected go to step 8.

(e) oxidation by O2 is selected go to step 9.

(f) oxidation by OH is selected go to step 10.

5. Perform a particle inception step, i.e.

(a) Add a cluster of size 32 to the system and go to step 11.

6. Perform a coagulation step.

(a) Generate particles i and j according to their probabilities given by the
majorant kernel.

(b) If the selected coagulation event is not fictitious add particle i + j to the
system and remove particles i and j. Otherwise nothing changes. Go to
step 11.

7. Perform a condensation step.

(a) Select a particle i according to the condensation rate.

(b) Replace particle i by particle i + 16 and go to step 11.

8. Perform a surface growth step.

(a) Select a particle i according to the surface growth rate.

(b) Replace particle i by particle i + 2 go to step 11.

9. Perform an oxidation by O2 step.

(a) Select a particle i according to the O2-oxidation rate.

(b) Replace particle i by particle i − 2 and go to step 11.

10. Perform an oxidation by OH step

(a) Select a particle i according to the surface growth rate.

(b) Replace particle i by particle i − 1 and go to step 11.

11. Update the particle system and go to step 2.
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Figure 1: Comparison of measured [27, 28, 29, 30] and simulated mole fractions of
major species.

1.3 Simulation Details

A C2H2/O2/Ar laminar premixed flame was simulated (p = 0.12 atm, v = 20.4 cm/s,
C/O = 1.1, Ar = 55% mole fraction, Tmax = 1992K). For this flame measurements
of species concentration, temperature, mean number density, soot volume fraction
as well as relative size distributions of soot particles at several heights above the
burner were available from literature [27, 28, 29, 30] .
A modified version of the Premix code [31, 32], including equations for the moments
of the PSDF [17] was applied. Both, the model parameters of the soot model and
the gas phase mechanism are taken from Ref. [16]. With this code a steady state
solution of the coupled transport equation for chemical species and the first six
moments of the PSDF was obtained. The temperature profile was taken from the
experimental measurements. Gas phase species and the moments of the PSDF were
coupled through particle inception and surface reactions. The temperature, velocity
and species profiles obtained from this steady-state solution were subsequently used
to simulate soot formation in a Lagrangian manner. In other words a system of
ODEs describing the time evolution of the first six moments of the PSDF was solved
using the computer code LSODE. The Stochastic particle system was solved using
the algorithm described in the previous section. In both cases the source terms were
taken from the computed premix profiles by transforming the spatial coordinate into
a time coordinate using the known velocity.

The different simulations performed in this study are divided in two cases summa-
rized as follow.
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Figure 2: Comparison of measured [27, 28, 29, 30] and simulated mole fractions of
minor species.

Case 1: Oxidation switched off. Aim of this numerical study was to assess the
numerical error introduced by the interpolation scheme that is used by the method
of moments. In order to avoid the error caused by the closure of the oxidation term
in the method of moments the oxidation was switched off in both models.

Case 2: Oxidation switched on. In this study the aim was to compare both
methods with experimental data and to quantify the numerical error introduced by
the oxidation closure. Again two cases were considered:
Case 2(a): Oxidation (burnout) of the smallest particles (i = 32) not taken into
account.
Case 2(b): Including oxidation (burnout) of smallest particles. This case corre-
sponds to the full soot model, which is described in section 1.1.

2 Results

Starting point of the numerical studies was the simulation of the low-pressure
C2H2/O2/Ar flame with the modified Premix code using a measured temperature
profile. In Figure 1 the mole fractions of the major species are displayed. The
flame is located approximately 0.5 cm away from the burner. In Figure 2 the mole
fraction of minor species as well as the aromatic compounds benzene and naphtalene
are shown. For all species good agreement between measurements and simulation is
found. From these profiles the source terms for the following studies are calculated.

To couple the gasphase species with the soot particle surface reactions we solve the

9



10
9

10
10

10
11

10
12

0

5

10

15

20

25

30

0 10 20 30 40 50

Simulated Number Density
Experimental Number Density

Simulated Soot vol. fraction

Experimental Soot vol. fraction

N
u

m
b

e
r

D
e

n
s
it
y

[#
/

c
m

3
] S

o
o

t
v
o

lu
m

e
fra

c
tio

n
x

1
0

-9

Time [ms]

Figure 3: Comparison of measured and simulated number densities and soot vol-
ume fractions. The simulated values were obtained using the code Premix aug-
mented with the transport equations for the first six moments of the soot PSDF.
The experimental values were taken from [27, 28, 29, 30].

full one-dimensional transport equation for the first six moments of the PSDF as
described by Mauss et al. [17, 16]. In Figure 3 the computed number density
and soot volume fraction are compared with the experimental measurements. Good
agreement was found for soot volume fraction whereas the maximum value of num-
ber density is overpredicted by a factor of two. The agreement between measured
and computed values is however excellent at larger heights above burner. The dis-
crepancy in number density can be explained by the fact that particles smaller than
d = 1nm could not be measured in the experiment whereas the smallest particles in
the model have a diameter of around d = 0.87nm.

In order to assess the error caused by the interpolation between moments of the
PSDF to approximate fractional moments we perform simulations where the oxida-
tion of the soot particles is switched off. This is to insure to study the same model
with the stochastic algorithm as with the method of moments. Frenklach and Harris
[3] found in their study good agreement between the method of moments and a dis-
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Figure 4: Comparison of first three moments with the Method of moments and
the Stochastic approach as a function of time. Oxidation has been switched off in
order to asses the error caused by the interpolation of the fractional moments.

crete approach for simultaneous coagulation, particle inception and surface growth.
Limitations in CPU-time made a thorough verification of the model however im-
possible, i.e. the number of discrete size classes and thus the simulation times were
small. A better verification of the method of moments is however possible with the
new stochastic approach due to its accuracy and efficiency. Simulations with a large
value of the model parameter N and thus a high accuracy can be conducted within
reasonable computational time. To investigate the convergence of the stochastic
method with respect to model parameter N , N was varied in a range from 103 to
107 and the systematic error was investigated. Doing so, we could ascertain that the
solutions that are used in the following were converged and the error was sufficiently
small. Figure 4 shows a comparison of the moments calculated with the method of
moments and the solution obtained with the stochastic approach. Mean moments
as well as confidence intervals are given for the stochastic approach. Note that oxi-
dation by O2 and OH was not taken into account. It can be seen that the method of
moments overpredicts the moments and deviation from the solution increases with
increasing residence time. In order to quantify the accuracy of the method of mo-
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ments, the mean error of the method was computed for the whole computational
domain. The mean error of the zeroth and first moments is around 25% and 5%
respectively. The mean error increases however for the higher moments, e.g. the
error for the second moment is 13% and for the third moment 20%. Thus it can be
summarized that, in the case studied here and with this particular formulation of
the method of moments [32], the method of moments exhibits reasonable accuracy
for all the moment and excellent for the first moment. However, having in mind the
efficiency of the method and the uncertainty of the parameters in the soot model,
the method of moments is sufficiently accurate.
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Figure 5: Comparison of number density and soot volume fraction as a function of
residence time obtained with the method of moments and the stochastic approach.
Two different oxidation models for the stochastic method are studies.

As already mentioned, a drawback of the method of moments is that the rates in
equation (1) can not be closed properly and approximations have to be used, e.g.
the rate of oxidation of the zeroth moment. In the method of moments this rate
can not properly be closed since the number density of particles in the smallest size
class is not explicitly known. The implementation of the physical models describing
formation and oxidation of soot particles into the stochastic approach is straightfor-
ward and no assumptions have to be made. Therefore, it was possible to investigate
the effect that the oxidation of the smallest particles has on mean number densities
and volume fraction. For this purpose, we defined the smallest particle to be of
size i = 32, i.e. being comprised of 32 carbon-atoms, since this is also the size of
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the incepted particles. However, note that the method would also allow for a more
complex treatment of burnout of particles. Two simulation cases for the stochas-
tic approach were defined differing in their treatment of the oxidation of smallest
particles. The two cases (2(a) and 2(b)) are compared to the results obtained with
the method of moments in Figure 5. It can be seen that the burnout of the small-
est particles reduces the number densities and the volume fraction by about 10%.
This is again not critical for the method of moments due to the uncertainties in the
oxidation rate constants. Also, this error can be reduced by solving an additional
equation for the first size class [3] or by using approximations for the contribution
of the oxidation of the smallest particles to the total rates of the moments [17]. The
flame investigated is however a fuel rich premixed flame where oxidation is of minor
importance. The effect of burnout is expected to be more important when the over-
all fuel/air ratio is lean as in diesel engines or gas turbines. It is anticipated that
the new stochastic approach improves the modelling of burnout of soot particles in
these devices.
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Figure 6: Comparison of measured (columns) [27, 28, 29, 30] and computed (—)
size distributions of soot particles at different heights above the burner.

Finally, the computed and measured [27, 28, 29, 30] size distributions are compared,
see Figure 6. The percentage of relative number densities is presented, i.e. the
number density of particles of a certain size range collected in bins. The bin size of
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the experimental data is 2 nm while the bin size of the simulations is proportional
to the square root of the total number of particles. Note that in the experimental
study the lower detection limit was reported to be d = 1 nm, and that particles
were collected in bins of 2 nm size and are given in percent of the relative number
density. Since the smallest particles in the detailed soot model are smaller than
1 nm and in order to obtain a better resolution of the size distribution, we chose
the square root of the actual number of particles as the basis of our bin size. Thus
the heights of the two distributions are different. Also, note that the scale of the
relative number density is changing and thus the distribution should be compared in
accordance to changing scales. The shape of the computed PSDF at x = 14 mm is
very different from the measured one. The reason for this might be that the smallest
particles in the model are smaller than 1 nm. Whether particles of this size should
be considered as soot particles or as large PAHs is of course not obvious from this
calculation. The agreement between measured and computed PSDFs improves with
increasing height above the burner. This gives evidence that the poor agreement at
x = 14 mm actually stems from the different definition of a smallest soot particle.

Figure 7 finally shows the temporal evolution of the size distribution. Note that
the logarithm of the number densities is given and that the particles were collected
in bins of 0.5 nm size. Initially, the distribution is very narrow due to a peak in
particle inception rate. At larger heights above the burner, the distribution broadens
since the processes of coagulation and surface growth dominate. The small peak at
the small size part of the distribution exists at all heights above burner due to
continuous particle inception. However one has to be aware that a simple particle
inception model was used, i.e. soot particles are formed exclusively from pyrene. A
gap between in the distribution is formed due to the size dependence of coagulation
and surface reactions.
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Figure 7: The temporal evolution of the computed size distribution of soot parti-
cles. Presented are the number densities of bins of size 0.5 nm.
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Finally, the efficiency of the stochastic approach was investigated. The method
includes two model parameters, which determine the accuracy and thus also the
efficiency: the parameter N introduced above and the number of repetitions, i.e. the
number of independent runs. Simulations with different values of N were conducted
and the accuracy of the solutions were compared to the accurate solution and the
solution obtained with the method of moments. It was observed that the error
using N = 10000 is small and considerably lower than the error resulting from
the method of moments. One repetition with N = 10000 takes about 70 s on a
computer equipped with a Pentium III 1GHz processor. To get a solution with
a small confidence intervals, normally 30 repetitions are required but already a
fewer number can produce good results. If one is only interested in a very accurate
description of the first three moments even a number of N = 1000 is sufficient.
This reduces the CPU time of one repetition to about t ≈ 8 s. The method is thus
very efficient although slower than the method of moments. The stochastic method
provides on the other hand more detailed information about the particle ensemble
and simplifies the use of more complex physical models. It is anticipated that the
new approach can further be improved in terms of accuracy and speed by applying
variance reduction techniques and adaption in time.

3 Conclusion

A new approach for solving the population balance equation of soot particles in
laminar premixed flames is presented. The approach is based on a stochastic particle
system representing the ensemble of soot particles. All processes occurring during
the formation and oxidation of soot particles are treated probabilistically. The
approach is applied to simulate soot formation and oxidation in a laminar premixed
C2H2/O2/Ar flame using profiles of temperature and species computed with help of
a modified version of the Premix code. A converged, exact solution for the temporal
evolution of the PSDF of soot particles was computed for the investigated flame
and used to verify the accuracy of the method of moments. While the agreement
for higher moments of the PSDF is fair, the accuracy of the first two moments
obtained from the method of moments is good. This demonstrates the usefulness of
the method of moments for physical model development when only mean quantities
such as number density and volume fraction are required. The effect of neglecting
the burnout of small particles was investigated. It was shown that the error of not
taking this effect into account is small in the studied flame. Neglecting this effect in
systems where oxidation of soot particles plays a more important role such as diesel
engine and gas turbine combustion may however lead to more significant errors. The
computed size distribution was compared to measurements and the agreement was
found to be reasonable although a direct comparison was not feasible.
The stochastic approach was found to be very efficient as compared to other methods
used in the field of population balance modelling. The method is however superior
to others since: a) it is known to converge to the correct solution of the population
balance equation, b) the whole size distribution is resolved c) it is very efficient
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and d) an expansion to more detailed physical models is straightforward. Future
work will include improvements of the efficiency of the algorithm by using variance
reduction techniques as well as adaption in time. Also, diffusion and thermodiffusion
of soot particles will be included in the model.
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