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Abstract

The feasibility of coupling a stochastic soot algorithm to a deterministic gas-
phase chemistry solver is investigated for homogeneous combusting systems. A sec-
ond order splitting technique was used to decouple the particle population and gas-
phase in order to solve. A numerical convergence study is presented which demon-
strates convergence with splitting step size and particle count for a batch reactor and
a perfectly stirred reactor (PSR). Simulation results are presented alongside experi-
mental data for a plug flow reactor (PFR) and a comparison to a method of moments
simulation of a perfectly stirred reactor. Coupling of the soot and chemistry solvers is
shown to converge for both systems, however, numerical instabilities present signif-
icant challenges in the PSR case. Comparison with the experimental data for a PFR
showed good agreement of the soot mass, and reasonable agreement of the particle
size distribution. Two different soot particle models were used to simulate the PFR;
a spherical particle model and a surface-volume model which takes some account of
particle shape. The results for both models are compared. Additionally the stochastic
soot solver is used to track the evolution of the C/H ratio of individual soot particles
in the PFR for the first time.
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1 Introduction

The formation of fine particulate matter in hydrocarbon flames is an important industrial
and environmental process. Soot particles are produced in industrial carbon-black pro-
cesses as pigments for inks, although the primary focus on soot particle formation is the
environmental sector. There is a popular drive towards lower emission technology, espe-
cially for road and air transport, and large scale combustors. Soot particulates and their
precursors, Polycyclic Aromatic Hydrocarbons (PAHs) are major health and environmen-
tal hazards, and it is generally acknowledged that their reduction would be beneficial.

A first step towards soot reduction is to understand the mechanisms by which soot is
formed. The present understanding of the processes leading to soot production in com-
busting systems is limited. Combusting systems, such as premixed laminar flames, are
very difficult to observe experimentally, due to the short time scales of the processes
(nanoseconds) and the general complexity of the chemical interactions. Therefore, com-
puter simulations are important tools for investigation of such environments, in particular
for the soot particle size distribution.

Simulation of soot particle formation in flames requires detailed models for the gas-phase
chemistry, soot particle chemistry and inter-particle interactions. Wang et al. [24] pro-
posed a detailed reaction mechanism to describe aromatics formation in acetylene (C2H2)
and ethylene flames. This mechanism was later improved by Appel et al. [1] to give the
ABF chemistry model. The ABF soot model was used exclusively for this work. PAHs
are considered to be the main precursors for soot formation [1], and of those pyrene is
thought to be the most important. The Hydrogen Abstraction Carbon Addition (HACA)
mechanism [10] is considered an important growth mechanism for PAHs and soot par-
ticles. Through this mechanism, aromatics and soot particles grow by the addition of
growth species, principally acetylene, to active sites on the particle surface - carbon addi-
tion. An active site is a point where a hydrogen atom has been removed - the hydrogen
abstraction step. In [9] it was demonstrated that, by performing a steady-state analysis
on the HACA reactions, the ratio of active sites to active radical sites on a soot particle
could be found. The fraction of surface sites which are active is denoted everywhere as α.
Expressions for α are a matter of much debate, and for this report the correlation of [1]
was used, which models α as a function of the gas-phase temperature and mean particle
size, and was fitted for laminar premixed flames.

In order to solve both the gas-phase chemistry and the soot population balance, a method
for relating the two systems must be obtained. This is not straightforward, as the soot pop-
ulation can contain many millions of particles with different properties. Tracking every
particle is currently computationally impossible within realistic time scales. A reduced
representation of the soot population is required in order to solve it numerically. The
method of moments with interpolative closure (MoMIC, referred to as method of mo-
ments) [8] was proposed as a technique for describing a soot population by a handful of
variables; the moments of the distribution. The method of moments has the advantage
of being fast, as typically balances for only six moments are solved, and these can be
solved using the same ODE solver as the gas-phase chemistry equations. However, the
method of moments requires an extrapolation to find additional moments and gives no
information about the shape of the particle size distribution (PSD). Galerkin methods [2]
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and fixed [20] or moving [26] sectional techniques have been used to describe a soot pop-
ulation with some degree of resolution of the PSD, although these techniques suffer from
numerical diffusion and are computationally more intensive than the method of moments.

Monte-Carlo techniques have been applied to the solution of soot population balances [3].
These techniques can provide much more information about the soot population and the
development of soot particles as they avoid the approximations made for process rates in
Galerkin and sectional techniques. Monte-Carlo simulations can be proven to converge
to the deterministic solution of the population balance equations [7]. However, they can
be computationally very expensive and they provide no capacity for solving the gas-phase
chemistry deterministically. In [3] Balthasar and Kraft solved laminar premixed flames
by solving the flame chemistry deterministically using the method of moments to approx-
imately account for the effects of soot. They used the generated chemical species profiles
as inputs to their stochastic soot solver and a Direct Simulation Monte-Carlo algorithm
(DSMC) which models every soot event explicitly within the soot ensemble. [18] further
improved this technique with the Linear Process Deferment Algorithm (LPDA) which
significantly reduces computation time, while giving rise to only negligible additional
error.

The purpose of this paper is to present a second order operator splitting technique for
coupling a stochastic soot model to gas-phase chemistry for spatially homogeneous initial
value problems. A description of the technique is provided along with the governing
equations, and the numerical treatment is explained. The technique is used to simulate a
Plug-Flow Reactor (PFR) and a Perfectly Stirred Reactor (PSR). For the PFR the results
of particle diameter, mass and distribution are compared to experimental data. For the first
time the Carbon to Hydrogen (C/H) ratio of individual particles is tracked in the PFR, and
the time evolution of the C/H ratio is presented.

The paper is organised as follows. First the governing for a batch reactor (including
a PFR) and a PSR are presented along with any assumptions. The operator splitting
algorithm is then discussed. Next a numerical convergence study is presented for both a
batch reactor and a PSR. The technique is then compared to experimental observations
of a PFR, and time evolutions of the C/H ratio are presented for two different particle
models. A numerical comparison is made between an operator splitting simulation and
a method of moments simulation for a PSR. The paper closes with a discussion of the
technique’s viability and application.

2 Model

The gas phase is modelled using the model of [1] and is assumed to obey the ideal gas law.
The gas-phase model contains 101 species and 544 reactions. Chemical reaction rates in
the gas-phase are modelled as Arrhenius form.

Soot particles are assumed to be homogeneous with a density of ρs = 1.8 kg/m3. A
soot particle is considered to be any carbon structure with at least 32 carbon atoms. Two
models of particle shape were used. One, the spherical particle model [3, 22], treats all
particles as spheres described by their volume. The second, the surface-volume model
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[19], attempts to account for particle shape by introducing an extra variable, surface area,
which is independent of volume. Both models were extended to track the ratio of carbon
to hydrogen in each particle.

Two constant pressure reactor models were implemented; a batch reactor and a PSR.
The PSR is similar to the batch reactor, but with inflow and outflow. The gas-phase
chemistry requires the solution of each species concentration and the temperature; that
is K + 1 variables, where K is the number of gas-phase species. The soot particle
population evolves according to the discrete Smoluchowski equation. Two energy regimes
were considers; constant temperature and adiabatic. Energy terms associated with soot
processes (radiation and formation) were found to be negligible for the cases studied and
hence were neglected.

The governing equations (gas-phase material balance and soot population balance) for a
constant pressure batch reactor are:

dck

dt
= ω̇k(c, T ) + ġk(c, n, T )− γck (1)

d

dt
n(x) = I(c, x) + K(n, x) +

L∑
l=1

Sl(c, x)− γn(x) (2)

Where ck is the molar concentration of species k, ω̇k is the molar production rate of species
k due to reaction, ġk is the molar production rate of species k due to soot processes, and
T is the temperature. In the soot balance n(x) is the number density of particles of type
x, where the type is a vector of particle volume, composition, and surface area (surface-
volume model only). I(c, x), K(n, x) and Sl(c, x) are the inception, coagulation and
surface reaction l rates respectively for particles of type x. c denotes the vector of species
concentrations. γ is the rate of gas-phase expansion and is given by:

γ =
ω̇k

ρ
+

1

T

dT

dt
(3)

where ρ is the molar density of the bulk fluid. Note the molar production rate due to soot
is considered small in magnitude compared to that due to chemical reaction. The adiabatic
energy balance for a batch reactor (ignoring soot energy terms) yields:

ρĈp
dT

dt
= −

K∑
k=1

H̄kω̇k (4)

where Ĉp is the molar heat capacity of the mixture and H̄k is the partial molar enthalpy of
species k.

For a constant pressure PSR the further assumptions were made that no soot particles are
present in the inflow, the inflow and outflow volumetric flows are equal and the residence
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time is constant. Therefore, the governing equations for a PSR are:

dck

dt
= ω̇k(c, T ) + ġk(c, n, T ) +

1

τ
(ck0 − ck)− γck (5)

d

dt
n(x) = I(c, x) + K(n, x) +

L∑
l=1

Sl(c, x)− n(x)

τ
− γn(x) (6)

Where τ is the reactor residence time, and subscript 0 denotes inflowing material. The
rate of gas-phase expansion for a PSR is given by:

γ =
1

ρ

(
ω̇k +

1

τ
(ρ0 − ρ)

)
+

1

T

dT

dt
(7)

The adiabatic energy balance for a PSR (ignoring soot energy terms) is:

ρĈp
dT

dt
= −

K∑
k=1

H̄kω̇k +
1

τ

K∑
k=1

ck0(H̄k0 − H̄k) (8)

3 Numerical Treatment

3.1 Splitting Scheme

Representing the soot ensemble as a list of particle concentrations is unrealistic as there
is an infinite space of possible particle types. The soot ensemble is therefore represented
as a discrete list of particles, and is solved using an explicit Monte-Carlo technique. The
gas-phase chemistry is best solved using an implicit ODE solution technique, as there
are only a finite number of gas-phase variables (chemical species and temperature). An
operator splitting technique was used to solve the two parts of the problem separately. For
the batch reactor the governing equations can be split term-wise so that all terms with no
soot dependency are collected separately from those with soot dependency:

dck

dt
= Ω̇k(c, T ) + ġk(c, n, T ) (9)

d

dt
n(x) = −γ(c, T )n(x) + Ψ(c, n, x, T ) (10)

dT

dt
= Θ(c, T ) (11)

Where:

Ω̇k(c, T ) = ω̇k(c, T )− γ(c, T )ck (12)
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Ψ(c, n, x, T ) = I(c, x) + K(n, x) +
L∑

l=1

Sl(c, x) (13)

Θ(c, T ) = − 1

ρĈp

K∑
k=1

H̄kω̇k (14)

Both a batch reactor and a PSR are initial value problems. We wish to find the values at
the end of one time step, t1 = t0 + h. Using a simple operator splitting technique over
the time step this can be solved in two stages. First solve using the ODE solver, and then
using the Monte-Carlo solver. A further refinement is gained by using the method from
[23], which was shown to be second order accurate. The method staggers the two solvers
by half a step. The splitting scheme is then solved as follows:

ODE solver:

d

dt
c′
k(t) = Ω(c′, T ′) , c′(t0) = c(t0) , t0 ≤ t ≤ t0 +

h

2
(15)

d

dt
n′(x, t) = −γ(c′, T ′) n′(x, t) , n′(x, t0) = n(x, t0) , t0 ≤ t ≤ t0 +

h

2
d

dt
T ′(t) = Θ(c′, T ′) , T ′(t0) = T (t0) , t0 ≤ t ≤ t0 +

h

2

Monte-Carlo solver:

d

dt
c′′
k(t) = ġk(c

′′, n′′, T ′′) , c′′(t0) = c′
(

t0 +
h

2

)
, t0 ≤ t ≤ t1 (16)

d

dt
n′′(x, t) = Ψ(c′′, n′′, T ′′) , n′′(x, t0) = n′

(
x, t0 +

h

2

)
, t0 ≤ t ≤ t1

d

dt
T ′′(t) = 0 , T ′′(t0) = T ′

(
t0 +

h

2

)
, t0 ≤ t ≤ t1

ODE solver:

d

dt
c′′′
k (t) = Ω(c′′′, T ′′′) , c′′′

(
t0 +

h

2

)
= c′′(t1) , t0 +

h

2
≤ t ≤ t1 (17)

d

dt
n′′′(x, t) = −γ(c′′′, T ′′′) n′′′(x, t) , n′′′

(
x, t0 +

h

2

)
= n′′(x, t1) , t0 +

h

2
≤ t ≤ t1

d

dt
T ′′′(t) = Θ(c′′′, T ′′′) , T ′′′

(
t0 +

h

2

)
= T ′′(t0) , t0 +

h

2
≤ t ≤ t1

Finally assign the values at the step end point:
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c(t1) = c′′′(t1) (18)
n(x, t1) = n′′′(x, t1)

T (t1) = T ′′′(t1)

Strang splitting is particularly advantageous as, except for the initial and final half chem-
istry steps, the algorithm is the same as for simple splitting when multiple steps are per-
formed at once: Solve using Monte-Carlo for one step, then solve using the ODE solver
for one step. This means that the computation time is effectively the same for both meth-
ods, yet Strang splitting reduces the splitting error.

3.2 Method

The chemical kinetics were solved using the CHEMKINII suite of routines, which were
written to solve large chemical mechanisms. A proprietary ODE solver was chosen to
solve the gas-phase chemistry equations. The soot solver reported in [18], SWEEP, was
used to solve the soot population balance and corresponding gas-phase chemistry terms.
The algorithm [18] was extended to track the gas-phase chemistry changes due to soot
processes and the particle type was extended to track particle composition.

Two ODE solvers were considered to solve chemistry equations; RADAU5 [12] and
DDASSL [4]. RADAU5 solves a system of ODEs using a fifth order Runge-Kutta method.
DDASSL uses a backwards-differentiation scheme of orders one through five. Potential
problems identified with all high-precision ODE solvers are initialisation time, and accu-
racy/stability of solution. Both RADAU5 and DDASSL are in the public domain, are well
established and are widely used [6]. RADAU5 has the advantage of lower run times, in
particular initialisation time, though it was found not always to be stable for the systems of
interest. DDASSL is very stable and can achieve high accuracy, however, it suffers from
long initialisation times. The splitting algorithm requires the ODE solver to be reset each
time the Monte-Carlo solver is run in order to recalculate higher order derivatives used
in the integration, therefore initialisation time is an important factor in determining the
computational speed of the method. For this reason RADAU5 was chosen in preference
to DDASSL.

4 Numerical Convergence

There are three numerical parameters within the algorithm which affect the numerical
error. These are the maximum number of particles in the stochastic simulation (Nmax),
the number of independent trials or runs (L) and the splitting time-step size (∆t). The
effect of these parameters on the numerical error was investigated.

The systematic (esys) and statistical (estat) errors of a set of sample solutions (y(t)) are
defined as follows:
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esys(t) = |ζ(t)− F (t)| (19)
estat(t) = |ηy(t)− ζ(t)|

where ζ(t) is the expectation of the distribution from which yl(t) is sampled and F is the
true solution. ηy(t) is the estimate of the mean value, and is given by:

ηy(t) =
1

L

L∑
l=1

yl(t) (20)

The true solution to the original problem is not readily obtainable, therefore a numerical
solution for which the systematic error is very small (F̃ ) was selected as an approximation
to the solution. The systematic error due to the Monte-Carlo algorithm is shown to become
small when the approximation parameter, N , becomes very large [7].

For large L the central limit theorem may be used to find confidence intervals for ηy(t).
The half widths of these are estimated by:

cp(t) = ap

√
µy(t)

L
(21)

where µy(t) is the approximation of the variance and is given by:

µy(t) =
1

L− 1

L∑
l=1

y2
l (t)− [ηy(t)]

2 (22)

For a confidence level of P = 0.999 (99.9%), a value ap = 3.29 is used. The confidence
interval, within which there is a probability P of finding the true solution, is then given
by:

Ip = [ηy − cp, ηy + cp] (23)

In order to assess the numerical convergence of the coupled algorithm three test func-
tions were chosen. These were particle number density (M0), soot volume fraction (Fv)
and pyrene concentration (cpyr). For the purposes of this study, representative total rel-
ative errors (ctot) and relative statistical uncertainties (cstat) over M time intervals were
calculated. tm is the time at the end of interval m where m ∈ {0, 1, ...,M}.

ctot =
1

M

M∑
m=1

|F̃ (tm)− ηy(t)|
F̃ (tm)

(24)

cstat =
1

M

M∑
m=1

cp(tm)

F̃ (tm)
(25)
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The numerical convergence was investigated as both splitting step count M and maximum
stochastic particle count Nmax were altered. A variable particle count algorithm was used
along with a particle doubling algorithm [21] so that the actual particle count lay in the
range

[
1
2
Nmax, Nmax

]
except at early flow times.

4.1 Batch Reactor

A simple test case was created in order to perform a numerical convergence study for a
batch reactor. The test case was a initial C2H2/O2/N2/Ar mixture of equivalence ratio
φ = 2.5. The temperature was assumed to be constant at 1650 K and the pressure was
chosen as 1 atm. No particles were present in the reactor initially and the run time was
50 ms. The spherical particle model was used for this study. The simulations are listed in
table 1.

Table 1: Batch reactor numerical convergence simulations

Simulation M L Nmax Simulation M L Nmax

1 100 400 2048 11 300 12800 64
2 200 400 2048 12 300 6400 128
3 300 400 2048 13 300 3200 256
4 400 400 2048 14 300 1600 512
5 500 400 2048 15 300 800 1024
6 600 400 2048 16 300 400 2048
7 700 400 2048 17 300 200 4096
8 800 400 2048 18 300 100 8192
9 900 400 2048 19 300 50 16384
10 1000 400 2048 20 300 25 32768

21 300 13 65536
Reference Case 2000 50 131072

The total error and statistical uncertainties for the three test functions are plotted in fig-
ure 1. The figure also shows a least squares power law fit of the data, and unfitted slopes
indicating what second order convergence would look like. There is a clear reduction in
total error as the number of splitting steps is increased and hence the technique has been
shown to converge in this instance. Increasing the stochastic particle count has negligible
effect on the error, even at very small particle counts, demonstrating that the Monte-Carlo
part of the algorithm used enough particles in all cases to avoid significant systematic
error. It is interesting to note that while Strang suggested a second order convergence for
decreasing step count, the least squares fits show orders around 1.2. This is consistent
with the findings of [27]. Also from figure 1 it can be seen that the Fv error begins to flat-
ten at higher step counts, within the statistical uncertainty bounds, and further increases
make no difference to the error. This demonstrates that Fv has converged sufficiently to
become insensitive to step size and the error is dominated by the statistical fluctuations.
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Figure 1: Order of convergence for a batch reactor.
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Figure 2: Transient profiles for a batch reactor. Left column shows behaviour at increas-
ing step count and right column shows behaviour at different stochastic particle
counts.
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Figure 2 shows the time evolution of the test variables for the batch reactor. The figure
clearly shows the approach towards the reference solution as the step count is increased.
Fv converges very quickly and no difference can be seen between the reference case and
higher step counts. The figure also shows that, except for the smallest particle count,
changing the number of particles does not significantly affect the time profile. This agrees
with the only slight change in error seen in figure 1.

Figure 3: Single run computation time for a batch reactor.

The computation time (CT) for a single run is presented in figure 3 for different numerical
parameters. The variance in the computation time is very small, and times for different
runs do not change by more than about 1 − 2%, hence to get the computation time for a
simulation merely multiply the number of runs by the times shown in the figure. Compu-
tation time is clearly a linear function of step count for the batch reactor. This is intuitive
as the more steps that are performed, the more ODE solver initialisations must take place.
The computation time also increases with increasing particle count, it would be expected
that computation time is proportional to N log N [25] and this is what is observed here for
large N . This behaviour suggests that other factors which affect computation time, such
as numerical stiffness of coupling, are not a problem for this test case at all investigated
parameters.

4.2 PSR

The PSR test case is an extension of the batch case. The conditions for the PSR test case
are the same as the batch case with inflow conditions identical to the initial conditions and
a residence time of 5 ms. The simulations are listed in table 2.

The convergence results for the PSR test case are given in figure 4. The figure also shows
a least squares power law fit of the data, and unfitted slopes indicating what second order
convergence would look like. The PSR exhibits the same behaviour as the batch reactor:
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Table 2: PSR numerical convergence simulations

Simulation M L Nmax Simulation M L Nmax

1 100 800 2048 11 500 6400 256
2 200 800 2048 12 500 3200 512
3 300 800 2048 13 500 1600 1024
4 400 800 2048 14 500 800 2048
5 500 800 2048 15 500 400 4096
6 600 800 2048 16 500 200 8192
7 700 800 2048 17 500 100 16384
8 800 800 2048 18 500 50 32768
9 900 800 2048 19 500 25 65536
10 1000 800 2048
Reference Case 2000 50 131072

An continual decrease in error with increasing step count, but no change in error due
to increasing particle count. Hence, the PSR has also been shown to converge in this
instance. The least squares fits suggest convergence of order 1.6 - 2.2, which is closer
to the asymptotic second order convergence found in [23]. The convergence plot for cpyr

with step count shows two apparent outlier points as convergence proceeds via a slow,
damped oscillation around the reference solution as the step count is increased. This
effect can be seen in figure 5.
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Figure 4: Order of convergence for the PSR.
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Figure 5: Transient profiles for the PSR. Left column shows behaviour at increasing step
count and right column shows behaviour at different stochastic particle counts.
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Figure 5 shows the time evolution of the test variables for the PSR for different parameters
listed in table 2. The left-hand plots clearly show an approach to the reference solution
for all variables as the step count is increased. The Fv profile still exhibits statistical fluc-
tuations for low step counts, whereas M0 and cpyr fluctuate much less at low step counts,
even though the absolute value is far from the reference value. A potential explanation for
the fluctuation of Fv is the inclusion of a term which removes mass from the soot system
(outflow) which is not present in the batch case. Outflow competes with inception and
surface growth as the only processes which change mass, however, particles are selected
uniformly for removal and a large particle has the same probability of being removed as
a small particle. Therefore the PSR simulations are subject to sudden large changes in
volume fraction when a particles with masses much larger than the mean are removed.
To counter this more simulation runs were performed in order to dampen the fluctuations.
The right-hand plots demonstrate that the solution is insensitive to the number of particles,
which is in agreement with figure 4.

Figure 6: Single run computation time for a PSR.

The computation times for the different numerical parameters are shown in figure 6. The
left-hand plot suggests there is an increase in computation time low step counts which was
not observed for the batch reactor. After the step count has reached about 500 figure 6
shows an approximately linear relationship between step count and computation time, as
was observed for the batch reactor. The right-hand graph, showing fraction of computation
time spent in the soot solver, shows that the soot solver requires less time overall as the
step count approaches 500, after which the fraction of time in the soot solver remains
approximately constant.
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5 Comparative Cases

5.1 Kronholm Plug-Flow Experiments

Kronholm and Howard [14] used a Jet-Stirred Reactor (JSR) to feed a PFR tube section
to give an approximation to plug-flow. This was helped by combusting fuel in the JSR,
so that it entered the PFR in equilibrium. [26] demonstrated the application of a moving
sectional model to predict Kronholm’s experimental results. A stochastic simulation using
the method outlined here was performed and compared to the data given by Kronholm and
Wen.

The JSR was solved using gas-phase chemistry equations only, as Kronholm does not
make mention of soot particles in the JSR. The JSR feed was a C2H2/Air mixture with
equivalence ratio 2.2. The pressure and temperature were constant at 1 atm and 1630 K
respectively. The residence time of the JSR was 5.7 ms [16]. The JSR was solved for a
suitably long flow time for the gas to have reached steady-state. The final conditions in the
JSR were then used as inputs to the coupled soot algorithm for the PFR. The PFR pressure
(constant) and initial temperature were 1 atm and 1620 K respectively, and it was solved
using the adiabatic energy equation. The PFR was simulated using a maximum of 4096
stochastic particles, 20 runs and 100 steps per millisecond of flow time. Both the spherical
particle model and the surface-volume model were used.

Quantities of interest have been plotted along with the experimental results of Kronholm
taken from [15, 14] and the sectional method simulation of [26].

Figure 7: Soot mass concentration for Kronholm JSR/PFR.

Figure 7 shows that the stochastic algorithm predicts the soot mass well in both magnitude
and transient behaviour. Model “3” by Wen et al. is equivalent to the ABF soot model used
for the stochastic study. The difference between Wen et al.’s predictions and ours may be
due to them using a constant temperature model and a different soot particle description,
whereas we used an adiabatic model. Simulating the PFR as adiabatic was justified be-
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cause Kronholm said that the temperature in the PFR changes by about 100 K over the
length of the PFR, and this is the change observed in the adiabatic simulations. The pre-
diction is good for the spherical particle model, within experimental error, although the
sparsity of experimental data points makes it difficult to draw any firm conclusions.

(a) All particles (b) Particles > 4 nm diameter

Figure 8: Average particle diameter for Kronholm JSR/PFR.

Figure 8 shows the average particle diameter for both particle models along with experi-
mental results and simulations by Wen et al.. There is a poor fit for both particle models
with the experimental results when all particles are counted, but the magnitude and slope
of the predictions is better if only particles with diameters larger than 4 nm are counted.
Figure 8 highlights a caveat in making direct comparisons with the experimental results
and stochastic simulations. The stochastic algorithm uses a minimum particle size of 32
carbons atoms (approximately 0.8 nm diameter if the particle is assumed to be spherical).
The measuring technique used by Kronholm may not have been able to detect these par-
ticles, and hence he measured a much larger average particle size. When the stochastic
simulation is plotted without fines (taken as less than 4 nm diameter - empirical esti-
mate) the spherical particle model gives much better agreement with Kronholm’s data,
and shows a similar trend. The surface-volume model over-predicts the average particle
diameter, yet agrees well with the simulations of Wen et al..

Figure 9 shows the time evolution of the PSD for the plug-flow reactor. All particle size
distributions were processed using the R statistical software [11]. There is a general good
agreement between the spherical particle simulations and the experimental results. How-
ever, the simulation seems to continually underpredict the number of particles, and this
effect worsens at later times. The simulations also underpredict the peak diameter slightly,
though this effect diminishes at later times. The surface-volume model does not exhibit
the same particle distribution as the experiments, grossly underpredicts particle number
density and shows far more larger particles. Interestingly, Kronholm’s data shows no par-
ticles at under about 6 nm, which lends justification to the decision to discount particles
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smaller than 4 nm from the calculation of the mean. Figure 9(b) shows more clearly the
bimodal nature of the predicted distributions, in particular the very large number of small
particles.
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(a) 7.6 ms (b) 7.6 ms (log scale)

(c) 12.0 ms (d) 16.4 ms

Figure 9: Particle size distributions for Kronholm JSR/PFR.
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(a) 0.1 ms (b) 0.3 ms (c) 0.5 ms

(d) 1 ms (e) 2.5 ms (f) 5 ms

(g) 7.6 ms (h) 12 ms (i) 16.4 ms

Figure 10: C/H ratio scatter plots for spherical particle model.
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(a) 0.1 ms (b) 0.3 ms (c) 0.5 ms

(d) 1 ms (e) 2.5 ms (f) 5 ms

(g) 7.6 ms (h) 12 ms (i) 16.4 ms

Figure 11: C/H ratio scatter plots for surface-volume model.
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Unlike the other techniques, the stochastic technique allows the composition of the par-
ticulate matter to be tracked explicitly. Figures 10 and 11 show the carbon to hydrogen
(C/H) ratio of each particle plotted against particle diameter. It shows that small particles
exhibit a wider range of compositions than larger particles. For the ABF model the two
main growth processes are C2H2 addition and pyrene condensation. C2H2 adds carbon
and hydrogen in the ratio 2 : 1 whereas pyrene adds in the ratio 1.6 : 1, therefore it
would be expected to observe particle compositions between these values. This is exactly
what we see from these figures. Initially the C/H ratio increases slowly suggesting that
the HACA mechanism becomes dominant over condensation and inception. Larger parti-
cles show a narrower range of compositions, in particular for the surface-volume model.
This is because surface processes do not alter the number of carbon and hydrogen atoms
greatly relative to the total number in larger particles, for example a spherical particle of
diameter 60 nm will contain over ten million carbon atoms.

(a) Spherical particle model (b) Surface-volume model

Figure 12: Soot process rates.

The rates of all soot processes are given in figure 12. At early times there is little differ-
ence between the two models. However, the surface-volume model clearly shows a higher
C2H2 addition rate at later times. The pyrene condensation rate remains similar through-
out for both models. This accounts for the higher overall C/H ratios observed for the
surface-volume model in figure 11. The surface-volume model predicts a much higher
surface area than the spherical particle model, which accounts for the higher acetylene
rate.

Figure 13 shows the difference in soot surface area over time for both particle models.
The surface-volume model clearly predicts a larger surface area than the spherical particle
model; after 20 ms flow time the difference is almost five times. This accounts for the
increased surface rates in figure 12 and hence the larger particles predicted by the surface-
volume model.
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Figure 13: Soot surface area.

5.2 Perfect Stirred Reactor Model

Despite potential instabilities in the algorithm for a PSR it was decided to simulate a PSR
to see if physically meaningful predictions could be achieved. No experimental studies
of soot formation in a PSR could be found for comparison, but an earlier method of
moments study [5] has been done. This study was repeated using the currently available
chemistry mechanisms and the predictions were compared to the new predictions using
the coupled stochastic solver. The solution parameters were 1000 splitting steps, 4096
stochastic particles and 20 runs for 0.12atm and 1atm, and 100 runs for 10atm. 10 steps
were used per millisecond of flow time. Plots of volume fraction (figure 14), aromatics
concentrations (figure 15) and surface process rates (figure 16) are given here.

Figure 14 shows that the stochastic technique and the method of moments agree well for
0.12 atm and 1 atm, but at 10 atm there is less agreement. In the method of moments
additional approximations have to be made in order to solve in the transition regime [13].
These approximations are not required for the stochastic simulations, which might ex-
plain the discrepancy. The transient plot (right-hand) appears to back up this conclusion,
showing a fluctuating solution.

Figures 15 and 16 show results at 1 atm only. Figure 15 demonstrates excellent agree-
ment between the two solution methods for the prediction of smaller aromatic species.
Figure 16 shows the surface process rates for both solution methods. Due to the nature of
the stochastic algorithm and the linear process deferment [18], the surface rates predicted
by the stochastic solver are estimates, though they still show good agreement with the
method of moments.

The comparison between the method of moments and the coupled stochastic algorithm
demonstrates that despite the numerical instabilities in the explicit stochastic solver, it is
still capable of predicting as well as the implicit method of moments solver.
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Figure 14: Volume fractions from Brown et al. for method of moments (solid) and
stochastic (dotted) PSR simulations. Right-hand graph shows the transient
behaviour at 1800 K.

Figure 15: PAH concentrations from Brown et al. for method of moments (solid) and
stochastic (dotted) simulations. Right-hand graph shows the transient be-
haviour at 1800 K.
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Figure 16: Surface rates from Brown et al. for method of moments (solid) and stochas-
tic (dotted) simulations. Right-hand graph shows the transient behaviour at
1800 K.

29



(a) 1500 K (b) 1600 K

(c) 1700 K (d) 1900 K

Figure 17: Particle size distributions predicted in PSR.
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Figure 17 shows the particle size distribution in the PSR for both the spherical particle
and the surface-volume model at 100 ms flow time for the 1 atm case. Unlike the PFR,
there is a good agreement between the two models for particle shape, with the mean size
appearing around 1 nm diameter. This is expected because with such small particles
aggregates cannot have formed, and hence there should be little difference between the
two models. The distributions are unimodal, where the PFR distributions were bimodal.
The unimodality helps explain the close agreement between the stochastic simulation and
the method of moments at low pressure, as the method of moments is better suited to such
systems. There is also good agreement in number density between the models, with the
spherical particle model predicting more particles except at lower temperatures.

6 Conclusions

A numerical convergence study has been perform for a stochastic soot balance coupled
to gas-phase chemistry. Two systems were investigated; a batch reactor and a PSR. Both
were found to converge numerically with splitting step size. However, the PSR was found
to exhibit numerical instabilities for certain numerical parameters, which might be due to
stiffness of the coupling. This warrants further investigation.

Comparison to the plug flow reactor experiments of [15] and [17] demonstrated good
agreement. There were some deviations of the simulation predictions from the experi-
mental results for mean particle diameter, which could be the result of limited particle
detection of the experiments, limitations of the ABF soot mechanism, or a problem of the
algorithm. A study of carbon to hydrogen ratio in soot particles in the PFR was presented
for the first time which demonstrated that the model predicts C/H ratio to increase over
time and that larger particles occupy a narrower range of compositions.

A PSR simulation was performed and compared to a similar method of moments simu-
lation reported in [5]. Again good agreement between the two simulation methods adds
weight to the validity of this solution approach. However, lack of experimental evidence
for soot formation in a PSR precludes further conclusions to be drawn as to the suitability
of the algorithm in such systems, especially with the observed instabilities of solution.
The PSD for soot in a PSR have been shown for the first time.

7 Acknowledgments

This work was funded by an EPSRC DTA and was completed at the department of chem-
ical engineering at the University of Cambridge, UK.

31



References
[1] J Appel, H Bockhorn, and M Frenklach. Kinetic modeling of soot formation with de-

tailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Com-
bust. Flame, 121:122–136, 2000.

[2] Jrg Appel, Henning Bockhorn, and Michael Wulkow. A detailed numerical study of
the evolution of soot particle size distributions in laminar premixed flames. Chemo-
sphere, 42:635–645, 2001.

[3] M Balthasar and M Kraft. A stochastic approach to solve the particle size distribution
function of soot particles in laminar premixed flames. Combust. Flame, 133:289–
298, 2003.

[4] K E Brenan, S L Campbell, and L R Petzold. Numerical solution of initial-value
problems in differential-algebraic equations. SIAM Classics in Applied Mathemat-
ics, 14, 1996.

[5] Nancy J Brown, Kennath L Revzan, and Michael Frenklach. Detailed kinetic mod-
elling of soot formation in ethylene/air mixtures reacting in a perfectly stirred reac-
tor. Proc. Comb. Inst., 27:1573–1580, 1998.

[6] J R Cash. Efficient numerical methods for the solution of stiff initial-value problems
and differential algebraic equations. Proc. Royal Soc. London, 459:797–815, 2003.

[7] A Eibeck and W Wagner. Stochastic interacting particle systems and nonlinear ki-
netic equations. Ann. Appl. Probab., 13(3):845–889, 2003.

[8] Michael Frenklach. Method of moments with interpolative closure. Chem. Eng. Sci,
57:2229–2239, 2002.

[9] Michael Frenklach and Hai Wang. Detailed modelling of soot particle nucleation
and growth. Proc. Comb. Inst., 23:1559–1566, 1990.

[10] Michael Frenklach and Hai Wang. Detailed Mechanism and Modelling of Soot Par-
ticle Formation, volume 59 of Series in Chemical Physics, pages 162–190. Springer
Verlag, Berlin, 1994.

[11] Robert Gentleman and Ross Ihaka. R statistical software, 2005. www.r-project.org.

[12] E Hairer and G Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer Verlag, 1996.

[13] A Kazakov and M Frenklach. Dynamic modeling of soot particle coagulation and
aggregation: Implementation with the method of moments and application to high-
pressure laminar premixed flames. Combust. Flame, 114:484–501, 1998.

[14] David F Kronholm and Jack B Howard. Analysis of soot surface growth pathways
using published pfr data with new psd measurements and published premixed flame
data. Proc. Comb. Inst., 28:2555–2561, 2000.

32



[15] David Franklin Kronholm. Molecular Growth Pathways in Fuel-Rich Combustion.
PhD thesis, Massachusetts Institute of Technology, 2000.

[16] Frederick W Lam, Jack B Howard, and John P Longwell. The behaviour of poly-
cyclic aromatic hydrocarbons during the early stages of soot formation. Proc. Comb.
Inst., 22:323–332, 1989.

[17] J A Marr. PhD thesis, Massachusetts Institute of Technology, 1993.

[18] Robert Patterson, Jasdeep Singh, Michael Balthasar, Markus Kraft, and James Nor-
ris. The Linear Process Deferment Algorithm: A new technique for solving pop-
ulation balance equations. SIAM Journal on Scientific Computing, (28):303–320,
2006.

[19] Robert Patterson, Jasdeep Singh, Neal Morgan, and Markus Kraft. A simple model
for the aggregate structure of soot particles. Technical Report 38, c4e Preprint-
Series, Cambridge, 2006.

[20] Henning Richter, Silvia Granata, William Green, and Jack Howard. Detailed mod-
elling of pah and soot formation in a laminar premixed benzene/oxygen/argon low-
pressure flame. Proc. Comb. Inst., 30:1397–1405, 2005.

[21] K K Sabelfeld, S V Rogasinsky, A A Kolodko, and A I Levykin. Stochastic algo-
rithms for solving Smoluchovsky coagulation equation and applications to aerosol
growth simulation. Monte Carlo Methods and Appl., 2(1):41–87, 1996.

[22] J Singh, R Patterson, M Balthasar, M Kraft, and W Wagner. Modelling soot particle
size distribution: Dynamics of pressure regimes. Technical Report 25, c4e Preprint-
Series, Cambridge, 2004.

[23] Gilbert Strang. On the construction and comparison of difference schemes. SIAM
Journal of Numerical Analysis, 5(3):506–517, 1968.

[24] Hai Wang and Michael Frenklach. A detailed kinetic modelling study of aromatic
formation in laminar premixed acetylene and ethylene flames. Combust. Flame,
110:173–221, 1997.

[25] Clive Wells and Markus Kraft. Direct simulation and mass flow stochastic algo-
rithms to solve a sintering-coagulation equation. Monte Carlo Methods and Appl.,
11(2):175–199, 2005.

[26] John Z. Wen, M.J. Thomson, S.H. Park, S.N. Rogak, and M.F. Lightstone. Study
of soot growth in a plug flow reactor using a moving sectional model. Proc. Comb.
Inst., 30:1477–1484, 2005.

[27] B Yang and S B Pope. An investigation of the accuracy of manifold methods and
splitting schemes in the computational implementation of combustion chemistry.
Combust. Flame, 112:16–32, 1998.

33


	Introduction
	Model
	Numerical Treatment
	Splitting Scheme
	Method

	Numerical Convergence
	Batch Reactor
	PSR

	Comparative Cases
	Kronholm Plug-Flow Experiments
	Perfect Stirred Reactor Model

	Conclusions
	Acknowledgments

