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Abstract

We consider two stochastic simulation algorithms for the calculation of

parametric derivatives of solutions of a population balance equation, namely,

forward and adjoint sensitivity methods. The dispersed system is approxi-

mated by an N -particle stochastic weighted ensemble. The infinitesimal devi-

ations of the solution are accounted for through infinitesimal deviation of the

statistical weights that are recalculated at each coagulation. In the forward

method these deviations of the statistical weights immediately give parametric

derivatives of the solution. In the second method the deviations of the statisti-

cal weights are used to calculate a finite-mode approximation of the linearized

version of the population balance equation. The linearized equation allows for

the calculation of the eigenmodes and eigenvalues of the process, while the

parametric derivatives of the solution are given by a Lagrange formalism.
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1 Introduction

Equations of population balances give the general mathematical framework for the
description and modelling of particulate systems [1]. Starting from the famous
Boltzmann equation [2], equations of population balances span over a wide range
of physical, technological and environmental applications such as mixing [3, 4], liq-
uid/liquid dispersion [5, 6], soot formation [7], dynamics of atmospheric aerosols [8],
breakage and agglomeration of powders [9, 10, 11], growth of microbial cell popula-
tion [12], polymerization [13] and crystallization [14]. The general area of applica-
bility implies that the equations of population balances account for the most basic
physical principles (mass, momentum and energy conservation), i.e., they provide
only a framework, which has to “be filled in” by the physical information specific to
the system under consideration.

The general form of the equation of population balance reads:

∂m(t, x; λ)

∂t
= B(m(t, x; λ); λ)−D(m(t, x; λ); λ) ≡ L(m(t, x; λ); λ), (1)

where m(t, x; λ) is mass density of the particles with mass x (in the case of multicom-
ponent particles x can by vector containing masses of the components), B(m(t, x; λ); λ)
and D(m(t, x; λ); λ) are birth and death rates of the particles due to collision and
breakage, respectively, and λ is a parameter. λ can be a scalar, a vector or, even a
function, which contains the empirical information about the system. Thus, a re-
searcher who starts modelling a particulate system has to specify λ which is unknown
a priori, i.e., the following questions have to be addressed.

1. In many cases the dimension of the model is not obvious i.e., we do not know
a priori how many parameters are necessary to describe the shape of the parti-
cles, or how much the internal parameters such as porosity, chemical composi-
tion, humidity content or age of a microbial cell are important for the problem
under consideration, etc.

2. Since many physical processes and mechanisms are simultaneously involved
in the particulate systems, the most important of them have to be identified
in order to keep the model tractable. For example, in a granulation system
we do not know whether particle’s breakage is important and if so, which
type of breakage (attrition, breakage due to collisions with walls or with other
particles, etc.) it is.

3. When the qualitative physical picture of the system is set up, the parameters
of the model such as collision and breakage rate or number of fragments during
a breakage have to be specified.

Obviously, these problems cannot be solved on the basis of theoretical considerations
only, requiring intensive use of experimental data. The difficulty specific to dispersed
systems is that while the mathematical models of population balances are based
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on consideration of particle to particle interaction, the available experimental data
characterizes behaviour of the particulate ensemble as whole and, therefore, most of
the physical characteristics of the system are not accessible for direct measurement.
Thus there is a need for numerical methods which can close the gap between an
experiment and a model and assist in the determination of the physical structure of
the particulate systems. These methods can be classified as follows.

Sensitivity analysis, i.e., calculation of the parametric derivatives

∂m(t, x; λ)

∂λ
(2)

in order to characterize the effect of a parameter on the solution of Eq. (1).
Thus the parameters with high values of ∂m/∂λ have to be determined with a
high precision, while those with lower values can be approximately estimated
from some general considerations or, alternatively, another experimental con-
ditions under which the parameter λ has more distinct effect

Method of perturbations can be considered as an extension of the sensitivity
analysis (although requires a different mathematical technique). In order to
isolate the effect of a single physical mechanism or process (attrition, coag-
ulation, etc.) on the dynamics of the system this process is treated as a
perturbation of a “background” solution:

∂m(t, x; λ)

∂t
= L0(m(t, x; λ); λ) + εL1(m(t, x; λ); λ), (3)

where ε is a small parameter, L0 and L1 are operators of the unperturbed
problem and the perturbation, respectively. The solution of Eq. (1) is repre-
sented as m = m0 + εm1 + ..., where m1 characterizes (up to O(ε)) the effect
of the considered physical mechanism.

Inverse problems, when the unknown parameter λ has to be extracted from ex-
perimental observations. The most common formulation of an inverse prob-
lem, namely, an extremal formulation reads as follows. Consider a functional
H[m(t, x, λ)] and let us measure the values of H and denote them as Hexp. The
solution of the inverse problem is the parameter λ∗ that minimizes the differ-
ence between the calculated values of H and these observed in an experiment,
i.e.,

min
λ
‖H[m(t, x; λ)]−Hexp‖. (4)

Since (4) is a non-linear minimization problem, its efficient solution requires knowl-
edge about the local behaviour of H[m(t, x, λ)] as a function of λ. Therefore, sensi-
tivity analysis and methods of perturbations are an important part of any parameter
identification procedure.

Certainly there are other problems where sensitivity analysis of Eq. (1) can be very
helpful. Many industrial reactors such as bioreactors and crystallizers exhibit an
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oscillatory behaviour, i.e., the steady-state solution of the corresponding population
balance equation is unstable. Investigation of the unstable regimes consists of the
following steps: (i) detection of the steady-state solution, i.e., calculation of roots
of the right hand side of Eq. (1); (ii) linearization of Eq. (1) around this unstable
solution and calculation of the eigenvalues and eigenmodes of the linearized equa-
tion; (iii) design of a controller in order to stabilize the steady-state solution; (iv)
detection of the bifurcation points in the parameter space where a stable solution
becomes unstable and vice versa. All these tasks require an efficient procedure for
the linearization and sensitivity analysis of Eq. (1).

One of the difficulties associated with the sensitivity analysis of population balance
equations arises from the nature of Eq. (1). Equations of population balances are
nonlinear integro-differential equations, which makes a numerical treatment of Eq.
(1) very time-consuming. If the dimension of x is higher then 2, Monte Carlo sta-
tistical simulation becomes the only available numerical technique. Note that many
researches believe that since a Monte Carlo solution suffers from high statistical
fluctuations, finite differences and finite elements methods have better performance,
at least for one-dimensional problems. Recent results show [15] that the convergence
rate of Monte Carlo method can be significantly improved, which together with the
obvious logarithmical simplicity and flexibility makes it an attractive method even
for one-dimensional problems. A common method for sensitivity analysis is to run
the simulation for several values of the parameter and then to apply a finite dif-
ference method. However, the method is highly sensitive to numerical noise which
is absolutely unavoidable in Monte Carlo simulations. In our recent investigations
[16] we formulated the equations for parametric derivatives of the solution and solve
these equations together with Eq. (1). This method gives the solution of the equa-
tion and its parametric derivatives simultaneously. In [17] this method has been
used for parametric identification of a population balance model of a liquid/liquid
dispersion process.

The present work focuses on the further development of Monte Carlo methods for
the sensitivity analysis of the equations of population balances, namely, we consider
two approaches to the problem: forward sensitivity analysis and adjoint sensitivity
analysis of the linearized version of Eq. (1).

2 Sensitivity analysis and Monte Carlo methods

Before we start our considerations let us briefly mention the two methods of sen-
sitivity analysis, namely forward and adjoint methods. The equations for forward
sensitivity can be obtained by formally differentiating Eq. (1) with respect to λ.
Denote the forward sensitivity ∂m/∂λ by m′(t, x; λ), the equation for m′(t, x; λ) and
the initial conditions are

∂m′(t, x; λ)

∂t
= L′m′(t, x; λ) +

∂L(m; λ)

∂λ
, m′|t=0 = 0, (5)
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where L′ is the linearization of the operator L(m(t, x; λ); λ). Then the parametric
derivative of a functional H[m(t, x, λ)] =

∫ ∫
m(t, x, λ)h(x)dtdx, where h(x) is an

arbitrary function, reads

∂H[m(t, x; λ)]

∂λ
=

∫ ∫
m′(t, x; λ)h(x)dtdx. (6)

The adjoint sensitivity analysis is based on the Lagrange formalism. Let us define
an adjoint variable ψ and rewrite the functional H as follows

H[m(t, x, λ)] =

∫ ∫ T

0

{
m(t, x; λ)h(x)− ψ

(
∂m(t, x; λ)

∂t
− L(m; λ)

)}
dtdx. (7)

Since m(t, x; λ) satisfies Eq. (1), the last term in the above equation is 0.

We require that the adjoint variable ψ satisfies the following problem:

−∂ψ(t, x; λ)

∂t
= L∗ψ(t, x; λ) + h(x), ψ|t=T = 0, (8)

where L∗ is an operator adjoint to L′. Differentiating Eq. (7) with respect to λ,
integrating by parts with respect to time and using Eq. (8) we obtain after some
algebra the following expression for the parametric derivative of the functional H:

∂H[m(t, x, λ)]

∂λ
=

∫ ∫ T

0

ψ(t, x; λ)
∂L(m; λ)

∂λ
dtdx. (9)

Both forward and adjoint approaches have advantages and disadvantages. As one
can see, Eq. (5 ) contains the derivative ∂L/∂λ. This means that the equation for the
forward sensitivity m′ has to be solved for the each of parameters λ involved in the
problem. On the other hand, for the known forward sensitivity m′ the parametric
derivative ∂H/∂λ can be calculated for any functional H. The equation for adjoint
sensitivity (8) does not contain a derivative with respect to λ, instead it contains the
function h. As soon as the adjoint sensitivity ψ is known, the parametric derivatives
of the given functional H with respect to any number of parameters is given by
Eq. (9). In conclusion, if we need the sensitivities of a large number of functionals
with respect to a small number of parameters, the forward sensitivity approach is
more efficient. While the adjoint sensitivity method is better if we need sensitivities
of a small number of functionals with respect to a large (maybe infinite) number
of parameters. The last case is rather common in population balances, because in
an experiment, only the first few moments of the particles’ distribution (mass of
the particles, mean diameter, mean surface area, etc.) are accessible. Therefore,
in the present article we discuss Monte Carlo algorithms for the forward sensitivity
analysis, linearization and adjoint sensitivity analysis of the equations of population
balances.
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2.1 Weighted particles method and forward sensitivity anal-
ysis

The main idea of the Monte Carlo method is the representation of m(x) and H[m(t, x, λ)]
as

m(t, x; λ) ≈
N∑

i=1

wiδ(x− xi), H[m(t, x, λ)] ≈
N∑

i=1

wih(xi), (10)

respectively, i.e., the ensemble of a large number of physical particles is replaced by
an ensemble of N computational particles. Each computational particle represents
wi identical real particles. If all statistical weights wi are equal, this is called the
direct simulation Monte Carlo (DSMC) method, while the more general case is called
the stochastic weighted particle method (SWPM). Let us consider the following
formulae:

m(t, x; λ + ∆λ) ≈
N∑

i=1

wi(1 + ∆λWi)δ(x− xi),

H[m(t, x, λ + ∆λ)] ≈
N∑

i=1

wi(1 + ∆λWi)h(xi).

Comparison with Eq. (10) reveals that

∂m(t, x; λ)

∂λ
≈

N∑
i=1

Wiδ(x− xi),
∂H[m(t, x, λ)]

∂λ
≈

N∑
i=1

Wih(xi). (11)

We refer to the system with statistical weights wi(1+∆λWi) and operator L(n; λ+
∆λ) as the “disturbed” system, while the original system is referred to as an “undis-
turbed” one. We then simulate the undisturbed system and after each event (coag-
ulation, breakage, etc.) the factors Wi which account for the infinitesimal deviation
of the solution due to an infinitesimal deviation of the parameter are recalculated
as follows [16].

The probability that two particles with masses x and x′ respectively, coalesce during
a small time interval dt is K(x, x′; λ)dt, where K is a coagulation kernel. In the
present investigation we use an acceptance-rejection technique similar to that used in
[18]. The probability that the kth particle collides with the lth particle is πkl(λ)dt =
K(xk, xl; λ)x−1

l wldt. Consider a majorant π̂kl satisfying πkl(λ) 6 π̂kl. A pair of

particles is chosen based on the distribution π̂kl/
∑N

αβ=1 π̂αβ. The coagulation is
then either accepted with the probability π(λ)kl/π̂kl and xk and Wk are recalculated
as

xk = xk + xl, Wk = Wk + ∂λ ln(π(λ)kl), (12)

or the coagulation is rejected and Wk is recalculated as

Wk = Wk − π(λ)kl

π̂kl − π(λ)kl

∂λ ln(π(λ)kl). (13)
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Thus, we obtain the solution to Eq. (1) and its parametric derivatives simultaneously.

As the calculations proceed, dispersion of the estimation (11) increases further and
the procedure becomes very time-consuming. The nature of this error and methods
of its reduction are discussied in the Appendix.

2.2 Linearization of Eq. (1) and adjoint sensitivity analysis

Consider a solution of Eq. (1) m0(t, x) and a perturbation of the solution m′(t, x),
which we represent in the following form:

m′(t, x; λ) = m0(t, x; λ)
J∑

j=1

aj(t)γj(x). (14)

In other words the deviations of the statistical weights Wk read

Wk =
J∑

j=1

Wk,j =
J∑

j=1

aj(t)γj(xk). (15)

In the above equation γj(x) are known polynomial while aj(t) are unknown functions
of time. Substitution of m(t, x) = m0(t, x) + m′(t, x) into Eq. (1) and substraction
of the undisturbed equation from the disturbed one yields the following linearized
version of the equation of population balance

∂m′(t, x; λ)

∂t
= L′m′(t, x; λ). (16)

Multiplication of (16) by γi(x) and integration by x yields the finite-mode approxi-
mation of the linearized equation:

d

dt
Aijaj(t) = Bijaj(t), (17)

where

Aij =

∫
m0(x)γi(x)γj(x)dx, Bij =

∫
γi(x)L′{m0(x)γj(x)}dx. (18)

The finite-mode approximation of (8) and (9) then read

− Aij
dψi(t)

dt
= Bijψi(t) +

∫
m0(x)γi(x)h(x)dx, ψ(T ) = 0, (19)

∂H[m(x, λ)]

∂λ
=

∑
i

ψi

∫
γi(x)

∂L(m0; λ)

∂λ
dx. (20)

While the calculation of Aij by Monte Carlo methods is straightforward, the calcula-
tion of Bij is more complicated. Combining of Eqs. (12, 13, 18) yields the following
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Figure 1: Mass densities for α = 0 (solid line) and α = 0.5 (dashed line), Qin = 1.

expression for Bij averaged over a short time interval: Bij =
∑

n bn
ij, where the

contribution of nth collision reads:

bn
ij =

wk

τn

[γi(xk + xl){γj(xk) + γj(xl)} − γi(xk)γj(xk)] , (21)

if the coagulation between the kth and lth particles is accepted, or

bn
ij = −wk

τn

γi(xk)γj(xl), (22)

if the coagulation is rejected. In the above equations τn is the time interval between
the (n− 1)th and nth collisions.

3 Results and discussion

We simulated the coagulation of particles in a stirred reactor. Particles enter the
reactor at a mass flux Qin and are uniformly distributed in mass ranging from 0
to 1. The collision kernel is K(x, y) = (xy)α, and the probability that a particle
with mass x leaves the reactor during a small time interval dt is 0.1xdt. After
some transient period the system reaches a steady state. Mass density functions
are shown in Fig. 1. As the exponent α increases the total mass of the system and
the mean size of the particles decrease, while a long tail of large particles is formed
which slowly decreases with x. An accurate resolution of the tail is very important
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by the direct method, α = 1/3. The initial conditions are a1(0) = 1,
aj 6=1(0) = 0.
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because large particles have higher probability of leaving the reactor and the tail
controls the total mass of the particles in the reactor.

When the system reaches a steady state we simulate its infinitesimal disturbances
both by the forward and the adjoint methods. The eigenvalues of Eq. (17) are
plotted in Fig. 2. In the present study we used two forms of the polynomial γj(x):

γj(x) =

(
6x

π

)(j−1)/3

, γj(x) = cos

(
2π

χ
x(j − 1)

)
, (23)

where χ is a characteristic size. While for a small number of modes both approxi-
mations work well, large J the trigonometric functions are better. As one can see,
even a small number of modes is enough to capture the eigenvalues with highest
real parts. Additional modes have shorter relaxation times, and we can suppose
that truncation error of the finite-mode approximation is small.

Since the forward sensitivity method has been extensively tested in our previous
investigations [16], we refer to the results obtained by this method as “exact”. In
order to compare the results obtained by Eqs. (12), (13) and Eq. (17) we define the
following moments of the particles size distribution:

µn =

∫ (
6x

π

)n/3

m(x)dx. (24)

Fig. 3 shows the relaxation of these moments toward a steady state calculated by
the both methods. Given that only 4 modes have been used in Eq. (17) in these cal-
culations, the accordance between the results is satisfactory. Parametric derivatives
∂µ0/∂α and ∂µ1/∂α by the forward and the adjoint methods are given in Table 1.
When α approaches 0.5 the particles size distribution has a long tail, then up to
12 modes are necessary to make the adjoint method insensitive to the number of
modes. As one can see, the discrepancy between the two methods ε is about 10%,
which is a good result since both methods are subjected to numerical noise.

4 Conclusion

In this work we considered two methods for sensitivity analysis of the equations
of population balance. These methods are based on the weighted particles Monte
Carlo method, where the sensitivity is accounted for by infinitesimal deviations of the
statistical weights. The forward sensitivity method directly uses these deviations of
the statistical weights to calculate parametric derivatives of the solution. Another
method uses a similar procedure to calculate a finite-mode approximation of the
linearized version of the equation. Then, the Lagrange formalism can be used to
calculate parametric derivatives of linear functionals (statistical moments, etc.) of
the solution. Both methods give similar results when they are applied to the same
problems, while each method has its advantages and disadvantages.
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Table 1: Parametric derivatives of µ0 and µ1 with respect to α by the direct and
the adjoint methods.

α µ0 µ1 µ′0 (direct) µ′0 (adjoint) ε (%) µ′1 (direct) µ′1 (adjoint) ε (%)
0.0 2.64 4.61 -0.840 -0.835 0.59 -1.50 -1.40 7.1
0.1 2.57 4.46 -0.776 -0.783 0.96 -1.23 -1.29 5.0
0.2 2.51 4.32 -0.557 -0.608 8.30 -1.46 -1.34 8.6
0.3 2.46 4.12 -0.372 -0.361 2.90 -1.30 -1.18 10.0
0.4 2.45 4.02 -0.088 -0.101 13.0 -1.15 -1.06 7.8
0.5 2.44 3.91 -0.053 -0.050 7.10 -0.79 -0.851 7.1

Although the adjoint method (unlike the forward one) requires intensive postpro-
cessing, it can be very helpful in those situations where the applicability of the
forward method is questionable, namely, stability analysis of particulate processes.
Many industrial reactors involve two distinct kinetic processes: inception of parti-
cles (nucleation of crystals, birth of cells, etc.) and their subsequent growth. The
rate equations of these kinetic processes are usually nonlinear, and this property
can lead to complex dynamic behavior including self-sustained oscillations, multi-
ple steady states, etc. Oscillations in particle size distribution have been reported
for industrial crystallizers (see e.g., [19], [12] and references therein). These oscilla-
tions represent an important practical problem leading to off-specification products.
The proposed sensitivity analysis methods have a high potential for bifurcation and
stability analysis of such systems. These methods can be used to find unstable
steady-state solution which cannot be detected by direct simulation. The equation
can then be linearized around the obtained solution in order to calculate its eigen-
modes and eigenvalues. The resulting linear model can be used to develop a control
strategy that regulates the particles’ number distribution by manipulating the feed
and removal rate and other operating conditions.
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A Statistical error of Eq. (11) and methods of its

reduction.

The forward method for sensitivity analysis of population balance equations has
been tested in our previous work [16] and it was shown that the estimation of the
parametric derivatives based on Eq. (11)) has a high dispersion. To understand the
origin of this dispersion it is enough to note that two identical particles with factors
W and −W , respectively, give zero contribution to the parametric derivative for
any (high) value of W . The numerical experiments show that the factors W can
grow infinitely which leads to unbounded dispersion of the calculated derivatives. In
order to reduce the dispersion we used a weighted particles algorithm which creates
one additional particle after each collision, then we used a clustering method [20] to
reduce the number of particles.

In the present investigation we use an alternative method which does not require the
time-consuming clustering procedure. Assume that we do not need to calculate the
parametric derivative of the solution ∂m(x)/∂λ but only derivatives of the first few
moments of the particle size distribution: total mass, mean diameter, etc. Defining
a set of functions h0(x), h1(x),... hK(x) (for example, hk(x) = xk/3) and substituting
these into Eq. (11) yields a system of linear equations with respect to Wn:

N∑
n=1

{hk(xn)wn}Wn =
∂Hk(m; λ)

∂λ
. (A.1)

The solution of the problem

min
Wn

1

2

N∑
n=1

W 2
n (A.2)

which satisfies Eq. (A.1) does not change the parametric derivatives ∂Hk/∂λ of the
first K moments and reduces the scatter of the factors Wn.

Finally, the algorithm for the calculation of the parametric derivatives is as follows.
We simulate the coagulation process and recalculate Wn according to Eqs. (12),
(13). When the scatter of the factors Wn becomes too high we solve the problem
(A.1) – (A.2). Since we do not need an exact minimum of (A.2), 2−4 iterations of a
projective gradient method are enough to stabilize the computations. Note that this
procedure is not time-consuming and the required CPU time scales almost linearly
with the number of preserved moments K. Computational experiments with K
spaning from 6 to 24 give very similar results. All the results presented in this work
are obtained with K = 12.
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