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Abstract

We review models and numerical methods used in flame synthesis of or-
ganic and inorganic nanoparticles. We discuss a general model in which
particles form in the gas phase and grow through mass-adding surface re-
actions, condensation, and coagulation. They shrink or reshape by sintering
and mass-abstracting surface reactions. The model is formulated in terms
of a population balance which can incorporate a range of levels of detail,
i.e. a varying number of internal coordinates. These coordinates can not
only describe the geometry of a particle but also its chemical composition or
age. In the simplest version a particle is modelled as a sphere whereas in the
most complicated form a particle is modelled as an agglomerate of smaller or
primary particles where the geometrical shape is known exactly. For these
population balance models a number of different numerical approaches exist.
We review the method of moments, sectional, finite element, and Monte Carlo
methods and give examples of their applications in flame synthesis. Different
strategies for coupling a population balance to laminar and turbulent flows
are reviewed. For turbulent flows the closure problems arising from chemical
reactions and the population balance are briefly discussed. We then sum-
marize the literature on nanoparticle modelling from laboratory to industrial
scale and highlight important areas for future research.
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1 Introduction

In this article we review models of combustion synthesis of nanoparticles and the
numerical methods used with which to solve them. Nanoparticles can be found in
everyday life, for example as pigments, reinforcement material, or even in sunscreen.
They are produced on a million ton per year scale and the industrial processes are
well established. Also, based on recent research efforts, it is believed that nanopar-
ticles hold great promise for future applications. However, there are also major
concerns about the environmental and specifically human health effects of nano-
particle emissions, for example from diesel engines. To improve yields or product
quality and to avoid particle emissions, numerical modelling has been extensively
used. In this paper we shall discuss models and numerical methods for two types of
nanoparticles.

Organic nanoparticles come in two forms namely carbon black and soot. Carbon
black is a name for a well-defined industrially manufactured product which is a
produced at a rate of several million tons per year. Amongst a variety of applications
it is used as filler and reinforcement material with the properties of the individual
particles determining their application. There are several production routes which all
involve combustion of gases and liquids. The most important is the furnace process
in which liquid hydrocarbons are sprayed into the exhaust of a turbulent lean natural
gas flame. Soot on the other hand is an unwanted product of combustion, mainly in
diesel engines. New emissions regulations make it necessary to reduce the amount
of soot formed during combustion drastically.

The variety of inorganic nanoparticles is much greater. Two main routes of
synthesis are in use: wet-phase chemistry synthesis and flame synthesis. In many
cases flame technology has been identified to be superior as it is a direct, continuous
process with little waste and by-product generation [110]. For this reason we only
examine models which have been developed for flame synthesis. Important inorganic
nanoparticles are titania, fumed silica, and alumina powders. However there are
many others and recently the number of ceramic powders has grown as a result of
new applications, for example as catalysts and surface coatings. These powders are
mainly produced similar to carbon black by spraying metal oxide precursors into a
high temperature reaction zone.

Two very important aims which one hopes to achieve with the knowledge gained
through modelling are the improvement of yield and quality of products and the
scale-up of new processes from a laboratory or bench scale level to an industrial
level. In both cases the model needs to capture the important physics and chem-
istry of the formation of nanoparticles, their interactions with each other and with
the surrounding gas phase, and their transport through surrounding media. This
requires detailed models of the chemical reactions, the population of particles and
for the mostly turbulent transport. Despite recent progress in some of these areas
the predictive power of the current models remains poor.

In the research community it has been recognized that it is necessary to study sys-



tems which are simpler than a spray injected into a reactor of complex geometry and
in which the flow is turbulent. For this reason a number of laboratory experiments
have been developed, the simplest being a shock tube; other experimental configu-
rations include plug flow reactors, jet stirred reactors, premixed flames, counterflow
and axisymmetric co-flow diffusion flames. Whereas for industrial applications only
simplified models are available there exist detailed models for the laboratory scale
experiments. The findings obtained from these experiments and attempts to model
them are summarized in a number of text books and review articles. These are
excellent sources of further information on nanoparticles and their applications and
a selection is discussed below. The books by Seinfeld and Pandis [105] and Williams
and Loyalka [125] are comprehensive treatises on the transport of aerosols and gas
phase chemistry in the atmosphere. Although these books do not treat the indus-
trial application of nanoparticles directly they contain a lot of material which is
relevant to their modelling. The book by Friedlander [37] is also a classic text and
is more relevant to nanoparticles as it contains details on population balance mod-
elling, in particular on agglomerate formation and restructuring. A more general
text on population balances is the book of Ramkrishna [95] which describes several
numerical techniques for population balance problems each of them relevant for the
modelling of nanoparticle population dynamics. Important review articles in the
area of soot include the articles by Kennedy [48] and Bockhorn [19] which contain
comprehensive collections of references but also describe a number of empirical and
detailed soot models. In addition, the book on soot formation edited by Bockhorn
[18] is recommended. It contains a collection of papers which address all the im-
portant issues concerning the modelling and measurement of soot in a variety of
reactors, from lab-scale up to diesel engines. In the area of inorganic nanoparticles,
the papers by Pratsinis and co-workers [94, 92 66] include a number of interesting
references for experimental and modelling work. For educational purposes the arti-
cle by Rosner [97], the excellent brochure on carbon black from Degussa [74] and the
chapter on carbon black in Ullmann’s Encyclopedia of Industrial Chemistry [120]
are recommended.

The aim of this paper is to provide an up-to-date review of the literature which is
concerned with modelling of organic and inorganic nanoparticle population dynamics
considering both models and numerical methods. A variety of numerical approaches
are discussed. A distinction is made between detailed models describing particle
inception, their growth, and their change in structure and models which describe
particle transport in laminar and turbulent flows.

The paper is structured as follows. First, a general model for a population of
nanoparticles is presented which assumes no spatial gradients in any of the phys-
ical quantities. Then different numerical approaches for population balances are
reviewed. The next section presents different strategies for coupling the population
balance equation with the fluid flow equation in laminar and turbulent flows. A
number of applications are presented in the next section. Finally, some new areas
for future research are identified.



2 QOutline of a General Model

We first lay out a general model for the population dynamics of nanoparticles as
displayed in Figure 1. We assume that all precursors and particles are in a perfectly
mixed control volume which means that there are no gradients in any of the physical
quantities contained in this volume. The model is defined as follows:

e Individual nanoparticles may be completely described by elements of some
type space E on which addition corresponding to coagulation is defined.

e The nanoparticle population is described at time ¢ by the number n (¢, z) per
unit volume of particles of type x € E.

e n evolves according to the discrete Smoluchowski coagulation equation:

%n (t,z) = (/ct @)+ S" (x)) (n(t,-)) +1(tx). (1)

lel

In these definitions we make the implicit assumption that E is countable so that
summations are meaningful. This assumption is common in the literature but not
essential and can be removed by replacing the sums with integrals. The (time
dependent and non-linear) coagulation operator K is then defined by

K@mEN= 5 X K@nyn(t)
y,2€E:y+z=x (2)
- ZKt (x,y)n(t,x)n(t,y).

The first sum represents coagulation to form particles of type x and the second
loss of particles of type x due to coagulation. K;(x,y) defines a map from the
concentrations of particles of types x and y to their coagulation rate at time ¢ given
by K;(z,y)n(t,x)n(t,y). K is known as the coagulation kernel.

Surface reactions, condensation, and sintering which only involve one physical
particle at a time are described by the linear operator S defined by

SV (@) (n(t.)=Y_BWP (" ) =2)n(ty) - (@)n(tz),  (3)
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where [ € U. U is an index set for a process or a type of event which is either one
element of a set of surface reactions, sintering steps or condensation steps. ﬁt(l) (x)
is the rate at which a particle of type x undergoes the change of index [ at time ¢.
g (z) is the result of a particle of type = undergoing an event of index . If a surface
reaction removes a particle from the population the function will take the special
value 0 in E. We allow for ¢) to be a random function. Note in the deterministic
case the probability P in (3) reduces to an indicator function. For example, in the
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case of x describing the number of monomers in a particle then the addition of a
monomer is given by g(y) = y + 1. Models for sintering and surface reactions will
be discussed below.

The Particle inception I (¢,z) is the rate at which particles of type = enter the
system at time t.

As boundary conditions general we will use n (0,x) = no(z) forall z € E .

2.1 Representations of nanoparticles

Nanoparticles can be modelled using different degrees of detail which is specified by
the set E. In the following, three examples for the set E are given. The models
discussed in this paper will either be identical to or are combinations of the following
examples.

The Primary Particle Model is the most detailed particle model discussed in
the literature. There, a nanoparticle is described as an unordered finite sequence
of ‘primary particles’ and their locations e.g. displacement from the first particle
in the list. Primary particles can be characterized as spheres of constant density
described by, say, mass but can also contain additional information as for example
chemical composition of the surface of a primary particle. The number of internal
coordinates is the length of the sequence times the number of particle attributes
like distance from the first member in the sequence. Therefore a member of the
population of nanoparticles can have several thousand internal coordinates.

The simplest and most widely used model is the Coalescent Sphere Model in
which all particles are assumed to be spheres of common density. It is then conve-
nient to describe a particle in terms of the number of monomers. Addition is defined
just as for the natural numbers: the result of the coagulation of two spheres is a
new sphere with volume equal to the sum of the volumes of the initial spheres, i.e.
coagulation is completely coalescent. The internal coordinate of the nanoparticle is
its volume or number of contianied monomers.

A slightly more detailed model with two internal coordinates is the Surface and
Volume Model. Here we say that a particle is described by volume and surface
area. We define addition componentwise, i.e. volume and surface area of the new
particle are the sums of the volumes and the surface areas of the interacting particles
respectively and hence coagulation is modelled without any coalescence. It is an
intermediate stage between the Primary Particle Model and the Coalescent Sphere
Model. Processes like sintering, condensation, or surface reactions can transform
the volume to surface ratio of an aggregate. The definition of ¢ is non-trivial even
with a clear picture of the underlying chemical processes.
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Figure 1: Schematic of processes in nanoparticle flame synthesis

2.2 Gas phase chemistry

The gas phase chemistry leading to organic soot and Polycyclic Aromatic Hydro-
carbons (PAH) has been subject of research for a long time because the combustion
of hydrocarbons is so important for many technical and chemical applications. Gas
phase chemistry models used for modelling soot and carbon black can be found in
[121], 13, [96].

The gas phase chemistry leading to inorganic nanoparticles is far less well understood
and it is very clear that this is an important field of future research. Kinetic data
for SiO, particles formed from SiH4 can be found in [60]. Reference [113] contains
data on the formation of titania particles (TiO2) made from tetraisopropoxide and
reference [93] contains data if TiCly is used as precursor. Simple models for the gas
phase chemistry describing the formation of Fe,O3 particles from Fe(CO)s can be
found in [38, [77].

2.3 Particle inception

Particle inception is probably the most difficult part when modelling nanoparticle
synthesis. It is fair to say that it is still not really understood. Omne approach to
model particle inception for inorganic nanoparticles is to apply the theory of ho-
mogeneous nucleation of Vollmer-Becker-Déring-Zeldovich which dates back to the



early thirties of the last century. In their model supersaturated vapor containing
monomers and sub-critical clusters of molecules collide to form stable clusters of
molecules which exceed a critical radius. This critical radius depends on the surface
energy, the volume of the formed structure, the temperature and the degree of su-
persaturation. The surface energy for clusters of such small size is not known and is
usually estimated from bulk properties. These estimates can deviate from the true
values by orders of magnitude. Unfortunately surface energies can only be measured
for clusters which are significantly larger than the critical size and therefore cannot
provide sufficient accuracy. However molecular dynamics simulation can be used to
calculate the properties of a critical cluster, for instance surface tension. These sim-
ulations are computationally very expensive and contain significant approximations.

For the simulation of SiO, and TiO4 the critical cluster size has been determined
by homogeneous nucleation theory using bulk properties to be not more than one
molecule in [60]. However in a more recent paper Artelt et al. [6] studied the effect
of varying surface energy on the critical particle diameter and proposed that the
size of critical clusters can exceed one.

The nucleation of organic nanoparticles is believed to be different but also still
unknown. The inception species for the first soot particles are polycyclic aromatic
hydrocarbons (PAH). The model in [3], also called ABF model, which is widely used
in the combustion community, assumes that the first particles form when two pyrene
molecules collide. In this model every collision leads to successful formation of a
soot particle. Despite the simplicity of this assumption the prediction for number
density and soot volume fractions in premixed laminar flames are within an order
of magnitude of the experimental observations. A more refined model is that of
Frenklach and Wang [36] where a population balance of PAHs of different sizes is
considered which form a soot particle on collision.

More recently, quantum mechanic calculations have been used to shed light on the
problem of particle inception. Appel et al.[4] argue that dimers should be stable un-
der flame conditions if the interaction energy in the dimer is larger than the internal
energy of the two molecules. The result of their quantum mechanical calculations
indicate that PAH dimers larger than the pyrene dimer are sufficiently stable to form
a three dimensional structure at temperatures above 1500K. Schuetz and Frenklach
[104] make use of molecular dynamics to study the collision of two pyrene molecules
and conclude that aromatic dimers of species as small as pyrene can survive long
enough to evolve into soot nuclei. Violi [118] combines kinetic Monte Carlo sim-
ulations on a mesoscopic level with molecular dynamics simulations to study the
formation of the first soot particles from PAHs. She explains successfully the dif-
ference in H/C ratio, particle sphericity, and depolarization ratio as a function of
the fuel properties. Despite first success of molecular dynamics modelling the time
scales on which these calculations are carried out are in the order of nanoseconds
which is too short to bridge the time gap necessary to establish the statistics of
collision. Fortunately new experimental data on particle size distribution down to
very small particle sizes are available for validation [130] and will help in gaining a



better understanding of particle inception.

2.4 Coagulation

The model for particle coagulation depends on the choice of the particle model
and on the physical conditions like temperature and pressure of the environment
the particles are in. The coagulation kernel K determines the rate of collision of
two particles. For nanoparticles even in turbulent flows Brownian coagulation is
the mechanism with which particles coagulate. In [14] it is shown that for typical
flame conditions the Brownian collision frequency is dominating over the Saffman
Turner collision frequency which describes the collision frequency of particles due to
turbulence. Brownian coagulation is modelled by the Fuchs kernel, e.g. [125] 37, 86]
which covers different regimes classified by the Knudsen number, the ratio of twice
the gas mean free path to the particle diameter. The free mean path of course
depends on temperature and pressure of the particle surrounding gas. The different
regimes are the continuum, slip-flow, transition and free molecular regime where at
one end of the spectrum, in the continuum regime, particles perform a Brownian
motion and on the other end of the spectrum, in the free molecular regime, particles
perform a free flow followed by a collision type of movement. In addition to these
kinetically derived collision frequencies an enhancement factor due to van der Waals
forces between the particles needs to be accounted for [43]. These forces lead to
coagulation of particles even if they do not collide but get ”close enough”.

The collision diameter which appears in the coagulation kernel is unknown except
for the very simple Coalescent Sphere Model where all particles are spheres. The
collision diameter depends on the fractal dimension of the aggregate which is formed.
The fractal dimension can be obtained from Monte Carlo simulations. In the con-
tinuum regime the diffusion limited cluster-cluster aggregation model (DLCA) gives
a fractal dimension of 1.80. For the free molecular regime, the prevailing in at-
mospheric flames, the ballistic cluster-cluster aggregation model (BCA) leads to a
slightly higher fractal dimension of 1.94.

However, sintering, surface growth, or condensation can change the fractal dimen-
sion significantly. Mitchell and Frenklach [75, [76] developed a Monte Carlo method
including coagulation and surface growth. Using the BCA model, i.e. assuming a
particle sticks rigidly at the first point of contact to a target particle, they performed
surface growth on each primary particle in the target particle by integration, los-
ing the discrete nature of the surface events. The collision diameter and fractal
dimension was then obtained from the target particle.

In [103] a Monte Carlo simulation of aggregation and sintering is performed. Similar
to the approach above a target particle is allowed to coagulate with other particles.
The authors then employ a ’shrinking back backbone” approach to change the surface
to volume ratio and therefore the particles’ fractal dimension.

Very recently Balthasar et al. [10] combine the approach developed in [76] with



a Monte Carlo algorithm developed in [40] to simulation for the first time a full
population of nanoparticles using the Primary Particle Model for a nonpremixed
laminar flame.

The most important result of the above-mentioned simulations is that the fractal di-
mension of nanoparticles changes in time depending on surface growth, coagulation,
and sintering. The detailed simulations can then be used to extract a functional re-
lationship for the change of fractal dimension and therefore collision diameter with
the aim to include this information in a simpler Surface and Volume Model.

2.5 Surface reaction

In order to model surface reactions accurately it is necessary to understand the
gas-phase chemistry and the chemical composition and area of the surface of the
nanoparticles. In many applications surface reactions play a very important role.
Along with particle sintering which will be discussed later surface reaction can sig-
nificantly change the fractal dimension of a particle. Unfortunately the importance
on the one hand is reflected by the lack of knowledge about these processes on the
other hand.

In the case of carbon nanoparticles the number of active sites has been observed to
reduce as a function of the age of a soot particle in a premixed laminar flame. In [3] a
measure for surface reactivity was introduced and fitted to a number of experiments.
In [107] the surface reactivity has been associated to the age of the soot particles
which accounts for the change of the surface chemistry of each particle. However
this very simplistic model needs to be replaced by a more detailed one in which the
chemical composition of the particle’s surface is known.

In a series of papers [31, 32, 35] Frenklach and co-workers used a kinetic Monte
Carlo technique to study this deactivation of surface reactivity on soot particles.
The fluctuations of the spatial structure of PAHs on the surface of the particles are
responsible for the deactivation of active surface sites. However these findings have
not been implemented in a population balance model.

The number of papers which present models for surface growth of inorganic nanopar-
ticles is quite small ( e.g. see [92] and references therein). Here, not only the chem-
ical nature of the active sites needs to be known but also an accurate model for the
change of the surface through sintering needs to be in place.

2.6 Condensation

Particle condensation is a process in which a chemical species from the gasphase
sticks to the surface of a particle not through chemical reactions but through the
weaker van der Walls force. A typical example for condensation is the attachment
of PAHs on a soot particle’s surface. In the case of soot or carbon black this can
be a significant growth process. Typically species that play a role in the particle

10



inception mechanism, like PAHs, are likely to condense on a particle’s surface. For
laminar flames where the particle inception zone is very thin condensation is less
likely to play an important role in particle growth.

2.7 Sintering

The driving force for the sintering of nanoparticles is the reduction of potential
energy due to the decrease in surface area. A lot of research has been carried out
to understand sintering of metallic particles. However there much fewer papers on
nanoparticles that simultaneously perform sintering and coagulation.

One of the most widely used sintering models in population balances has been in-
troduced by Koch and Friedlander [49, 128]. The model is based on the Particle
Volume Surface model where a particle with a surface to volume ratio equivalent to
an agglomerate of primary particles changes its surface area at a characteristic sin-
tering time to the surface area of a perfect sphere while keeping its density constant.
For some nanoparticles, e.g. Si-particles the driving force for this physical mecha-
nism is grain boundary diffusion. This simple model describes only the later stages
of the sintering process sufficiently well where the particles are close to spherical.
Structural changes are not taken into account.

To obtain deeper understanding into the structural changes, and therefore the
changes in fractal dimension over time, Monte Carlo simulations have been per-
formed by a number of research groups. Pratsinis and co-workers [1] carried out
one of the first Monte Carlo simulation considering coagulation with simultaneous
restructuring due to sintering. They examined two-dimensional clusters with finite
binding energy using random particle walks on the surface of these clusters. This
model is able to reproduce at least qualitatively the influence of residence time and
temperature on nanoparticles formed in a reactor. Much more recently Schmid et
al. [103] present a very detailed Monte Carlo simulation of agglomeration and sin-
tering where the particles are shrunk along a common backbone and the overlapping
volume is then distributed over the accessible surface. Depending on the sintering
time the fractal dimensions vary from 1.86 to 2.99. They establish a functional rela-
tionship for the change of the fractal dimension over time and use this relationship
in a simpler population balance model [5].

3 Numerical Methods

The numerical solution of equation (1) is a very challenging problem for several
reasons. The two most important ones are the large size of the system of ordinary
differential equations and the nonlinearity of the coagulation operator (2)). For ex-
ample in the case of the coalescent sphere model the difference between the smallest
and largest particle sizes and therefore the size of (1) can easily be several orders of
magnitude. Surface reactions and particle inception can also cause severe numerical
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challenges. In this section we shall discuss different strategies to obtain meaningful
numerical solutions to (1) despite these difficulties.

3.1 Method of Moments

The method of moments (MOM) is computationally the most efficient approach to
obtain a numerical approximation to the moments of a population balance. For
this reason this method is often used when simulating problems where transport of
particles in a flow with complex geometry is essential. In the area of nanoparticle
modelling two techniques have been used so far. The first technique used by Fren-
klach and co-workers is the method of moments with interpolative closure (MOMIC)
[34]. The second approach is based on the quadrature method of moments which is
a more recent technique based on the work of McGraw [73].

In the first instance MOMIC has been developed to describe the formation and
oxidation of soot particles. In its early form the method is based on a univariate
description of spherical soot particles in the free molecular regime, for instance in [30]
MOMIC is used to simulate the formation of soot in a burner stabilized premixed
ethylene flame where the soot moments are calculated in a post processing step.
In this work two sets of moments of the size distribution of PAH and the size
distribution of soot particles are solved simultaneously. Some theoretical remarks
on the validity of the MOMIC approach can be found in [33]. Numerical tests of the
accuracy of the interpolative closure are contained in [12] for inorganic and in [41]
for organic nanoparticles. For unimodal particle size distributions where no surface
reactions that reduce particle size are present MOMIC produces excellent results
being accurate and fast. The method has been extended to include coagulation
in the transition and the continuum regime and taking into account the aggregate
structure of soot particles by introducing a preset size for a primary particle in an
agglomerate [47]. In the latest development in MOMIC a shape descriptor, which
is related to the surface fractal dimension, is used to model the aggregate structure
of soot particles using particle volume and particle surface area [9].

An alternative approach for obtaining the moments of the PSD is the quadrature
method of moments (QMOM) [73]. There the moments are calculated assuming
the PSD can be represented as weighted multi-dimensional Dirac delta function.
The weights and the nodes are then chosen to satisfy the transport equations for
the moments of the PSD. The advantage of this approach is that due to the choice
of delta functions there exists no closure problem. Rosner and co-workers use this
method to simulate uni-variate and bivariate population balances to model alumina
nanoaggregate evolution in counterflow diffusion flames. The bivariate model in-
cludes coagulation and sintering of the particles. In [98] Rosner uses a Monte Carlo
method to validate this approach and discusses the the role of mixed moments in
QMOM. Despite the success of this method Marchisio and Fox [68] point out two
main problems with QMOM. First, the solution of the transport equations for the
moments of the PSD makes it difficult to treat systems where the dispersed-phase
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velocity strongly depends on the internal coordinates and more importantly for mul-
tivariate systems the QMOM becomes numerically very challenging. The authors
present an improved approache called the ’direct quadrature method of moments’
(DQMOM) which is computationally more attractive and allows the extension to
more internal variables.

Despite all the computational advantages there are some shortcomings associated
with the method of moments. The most significant shortcoming is the non-uniqueness
of the reconstruction of the particle size distribution function, i.e. the PSDF is not
available. As a consequence, reactions that take place on the particles’ surface which
lead to decomposition of particles back to the gas phase can only incorporated with
additional model assumptions.

3.2 Sectional Methods

Sectional methods (SM) are widely used to solve population balance equations.
There the size spectrum is divided into a set of size classes. One distinguishes be-
tween zero-order and higher-order methods. Higher order methods use low order
polynomials to represent the particles within each section and can be regarded as a
simple form of finite element methods which will be discussed in the next section.
They can suffer from stability problems and artificial dispersion whereas zero-order
methods are more robust. There the computational domain is divided into rather
small intervals in which the solution is approximated by step functions. For each
interval one obtains an ordinary differential equation which is coupled to the neigh-
bors depending on the discretization scheme used. Batterham et al. [16] divide the
size domain in a geometric series of 2 and derive a numerical scheme which is mass
conserving. Hounslow, et al. [44] extend this method using a correction to conserve
particle number and particle mass. Litster et al. [62] modified this method by in-
troducing an adjustable geometrical size discretization so that higher moments and
self-preserving shape of the PSD is correctly predicted. However, there are large
numerical errors in the presence of discontinuities and surface growth. To alleviate
the problem with numerical diffusion in the presence of surface growth Kumar and
Ramkrishna [54, 55, 56] introduced a pivot technique combined with a moving grid
as well as the method of characteristics. An additional set of equations is solved
to ensure that a chosen set of properties is conserved. All these methods are com-
pared by Vanni [115] for a comprehensive set of test cases. Pope and Howard [89]
couple a sectional model to a detailed gas phase mechanism to calculate the soot
particle size distribution in a CSTR. Sectional methods have also been developed for
bivariate population balance equations. Based on a model by Koch and Friedlander
[49] Xiong and Pratsinis [128] present a two-dimensional particle size distribution
including particle volume and particle surface as internal variables. The numerical
method is based on a sectional approach which conserves volume. Nakaso et al. [79)]
also use a two-dimensional discrete-sectional representation of the size distribution
solving the aerosol general dynamic equation for chemical reaction, agglomeration,
and sintering. However, the use of these methods has been limited by their high
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computational cost. Hence in [78] a number of approximations to the detailed two-
dimensional model in [128] are made. The most important being the introduction of
constant average coagulation coefficients and employing look up tables. Also a vol-
ume correction term was introduced that ensured the conservation of both number
and mass.

An alternative to bivariate population balances with volume and surface area as
internal coordinates is to average the surface area information for each volume sec-
tion turning a bivariate population balance into two univariate population balance.
Different strategies are used to do this. Tsantilis and Pratsinis [114] proposed a
sectional method in which they assumed that particle surface area in a given sec-
tion decreases monotonically due to sintering and solved two sets of equations for
particle volume and surface area using the sectional method developed in [44]. This
method is applied in [113] to simulate titania particles and compared with the bi-
variate model. Recently, Jeong and Choi [45] used a single surface fractal dimension
to correlate particle volume and area in a given interval to simplify the bi-variate
model of Xiong and Pratsinis [128] to two sets of one-dimensional equations for
particle volume and surface area. A slightly different approach has been developed
by Park and Rogak [87] where the agglomerate volume and the number of primary
particles within a aggregate is tracked. This model considers the effect of surface
growth due to ultrafine particle deposition on the primary particle size. Wen et al.
[124] combined this with moving sections as well as the addition of new sections
for incepted particles and applied it to model soot formation in a plug flow reactor.
In each section the number of soot clusters and the number of primary particles is
stored.

3.3 Finite Element Methods

An alternative to sectional methods are the more sophisticated finite element meth-
ods. In the finite element approach the solution of the population balance is ex-
panded in a series of polynomials. For the coefficients of this expansion a set of
equations has to be solved which is obtained by inserting the expansion into the
population balance equation. Various methods can be derived by a different choice
of basis functions, nodes, and time stepping schemes. The mathematical discipline
of functional analysis provides the theoretical framework with which errors can be
estimated. This is of course a very attractive feature of finite element methods.

In the early 1990s, Deufelhard, Bornemann, and Wulkow at the ZIB in Berlin [25, 24
20] developed a discrete Galerkin h-p method using for the simulation of molecular
weight distributions in polymerization reactions. Wulkow commercialized this idea
and successfully implemented an algorithm in his software product PREDICI [126].

The structural similarities between the population balances in polymerization and
nanoparticle dynamics then led to the development of a new software package PAR-
SIVAL, a new dynamic flow sheet simulator especially suited for process units which
are modelled by population balance equations. This new approach is based on a fully
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adaptive Galerkin h-p method with an automatic error control for time discretiza-
tion as well as for the discretization of the property coordinate. The minimization
of the required number of degrees of freedom is combined with an adaptivity in
time and internal coordinate. Details of the numerical procedure are given in [127].
Recently, PARCIVAL has been extended to solve bivariate population balances but
no examples involving the simulation of nanoparticles are available in the open lit-
erature.

PARSIVAL and PREDICI are employed not only in industry but also by several
research groups. Appel and Bockhorn used the PARSIVAL to simulate soot particle
size distributions in laminar premixed flames [4]. Artelt, Schmidt, and Peukert [5, (0]
have been using PARSEVAL for modelling Si production. They incorporated the
mean value of fractal dimension into their model as well as the agglomerate collision
diameter and the number of primary particles. Not using PARSEVAL or PREDICI
but based on Wulkow’s earlier work, Vlasov, Warnatz and co-workers employed a
finite element code to simulate the formation of soot in a shock tube [119, 80].

Independent of the work that originated in Berlin, also in the early 1990s, Sabelfeld
and co-workers from Novosibirsk in Russia [101, 52] developed a finite element ap-
proach using a local set of either B-spline or Hermitian spline basis functions. For
the time stepping they employ an explicit scheme with enlarged stability region.
This method has been applied to aerosol dynamics describing in SiH, decomposi-
tion in a quartz reactor [85]. Nicmanis and Hounslow in Cambridge developed a
finite element method to calculate the steady state of a general population balance
equation [81,82]. In [83] some error estimates are derived for this method. Although
this method has not been applied to nanoparticle dynamics the authors make some
comparison to sectional methods finding the finite element approach numerically
more accurate.

More recently, Liu and Cameron [63] presented a wavelet based approach which
has been validated against analytical solutions. Wavelets are a special choice of
basis function and provide through their multiresolution properties a number of
advantages. They seem particularly suited for modelling bimodal particle size dis-
tributions. However, up to now this technique has not been used for modelling
nanoparticle population dynamics.

3.4 Monte Carlo Methods

An alternative to sectional methods for solving the population balance equation
are Monte Carlo (MC) methods. They are easy to implement, can account for
fluctuations, and can easily incorporate several internal coordinates. In the case of
nanoparticle modelling the number of particles is so large that the fluctuations in
particle numbers can be neglected.

Monte Carlo methods used to obtain approximations to the solution of equation (1)
are all generalization of the classic Marcus-Lushnikov process [70, 65]. The theory
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of probabilistic methods related to coagulation is reviewed in [2]. One of the first
application of Monte Carlo methods for the solution of the Smoluchowski equation
was presented [39]. In this very influential work Gillespie used a Direct Simulation
Monte Carlo (DSMC) method to simulate the dynamics of aerosol particles. Around
the same time Ramkrishna and co-workers presented a Monte Carlo method for
population balance equations [106, 95].

The DSMC algorithm works as follows. First, a normalization volume is chosen then
the solution to the population balance equation is approximated by N particles.
The normalization volume plays the role of a numerical approximation parameter
and determines the error between the approximation and the solution to (1). This
particle system evolves in time mimicking the physical nanoparticle system. For a
waiting time 7 nothing happens. Then one of the following events, particle inception,
coagulation/coalescence, surface growth, or sintering takes place depending on their
probability, i.e. on the rate of the corresponding processes. The particle system is
modified accordingly and the new probabilities are calculated. Then a new waiting
time is determined.

Over the last decade the DSMC has been improved by several research groups in the
engineering community. Most of these improvements can be classified as variance
reduction techniques. Matsoukas and co-workers developed a constant number al-
gorithm for coagulation [108], coagulation and fragmentation [58], and [59] contains
an extension to other source terms and discusses a variation to the constant number
approach namely a constant mass approach which is found to be superior. Maisels
et al. [67] discuss a particle doubling strategy to reduce variance for simultaneous
nucleation coagulation and surface growth.

Independently of those efforts MC methods have been developed by mathematicians
and physicists mainly to simulate problems arising in nuclear weapon development
and space programmes. In Russia probability theory was applied to aerosol transport
quite early. In the mid-eighties Sabelfeld and co-workers in Novosibirsk developed a
weighted MC method that made use of an acceptance rejection method also called
fictitious jumps to speed up the algorithm. The idea is based on the acceptance
rejection technique introduced by John von Neumann where the coagulation kernel
is replaced by a majorant. This leads to more events/jumps but some of them are
rejected to correct the overall number. This method is computationally attractive if
the majorant reduces the numerical effort when choosing the collision pairs. In [101]
Sabelfeld and co-workers publish in English a variety of techniques that significantly
improve the standard DSMC techniques. They not only use a constant majorant
kernel but also discuss a more sophisticated version of the particle doubling tech-
nique, introduce a weighted particle method for variance reduction and discuss the
Nanbu type stochastic algorithm. These methods are nothing else but a mathemat-
ically rigorous way of describing what is known in the engineering community as
time driven, event driven, constant number and constant volume methods.

Another breakthrough has been achieved at WIAS in Berlin by Wagner and his stu-
dent Andreas Eibeck. Motivated by Wagner’s work on the Boltzmann equation they

16



26080

Figure 2: Two-dimensional TEM-style projections of a sample particle taken from
premized laminar ethylene flame simulation (Provided by Neal Morgan).

refined the method of fictitious jumps by introducing more effective majorants [2§]
for the coagulation Kernel and, more importantly, managed to prove rigorously the
convergence [27,57] of their stochastic simulation procedure for (1)). This algorithm
will be called direct simulation algorithm (DSA) in this paper. Other interesting
convergence results and algorithms are published [84, 22 42, [57]. One choice of
weighted MC methods deserves more attention. Based on work by Babovsky [7]
Eibeck and Wagner developed a mass flow algorithm (MFA) [29] which is in many
cases more efficient than DSA [17] and can be generalized to include particle incep-
tion, surface growths [23] [77], and sintering [122]. Kolodko and Sabelfeld, now also
at WIAS, discuss MFA as a special case of a general class of stochastically weighted
algorithms and perform some numerical experiments to compare the different meth-
ods [51].

Monte Carlo methods can be easily extended to multiple internal coordinates and for
this reason they have been employed to simulate various systems of nanoparticles.
Akhtar et al. [1] included two internal coordiantes to describe the restructuring of the
particles and showed the time evolution of the mass fractal dimension. Tandon and
Rosner studying a very similar system using the technique of fictitious jumps with a
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constant majorant for the coagulation sintering equation [112]. Methods introduced
by Wagner have been applied to inorganic nanoparicle dynamics in [41], 40, [123] and
organic nanoparticles in [12} 107].

Monte Carlo methods have also been used to model coating of nanoparticles. For
example in [26] the enclosure of Fe,O3 by SiOs is studied. There a population
balance within a population balance is modelled. In [53] a DSMC algorithm is
applied to model the coating of particles by aggregation. However, in the paper not
much detail on the technique is given.

Monte Carlo methods have also been used to simulate the growth of single aggre-
gates and study the effect of surface growth or sintering on the fractal dimension
and other properties of the aggregate. For example, Mitchel and Frenklach [75] de-
veloped a Monte Carlo method to study soot agglomeration and surface growth of a
single particle. A similar study but for inorganic aggregates which change through
sintering has been performed in [103]. So far a full simulation of aggregation of
thousands of aggregates has to not been feasible due to excessive computational
demands. However, for the first time, in [13] efficient majorants [40] and a ballistic
MC algorithm including surface growth [76]have been combined to simulate a full
population balance of soot particles in a premixed laminar flame. Figure 2 shows
a two dimensional projection of a soot particle from a premixed laminar ethylene
flame simulation.

4 Transport of Nanoparticles

So far we have only discussed models based on the assumption that the physical
quantities do not vary in space. In practice this is of course never the case and
therefore the models need to include the transport of particles due to convection and
diffusion. Simulating reactive flows is a difficult task even if there are no particles
present. We distinguish between laminar flow and turbulent flow.

4.1 Laminar flows

Transport of nanoparticles in laminar premixed flames has been modelled using
the method of moments and sectional methods. Historically the effect of diffusion
has been neglected. For stationary premixed laminar flames the space coordinate
can be transformed into a time coordinate so that the zero-dimensional population
balance equation (1) can be solved. If transport by diffusion and thermophoretic
effects are included then additional equations that either account for the sections or
the moments of the population balance have to be solved. The first coupling of a
MOMIC approach to flow equations simulating a laminar counterflow diffusion flame
was published by Mauss et al. [72] and was subsequently used also for premixed
laminar flames in [71]. Giesen et. al. [38] coupled the equations for the moments
of the particle sizes and area to the commercial CFD package Fluent to simulate
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the formation of iron particles in a heated reactor. Marchisio et al. implemented
QMOM [69] into Fluent taking simultaneous aggregation and breakage into account.
Also the sectional approach has been coupled to flow equations by Smooke et al.
[109] to simulate the formation of soot in a co-flow ethylene diffusion flame. The
authors are using a sectional approach which is coupled to a detailed chemical model
along with a velocity-vorticity formulation including buoyancy. Sun et al. [111]
present a fully coupled two-dimensional sectional method where they model the
formation of sodium coated carbon particles in a sodium halide diffusion flame.
These simulations consume a lot of CPU time even on fast machines, in particular,
if the gas phase chemical mechanism is very large, as it is the case for combustion of
hydrocarbons leading to soot. A strategy to alleviate this problem is to decouple the
fast processes, like the fast chemical reactions in the gas phase, from the slower ones.
This was achieved for a laminar co-flow diffusion flame using a flamelet library for
the chemical species and the source term of soot volume fraction. In the simulation
of the flame only equations for soot volume fraction and mixture fraction had to be
solved along with velocity and temperature [11]. The authors report good agreement
with measurements and low CPU times.

4.2 Turbulent flows

As most industrial reactors are turbulent it is important to incorporate a model for
nanoparticle transport into a model which describes turbulent flows. Modelling of
reactive turbulent flow is a very challenging problem due to its nonlinear, chaotic
nature and the magnitude of length scales present in the flow. The books and
review articles by Fox [30] and Pope [90, 91] give an excellent treatment of the
physics of turbulent flow and models which are in use. Although it is possible
to formulate detailed models for the synthesis of nanoparticles in turbulent flames
it is necessary to simplify these models to make them computationally tractable.
The most detailed statistical approach is based on the probability density function
(PDF) transport equation from which the moments of all physical quantities can
be obtained. The PDF transport equation including an empirical model for soot
formation and a global chemistry model has been applied to turbulent flames by
Kollmann et al. [50]. Borghi et al. uses a variant of the PDF approach [102] also
with global chemistry and an empirical expression for soot volume fraction. More
recently, a PDF approach with a reduced chemical mechanism with 15 species and
144 reaction, Curl mixing model and a radiation model has been used by Lindstedt
and co-workers [61]. The particulate phase is modelled using the method of moments
including detailed surface reaction chemistry.

Almost all PDF based models use Monte Carlo techniques in conjunction with a CFD
code and therefore the computational cost is very high. An alternative and much
less computationally expensive are stochastic reactor models (SRMs) [17] which are
based on the assumption that there are no spatial gradients in the PDF of the phys-
ical quantities in the computational domain. Because of this gross simplification,
detailed reaction chemistry as well as the moments of a particle population can
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be included in SRMs making them a useful and computationally attractive tool to
simulate engines [129] and industrial carbon black reactors [14]. The alternative to
SRMs, where the information on the flow field is sacrificed in favor of the chem-
istry, is to use a very simple chemistry model and solve Reynolds or Favre averaged
transport equations using a closure model for the mean reaction rates. For exam-
ple Lockwood [64] used a global chemistry step combined with an empirical model
for soot mass fraction and soot number density employing a presumed beta PDF
closure.

Soot formation in turbulent flames, gas turbines and diesel engines has also been
modelled using a CFD flamelet approach combined with the method of moments.
Two methods are used to decouple the chemistry from the flow field. Mauss and
co-workers [, 46, [15] use flamelet libraries which contain the species information as
well as the source terms for surface growth, particle inception, and condensation.
This approach is now implemented in the commercial code STAR-CD. A computa-
tionally more demanding but more accurate approach is to transport representative
interactive flamelets (RIF) through the computational domain, average over their
properties and couple these properties back to the CFD code. This method has been
successfully used to simulate diesel engines by Pitsch et al. [88].

Nanoparticles in turbulent reactive flow have only been modelled using the method
of moments incorporated into a CFD code. However for the transport of aerosols
[100] and the transport of bubbles in an extraction column [116] a population balance
has been coupled to a CFD code using Monte Carlo methods. These methods have
good potential if it is necessary to couple population balances with several internal
coordinates to turbulent reacting flows.

5 Applications

In this section we attempt to collect a list of references which report on numerical
models for nanoparticle synthesis. Table [1/ contains a list of applications where the
numerical methods described above have been used to simulate nanoparticle popula-
tion dynamics. As throughout this paper, both organic and inorganic nanoparticles
have been treated together. In [48] a more detailed but older list on soot modelling
can be found. The entries of the table are ordered with respect to the mathematical
complexity of the model. For example, entries in the left column range from a shock
tube (ST) to real industrial furnaces, gas turbines (GT), and internal combustion
engines (ICE). It is important to note that this table is not complete and cannot
be given the vast amount of literature. However, examples for the most important
models and numerical methods are included.
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Table 1: List of applications.

’ Reactor Material | Numerical method ] Reference
[ a ] b [c[ dTel] f |
ST Soot 1 FEM 0 c d - Vlasov and Warnatz [119]
ST Soot 1 FEM 0 c d - Naydenova et al. [80]
PFR Soot 1,1 SM 0 c d - Wen et al. [124]
PFR SiHy4 1 FEM 0 nc d - Onischuk et al. [85]
PFR TiOy 1 SPM-MFA 0 nc d - Morgan et al. [77]
PFR TiOo 1, SM 0 c d - Tsantilis and Pratsinis [114]
PFR TiOy 2 SM 0 nc d - Nakaso et al. [79]
PFR TiOo 1,1 FEM 0 nc d - Schmid et al. [6]
PFR SiO3, TiOo 1,1 SM 0 nc d - Jeong and Choi [45]
CSTR Soot 1 MOMIC 0 c d - Brown et al. [21]
CSTR Soot 1 SM 0 C d - Pope and Howard [89]
PLM SiOp 1 SM 0 nc d - Lindaker et al. [60]
PLM SiO2 1 MOMIC 0 nc d - Grosschmidt et al. [41]
PLM SiO2 1 SPM-DSA 0 nc d - Grosschmidt et al. [41]
PLM SiOg 2 SPM-MFA 0 nc d - Wells et al. [123
PLM Fes O3 1 SPM-MFA 0 nc d - Morgan et al. [77]
PLM Soot 1 MOMIC 0 nc d - Frenklach and Wang [36]
PLM Soot 2 MOMIC 1 c d - Balthasar and Frenklach [9]
PLM Soot 1 MOMIC 1 c d - Appel et al. [3]
PLM Soot 1 FEM 0 nc d - Appel et al. [4]
PLM Soot 1 SPM-DSA 0 nc d - Balthasar and Kraft [12]
PLM Soot 1 SPM-DSA 0 nc d - Zhao et al. [130]
PLM Soot 2 SPM-DSA 0 nc d - Singh et al. [107]
PLM Soot/NaF 2 SM 1 c d - Sun et al. [111]
PLM SiO2 /Fes O3 2 SPM-DSA 0 nc g - Efendiev and Zachariah [26]
PLM Generic 2 SM 0 nc g Miihlenweg et al. [78]
PLM Generic 1,1 SM 3 c g CFD Miihlenweg et al. [78]
LCF Alumina 2 QMOM 2 nc g CFD Rosner and Pyykonen [99]
LCF Soot 1 MOMIC 1 c d CFD Mauss et al. [72]
LDF Soot/Sodium 2 SM 1 c g CFD Sun et al. [111]
LDF Soot 1 SM 2 c d CFD Smooke et al. [109]
LDF Soot 1 MOMIC 2 c d CFD /Flamelet Balthasar et al. [11]
TF Soot 1 MOM 2 c g PDF Kollmann et al. [50]
TF Soot 1 MOM 2 c g PDF Borghi et al. [102]
TF Soot 1 MOM 1 c T PDF Lindstedt and Louloudi [61]
TF Soot 1 MOM 2 c d CFDT /Flamelet Bai et al. [3]
ICE Soot 1 MOM 0 c d SRM Yoshihara et al. [129]
ICE Soot 1 MOM 3 c d CFDT /Flamelet Pitsch et al. [88]
ICE Soot 1 MOM 3 c d CFDT /Flamelet Karlsson et al. [46]
GT Soot 1 MOM 3 c d CFDT /Flamelet Balthasar et al. [15]
Furnace CB 1 MOM 0 c d SRM Balthasar et al. [14]
Furnace Fe 1,1 MOM 3 c g CFDT Giesen et al. [38]
Furnace CB 1 MOM 3 c g CFDT Lockwood and Niekerk [64]

Reactor: shock tube (ST), plug flow reactor (PFR), continuously stirred reactor (CSTR), premixed laminar flame (PLM), laminar
diffusion flame (LDF), laminar counter flow diffusion flames (LCF), turbulent flame (TF), internal combustion engine (ICE), gas

turbine (GT), Furnace. Numerical method: (a) internal coordinates, (b) population balance approach, (c) spatial coordinates, (d)
coupling between particulate and gas phase (c-coupled, nc-not coupled), (e) chemistry model (d-detailed, r-reduced, g-global), (f)
transport model (CFD) Navier Stokes equation, (CFDT) averaged Navier Stokes equation

6 Future Development

Despite the progress in the last few years at modelling nanoparticle flame synthesis
there is clearly a need for further development of models and numerical methods.
One important field of future research will be the chemistry of precursors to inor-
ganic nanoparticles. Homogeneous and heterogeneous chemical reactions need to
be understood to model particle formation and the change in particle size due to
chemical reactions on the particles’ surface. Currently, data on the thermodynamic
properties of relevant species and reaction mechanisms are either missing or have
high uncertainties associated with them. It will be necessary to conduct more high
quality experiments in order to determine the relevant data. However, the role of
computational chemistry will become more important as computers become more
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powerful so that thermodynamic properties and reaction kinetics can be obtained.

Another area which will certainly develop further is the coupling of population
balances to CFD codes. Here the method of moments seems to be very promising
but it is necessary to extend the method so that more internal variables can be
tracked. The direct quadrature method of moments seems to be the method of
choice at the moment. However, with the increase of computational power coupling
Monte Carlo methods to CFD seems also viable. A more fundamental problem is the
modelling of turbulent two phase flow which will remain a challenge for a long time
to come. Apart from coupling of the population balance to the continuous phase,
closure models for chemical reactions and for the turbulent transport terms need
to be found. The use of LES in conjunction with flamelets and the PDF transport
equations could be a possible but computationally expensive way forward.

An area which is very important is the development of mathematical techniques for
estimating parameters in population balance models from experimental data. Re-
cently, a weighted Monte Carlo method for the calculation of parametric derivatives
has been developed [117]. This method has a large potential to determine physical
parameters form experimental data in the area of nanoparticles.

In the scientific community only the modelling of homogeneous gas phase nanopar-
ticle synthesis has been studied. However in many applications the precursors of
the particles are sprayed into a flame where they then form particles under the ap-
propriate conditions [66]. This means that the dynamics of the droplets including
the precipitation within the droplets needs to be included in the population balance
model. Models which have been developed in the area of spray drying are a suitable
starting point to achieve this.

There exist a number of applications where nanoparticles are coated or are compos-
ites of different types of particles. Models for these processes have not been treated
in this paper but will be an important field in the future. First steps have been
taken in [IT1] where the primary size of a particle has been controlled by condens-
ing a sodium fluoride layer on the particles and thus avoiding the formation of hard
agglomerates. The authors of that paper used a sectional method with two internal
coordinates to model this process. Monte Carlo methods have been used in similar
applications [26].

7 Conclusion

In this paper we reviewed the literature of nanoparticles from flame synthesis and
discussed the models and the numerical methods used in this field. We started by
describing a general population balance model for nanoparticles in the absence of
spatial gradients of the physical quantities. The model is comprised of several sub-
models which are: a detailed homogeneous gas phase reaction mechanism, a particle
inception model, a model for particle agglomeration, surface reactions, condensa-
tion, and sintering. References for these submodels were given and their accuracy
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were discussed. Then the numerical treatment of population balances was reviewed.
The literature on the method of moments, sectional, finite element, and Monte Carlo
methods were discussed. Special attention was given to the latest developments in
the area of Monte Carlo methods. They are very promising for solving population
balance models with a very large number of particle properties. Then the coupling
of a population balance to laminar and turbulent flow was examined. The method
of moments has been identified as a suitable method to efficiently simulate laminar
flames. The method of moments is also a good choice to couple a population balance
to turbulent flow where several closure problems have to be addressed. The separa-
tion of time scales is an important technique when modelling particle synthesis in
industrial type combustion chambers. A number of examples were summarized in a
table to make the vast amount of literature more accessible. Finally, future areas of
research were discussed.

New materials and processes as well as the ever growing computational power will
turn modelling of particular processes from specialized software used in research
laboratories to a development tool for engineers in industry. This development
needs to be accounted for in the education of engineers.
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