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Abstract

An inverse problems method is applied to a two-phase liquid-liquid system

in a Rotating Disc Contactor (RDC). The dispersed phase is modelled by

population balance equations, which are solved by a Monte Carlo method

together with the equations for the parametric derivatives of the solution

with respect to the parameters of the model. The best fitting problem is

solved by a gradient search method. Since the inverse problem is ill-posed,

the iteration procedure is augmented by an appropriate termination criterion

to stabilize the calculations. The parametric derivatives of the solution can

be used to quantify the relative importance of different parameters of the

model. It is shown that the model’s parameters, which are identified on one

set of the experimental data describe adequately the behavior of the system

under another unfitted operation condition, i.e., the proposed method can be

applied to scale up problems.
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1 Introduction

The common framework for the description and analysis of two-phase systems con-
sists of mass, momentum and energy balances, which require some additional closure
relationships in order to make the equations mathematically tractable. A difficulty
arises from the relationship between the available experimental data and the in-
formation that is needed for an analytical description of multiphase flows. The
experimentally accessible quantities such as gas hold-up or interphase area charac-
terize the dispersed system as a whole, while the mathematical modelling requires
more detailed information about single droplet behavior and droplet-droplet interac-
tion. Therefore, an additional mathematical treatment is necessary to extract this
information from the measurements, i.e., the solution of the inverse problem is a
necessary part of a reliable modelling strategy.

Inverse problems for population balances have attracted much attention in recent
years [14, 3, 16, 12, 9, 18]. The solution of inverse problems is often aided by the
self-similar behavior of many practically important dispersed systems [14, 9]. In
more general cases a mathematical programming procedure has to be applied in
order to find the best fit of the experimental data. Note that inverse problems
are highly sensitive to errors in the experimental data [19]. Since the experimental
results always contain some noise, a regularization scheme has to be implemented
to make the numerical algorithm stable.

In the present study we consider liquid-liquid flow in a pilot-scale Rotating Disc
Contactor RDC [11]. The parameter fitting problem is solved by a gradient-search
algorithm [22], where a Monte Carlo method is used for the solution of the popula-
tion balance problem and the calculation of the parametric derivatives of the solu-
tion. This approach has several important advantages: (i) a Monte Carlo method
can easily be extended to a multidimensional case, (ii) gradient search is faster
than other methods of mathematical programming, (iii) an efficient regularization
scheme, namely, iterative regularization [1] can be used; and (iv) the parametric
derivatives indicate which parameters should be identified accurately and which can
be postulated approximately because of their weak effect on the simulation results.

2 Experimental

The schematic view of the RDC [11] is given in Fig.1. The device is 2200mm high
(active length is 1500mm), its internal diameter is 150mm and the diameter of the
rotating shaft is Ds = 54mm. The external diameter of the discs and the internal
diameter of the baffles are Dr = 92mm and Db = 105mm, respectively. The ex-
traction system examined is the EFCE-test-system water-toluene [10]. Before each
experiment the continuous water phase and the dispersed toluene phase have been
mutually saturated. The angular velocity of the shaft Ωs varies from 250rpm to
450rpm. The continuous phase which has higher density ρc = 0.998g/cm3 and vis-
cosity µc = 0.92g/(cm s) is supplied from above with volume flux Qc = 50−120l/hr,
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Figure 1: Schematic view of the rotating disc contactor. 1 water reservoir, 2 or-
ganic phase reservoir, 3 water overflow, 4 flow meter, 5 valve, 6 motor, 7
droplet sampling tube, 8 valve for hold-up measurement, 10 distributor,
11 pump.

i.e., the average downward velocity is less than 0.18cm/s, which is several orders of
magnitude less than the local velocities encountered in the system. The dispersed
(lighter) phase with density ρd = 0.856g/cm3 is supplied through the bottom of
the column with volume flux Qd = 50 − 120l/hr. The interphase pressure tension
is σ = 36g/s2. For varying operational conditions droplet size distributions and
hold up values (volume fraction of the dispersed phase) were measured at different
column heights. In order to measure the droplet size distributions the established
method by Pilhofer and Miller [13] was used. Samples were taken with a photoelec-
trical capillary suction probe. The hold up of the dispersed phase was determined
locally by the direct sampling method.

Initially, the volume of the droplets is distributed according to a cumulative dis-
tribution function Fin(v), as the droplets move through the RDC, the distribution
changes due to coalescence and breakage. Due to the rotation of the discs the fluid
is centrifuged outward in the radial direction and after impinging on the outer wall
is reflected inwards and forms voricity cells in each compartment [21]. The droplets
rise up but are trapped by the vorticity in each compartment which play the role of
partially mixed reactors.
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The power input in one compartment, P , is given by [11]:

P = 8.48Re−0.4
r Ω3

sD
5
r ,

where Rer is the Reynolds number of the rotor:

Rer =
ρcD

2
rΩs

µc

.

The number density of the droplets of diameter a at time t is n(t, a) and the volume
fraction of the droplets of diameter a to a + da is φ(t, a)da = an(t, a)da, while the
total volume fraction of the droplets in a compartment is Φ(t) =

∫∞
0

φ(t, ξ)dξ. Then
the equation of population balance of droplet size distribution in a compartment
reads

∂φ(t, a, c)

∂t
= B(φ, c)−D(φ, c), (1)

where B and D represent birth and death of the droplets respectively. The unknown
(generally speaking, vector) parameter c has to be extracted from the experimental
data. In the present investigation we assume that the system is in steady state and
the RDC is long enough to neglect the inlet/outlet effects. The observations show
that initially the characteristic size of the droplets decreases due to the breakage
when the droplets rise up, but in the central part of the RDC the breakage and
coalescence are mutually balanced. All the measurements presented in this article
are done in the 104th compartment (out of 176) of the RDC. Thus we apply to this
compartment the periodic boundary conditions, that is, the compartment above and
below the given one have the same droplet size distributions.

3 Two phase hydrodynamics model: breakage,

coalescence and transport

According to the common view on the fragmentation of bubbles and droplets in
turbulent flows, a droplet breaks if the dynamic pressure due to the turbulence
exceeds the pressure due to the surface tension, while the mechanisms that govern
the size distribution of the resulting daughter droplets are less clear. The surface
pressure of a drop with diameter a is τs(a) = 6σ/a. The dynamic pressure of the
turbulence at the scale of the drop τt(a) is exponentially distributed with parameter

τ̄t =
1

2
ρc∆u2(a) =

1

2
βρc(εa)2/3,

where ∆u2(a) is the characteristic velocity difference between two points separated
by distance a, the constant β = 8.2 was given by Batchelor [2] and ε is the dissipation
rate of the turbulence which is the power input P divided by the volume of the
compartment. The fraction of eddies with a dynamic pressure greater than τs(a) is

∫ ∞

τs(a)

exp

(
− τ

τ̄t

)
d

τ

τ̄t

= exp

(
−τs(a)

τ̄t

)
. (2)
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The time that is necessary for breakage can be estimated as the life time of the
turbulent vortex with size a:

1

tbreak

=

√
∆u2(a)

a
=

√
β

ε1/3

a2/3
. (3)

Combining of Eqs. (2) and (3) yields the following formula for the droplets breakage
rate [4]:

c1

√
β

ε1/3

a2/3
exp

(
−c2

σ

βρcε2/3a5/3

)
, (4)

where c1, c2 are empirical constants which have to be identified.

Although the general mechanisms of droplets breakage in a turbulent flow are known,
less information is available about the size distribution of the daughter droplets
formed upon breakage. In the present investigation we have assumed that a droplet
with volume v breaks into two droplets with volumes v′ and v−v′, respectively. The
volume v′ of the daughter droplet is generated as

v′ =
v

π
arccos(1− 2γ),

where 0 6 γ 6 1 is a uniformly distributed random variable. Note, that more
sophisticated breakage models which can be found in the literature (see, e.g., [20]
and references therein) contain more empirical constants and, therefore, require a
larger amount of the experimental data to identify them.

The coalescence rate of two droplets with volumes and diameters v1, v2, a1 and a2,
respectively, has been described in [4] as the product of the collision frequency h1,2

and efficiency of the collision λ1,2. The relations for h1,2 and λ1,2 are:

h1,2 = c3
ε1/3

1 + Φ
(v

1/3
1 + v

1/3
2 )2(v

2/9
1 + v

2/9
2 )1/2.

λ1,2 = exp

{
−c4

µcρcε

σ2(1 + Φ)3

(
a1a2

a1 + a2

)2
}

.

The residence time of a droplet of size a in the compartment is

τres(a) =
hc

v(a)
,

where hc is the height of the compartment and v(a) is the rising velocity. The
rising velocity is the sum of the relative velocity of the droplet with respect to the
continuous phase vr(a) and the (downward directed) velocity of the continuous phase
vc:

v(a) = vr(a) + vc = vr(a)− Qc

A(1− Φ)
,

where A is the cross section of the column.
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Different correlations have been proposed to model the rising velocity of the droplets
in extraction columns (see, e.g., [7, 6] and references therein). The general approach
is to relate vr(a) to the terminal velocity of a single droplet vT (a):

vr(a) = kvvT (a),

where kv is a slowing factor which takes into account the effects of the column’s
internals and flow structures inside the compartments. Generally speaking, kv is a
function of column geometry, void fraction of the dispersed phase and the rotation
velocity of the shaft. The empirical correlations for kv available in the literature
contain a large number (5− 6) of empirical parameters. Our numerical experiments
show that the available amount of experimental data does not allow for reliable
identification of so many parameters. On the other hand, a much simpler model,
namely, constant slowing factor

kv = c5

satisfactorily approximates the experimental results for the whole range of the op-
erational conditions.

The correlation which we used for vT (a) reads [11]:

vT (a) =
a

4.2

(
g
ρc − ρd

ρc

)2/3 (
ρc

µc

)1/3 (
1− Eë

6

)
,

where Eë is the Eëtvös number:

Eë =
ga2(ρc − ρd)

σ
.

4 Parameter identification

The purpose of the present work is not only to fit the experimental results, but also
to check whether the fitted model can predict the dynamics of the system under an-
other, unfitted conditions. In order to achieve this task we divided the experiments,
with operation conditions presented in Table 1, into two groups. Experiments (a)
- (c) with relatively low flow rate of the dispersed phase were used to identify the
parameters ci of the model and then the fitted model was applied to scale the system
up, namely, to predict the outcome of the experiments (d) - (f) as displayed in Fig.
3, which have higher flow rate. Note that in the steady state, multiplication of the
breakage and collision pre-exponential factors c1 and c2 by the same constant does
not change the solution. Thus in the present work we assume that c1 = 2.0 · 10−2 (a
value similar to those recommended in the literature) and identify only four param-
eters c2, ...c5. In each experiment the dispersed phase volume fraction and number
size distribution function are measured. Since the available experimental data is
quite noisy, we use it to calculate several first mass-averaged moments, which are
less affected by the experimental error. The expression for the jth moment obtained
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Table 1: Operational conditions of RDC.

Experiment Ωs (RPM) Qd (l/h) Qc (l/h)
a) 300 56 100
b) 350 56 100
c) 450 56 100
d) 250 120 100
e) 300 112 50
f) 350 120 100

in the ith experiment reads:

Dij =

∫
φi(a)ajda =

π

6

∫
ni(a)a(j+3)da, j = 0, ..., 3.

Then we solve an identification procedure, i.e., look for the set of parameters ~c∗ =
(c∗2, ...c

∗
5) that minimizes the residual between the predicted and the experimental

results:

Θ =
1

2

3∑
i=1,j=0

%j

(
Dij(~c)−Dexp

ij

Dexp
ij

)2

, (5)

where %j = 1/2j is an empirical weighting factor, i.e., hold-up has to be fitted more
accurately than the dispersion of the diameter.

We solve problem (5) by a quasi-Newtonian algorithm, where a Monte Carlo method
is used for the solution of Eq. (1) and the calculation of the gradients ∂φ/∂c. The
details of the algorithm [22] are given in the Appendix. As soon as the parametric
derivatives are known, an efficient quasi-Newtonian method can be applied to the
minimization of the residual (5). We use the following minimization algorithm, at
each iteration ~c is represented as ~c + ∆~c. Since the parameters ci have different
orders of magnitude, we rescale the increments of the parameters as ∆ci = ciβi,
where β ∼ 1. Then we expand the moments Dij as Dij(~c) = Dij(~c) + βlcl∂cl

Di(~c).

Substitution of this formula into (5) and differentiation with respect to ~β yields the
following system of linear algebraic equations with respect to the relative increment
~β:

A~β = ~b, (6)

where

alm =
3∑

i=1,j=0

%j

(
∂Dij

∂cl

∂Dij

∂cm

)
clcm

(Dexp
ij )2

(7)

and

bl =
3∑

i=1,j=0

%jcl

Dexp
ij −Dij(~c)

(Dexp
ij )2

∂Dij

∂cl

. (8)
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Figure 2: Example of the error of the solution of Eq. (6) as function of the regu-
larization parameter.

One can see that the vector ~b is nothing else but the gradient of the residual Θ with
respect to β.

Note, that the matrix A is badly scaled, thus we regularize Eq. (6) as

(sE + A)~β = ~b, (9)

where s is a parameter of regularization and E is an unit matrix. If we plot the
error due to the regularization ε = (A~β −~b)2 as a function of 1/s (see Fig. 2), we
can see that the error is low for high s and has a characteristic bend for some value
of s. The region of the bend gives a good compromise between the stability and the
precision of the computations. If the parameter of regularization s is very high, the
method, described above, becomes a gradient search method with fixed step.

The difference
(
Dexp

ij −Dij

)
in Eq. (8) contains two types of error. One is the

systematic error because the model is an approximate one and cannot reproduce
the experimental results exactly. The second error is due to the unavoidable ex-
perimental noise which is very strong in every dispersed system. Since we use a
Monte Carlo method for the solution of Eq. (1), the computed moments Dij also
contain some error. Initially, when the systematic error is larger than the statisti-
cal, the direction of the steepest descend ~b = ∇Θ is insensitive to the random noise.
Therefore, during the first few iterations of the minimization algorithm the identi-
fied parameters approach the exact values, i.e., those values which they would have
in the “no noise” case. As the residual decreases, the random component has higher
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Table 2: Identified parameters and residuals.

No. of iteration c2 c3 c4 c5 Θ ‖∇Θ‖
0 10.0 2.00e-2 1.00e3 0.300 1.85e-1 2.93e-1
1 6.87 1.43e-2 1.16e3 0.260 8.14e-2 2.18e-1
2 8.08 1.29e-2 1.29e3 0.268 6.24e-2 3.40e-2
3 9.10 1.17e-2 1.63e3 0.264 6.12e-2 3.29e-2

relative contribution to (8). Since the random components of Dexp
ij mutually cancel

during the summation over i and j, the gradient ∇Θ becomes very small. Thus, the
identified parameters start to recede from the exact ones while the residual does not
decrease significantly. At this point the calculations have to be terminated to avoid
instability [1].

The results of the calculations which are presented in Table 2 illustrate this pro-
cess. During the first two iterations, the residual decreases quickly, while at the
third iteration the gradient ∇Θ sharply decreases and the significant change of the
parameters ci does not improve the solution. Therefore, we can identify the second
iteration as the beginning of the instability and terminate the iterations here.
The calculated and measured droplets size distributions are presented in Fig. 3. As
we can see, the results of the computations approximate both the the fitted and
the unfitted experimental data with a satisfactory precision. To quantify the dif-
ference between the experimental and the numerical results we calculated the most
important characteristics of the dispersed system, namely, the volume fraction of
the droplets Φ, their mass-mean diameter

dm = Φ−1

∫
φ(a)da

and Sauter mean diameter

ds =

∫
n(a)a3da∫
n(a)a2da

,

which are presented in Table 3. The relative difference εϑ between the experimental
and the numerical values of a feature ϑ is

εϑ =
ϑnum − ϑexp

ϑexp

.

The relative error does not exceed 20%, the only exception is the experiment (e).
As one can see, the experimentally obtained volume density functions contain some
noise. From general considerations we would expect that a higher agitation rate
increases the volume fraction of the dispersed phase (one can compare the experi-
ments (a)-(c)), while Φ registered in the experiment (e) is lower than in (d), which
corresponds to the lower angular velocity of the shaft. Thus, we assume that part
of the error is due to the experimental noise, which is unavoidable in two-phase
systems.
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Figure 3: Fitted (left column) and unfitted (right column) numerical (histograms)
and experimental (points) volume density functions φ(a) (mm−1) as
function of the diameter (mm). The operational conditions are given
in Table 1.
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Table 3: Comparison of the experimental and the numerical results.

Exp. Φnum Φexp εΦ (%) dmnum dmexp εds dsnum dmexp εds (%)
a) 0.0709 0.072 -1.5 2.28 2.77 -18 2.11 2.60 -19
b) 0.0824 0.0787 5.0 2.00 2.18 -8.3 1.84 1.97 -6.6
c) 0.104 0.105 -0.95 1.62 1.44 13 1.48 1.37 8.0
d) 0.111 0.116 -4.3 3.20 3.60 -11 2.95 3.26 -9.5
e) 0.118 0.0956 23.0 2.60 2.55 2.0 2.37 2.50 -5.2
f) 0.154 0.158 -2.5 2.37 2.37 -1.3 2.15 2.16 -0.46

It is obvious that different empirical parameters have different effects on the solu-
tion of Eq. (5). Those parameters which have a weak effect on the output of the
computations cannot be identified with reasonable precision. On the other hand
these parameters do not have to be known accurately. The sensitivity analysis gives
an opportunity to identify the important and unimportant parameters and combi-
nations of them. To proceed further let us expand the residual Θ in the vicinity of
the optimal set of parameters c∗i into Taylor series:

Θ(~c) ≈ Θ(~c∗) +
1

2
(~c− ~c∗)T A(~c− ~c∗).

The matrix U of eigenvectors ~ui and the vector of corresponding eigenvalues λi of
the matrix A are

U =




0.0577 −0.7862 0.6138 −0.0433
0.0448 −0.6015 −0.7570 0.2513
−0.0035 0.1215 0.2242 0.9669
0.9973 0.0730 −0.0007 −0.0053


 (10)

and
~λT =

(
9.68 1.65 9.89e-3 3.79e-4

)
, (11)

respectively. If we denote the uncertainty of the residual as ∆Θ, the uncertainty of
the identified parameters in the direction of the eigenvector ~ui can be estimated as
∆~c ≈ (∆Θ/λ)1/2~ui. As follows from Table 2, ∆Θ can be estimated as ∆Θ ≈ 10−2

and ∆~c along the third and the forth eigenvectors is about 100% and 500%, respec-
tively. The third and forth columns of matrix U show that, while the slowing factor
kv = c5 can be identified with reasonable precision, simultaneous increase/decrease
of collision and coalescence rates or, alternatively, increase/decrease of the pre-
exponential factor c3 and the exponential coefficient c4 do not change the results of
the computations significantly.

To quantify the effect of different parameters on the solution of Eq. (5) we define
the coefficient of sensitivity Sϑ

ci
of a feature ϑ to the coefficient ci as the ratio of the

relative change of ϑ to the relative change of ci:

Sϑ
ci

=
∆ ln ϑ

∆ ln ci

.
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Table 4: Sensitivities of the volume fraction of the dispersed phase, Φ, with respect
to the corresponding parameters.

Exp. c1 c2 c3 c4 c5

a) 0.1655 -0.3814 -0.1661 0.0353 -0.9668
b) 0.2011 -0.4602 -0.2063 0.0472 -0.9381
c) 0.2133 -0.4230 -0.2387 0.0681 -0.9638
d) 0.1622 -0.3020 -0.1533 0.0368 -0.9675
e) 0.1951 -0.3790 -0.2052 0.0516 -0.8884
f) 0.2418 -0.4338 -0.2354 0.0665 -0.9338

Table 5: Sensitivities of mass-mean diameters, dm, with respect to the correspond-
ing parameters.

Exp. c1 c2 c3 c4 c5

a) -0.1580 0.3629 0.1657 -0.0356 -0.2063
b) -0.1833 0.4040 0.1971 -0.0469 -0.2259
c) -0.2020 0.4279 0.1958 -0.0552 -0.2534
d) -0.1870 0.3331 0.1779 -0.0438 -0.2054
e) -0.2368 0.4431 0.2164 -0.0568 -0.1992
f) -0.2230 0.3902 0.2171 -0.0617 -0.2604

Table 6: Sensitivities of Sauter mean diameters, ds, with respect to the correspond-
ing parameters.

Exp. c1 c2 c3 c4 c5

a) 2.0210 -4.5994 -2.0253 0.4342 -12.8457
b) 2.0745 -4.7045 -2.1192 0.4896 -10.6512
c) 1.6482 -3.1708 -1.8679 0.5426 -8.4998
d) 1.1224 -2.0520 -1.0725 0.2612 -7.9546
e) 1.2465 -2.3719 -1.3462 0.3435 -6.8062
f) 1.1236 -1.9540 -1.0990 0.3193 -5.3549
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The sensitivity coefficients for the volume fraction of the dispersed phase, mass-
mean diameter and Sauter mean diameter are given in Tables 4-6. The signs of the
computed sensitivity coefficients are intuitively clear: breakage decreases the mean
diameter of the droplets and increases the interphase area. Since smaller droplets
have lower terminal velocities, intensive breakage increases the volume fraction of
the dispersed phase. The effect of coalescence is opposite to the effect of breakage.
One can also see that the exponential coefficient c4 has significantly lower effect than
other parameters of the model and this coefficient has not to be identified with high
precision.

5 Conclusions

A Monte Carlo method was applied to a droplet’s population balance in two-phase
liquid-liquid flow. The method allows for the calculation of the derivatives of the
solution with respect to the empirical coefficients of the model. As soon as the
parametric derivatives are known an efficient gradient search method can be used
to minimize the difference between the observed and the numerical results, i.e., the
unknown empirical parameters of the model can be extracted from the available
experimental data. Iterative regularization [1] was used to stabilize the solution of
the inverse problem. Only a few iterations of the gradient algorithm are required
to identify the unknown coefficients. The coefficients identified on the basis of one
set of experimental data can be used to predict the behavior of the system under
different operation conditions. The proposed methods also provides information
about sensitivity of the solution to the parameters of the model, this information
can be used to decide which parameters have to be identified with high precision.
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A Calculation of parametric derivatives of the so-

lution of the population balance equation

To illustrate the method for calculations of parametric derivatives of the solution
of the population balance equation, consider for simplicity the space-homogeneous
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Smoluchowski coagulation equation

∂n(t, x; λ)

∂t
=

1

2

∫ x

0

K(x− x′, x′; λ)n(t, x− x′; λ)n(t, x′; λ)dx′ −
∫ ∞

0

K(x, x′; λ)n(t, x; λ)n(t, x′; λ)dx′, (A.1)

where n(t, x; λ) is the number density of particles that have mass x at the time
t. The probability that two particles with masses x and x′, respectively, coalesce
during a small time interval dt is K(x, x′; λ)dt, where λ is a parameter. In order
to proceed further let us reformulate Eq. (A.1) in terms of mass density. The
advantages of this formulation are discussed in [5, 8], note also, that particle mass
distributions encountered in technological applications more frequently than number
distributions [15, 14]. The mass density of the particles that have mass x at a time
t is m(t, x) = xn(t, x). The total mass of the system is M =

∫
mdx. In order to

rewrite the coagulation equation (A.1) in terms of mass density, we express n(t, x)
as m(t, x)/x, substitute it into (A.1) and multiply the equation by x. Note, that if
K(x, x′) = 0 for x 6 0 or x′ 6 0, the limits of integration in (A.1) can be extended
from −∞ to ∞. After some algebra we obtain [14, 5]:

∂m(t, x; λ)

∂t
=

∫
K(x− x′, x′; λ)

x′
m(t, x− x′; λ)m(t, x′; λ)dx′ −

∫
K(x, x′; λ)

x′
m(t, x; λ)m(t, x′; λ)dx′. (A.2)

The factor of 1/2 before the first integral in Eq. (A.2) disappears because coagulation
reduces the number of particles but does not affect their mass.

Consider a stochastic particle system

x1(t), ..., xN(t),

which approximates the mass density function m(t, x) as

m(t, x) ≈
N∑

n=1

wnδ(x− xn(t)), (A.3)

i.e., each particle in the above N -particle system represents a group of identical
physical particles with size xn. The total mass of the nth group is wn and the
number of particles in the group is wn/xn. Since the probability that during a small
time interval dt the kth particle will coagulate with one particle from the lth group
is K(xk, xl; λ)dt, the probability that the kth particle will coagulate with any of the
lth particles is

πkl(λ)dt =
K(xk, xl; λ)wl

xl

dt.

Thus, the coagulation rate of the kth particle is given by the summation of the above
formula over l. The formula for the total collision rate reads:

N∑

α=1,β=1

παβ(λ), (A.4)
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and the collision pair is chosen with the relative probability

πkl(λ)∑N
α=1,β=1 παβ(λ)

. (A.5)

In the present investigation we use the acceptance-rejection technique similar to that
used in [5]. Let us consider a majorant kernel and majorant weights satisfying

K(xk, xl; λ) 6 K̂(xk, xl), wl 6 ŵl, πkl(λ) 6 π̂kl = K̂(xk, xl)ŵl.

The corresponding stochastic algorithm reads:

1. Generate an exponentially distributed time increment τ with parameter

N∑

α=1,β=1

π̂αβ; (A.6)

2. Choose a pair (k, l) to collide according to the distribution

π̂kl∑N
α=1,β=1 π̂αβ

; (A.7)

3. Accept the coagulation with probability

πkl(λ)

π̂kl

; (A.8)

i.e., xk is replaced by xk + xl;

4. Or reject the coagulation and perform a fictitious jump that does not change
the size of the colliding particles with probability

1− πkl(λ)

π̂kl

. (A.9)

Notably, the number of particles in this algorithm does not change during the cal-
culations. The particle ensemble at time t is an approximation of the mass density
function m(t, x).

Now, consider a functional of the solution of Eq. (A.2):

H(t,m; λ) =

∫
m(t, x; λ)h(x)dx,

where h(x) is an integrable function of x. Substitution of Eq. (A.3) into the above
equation gives a Monte Carlo estimate of the functional H that is averaged over the
N -particle ensemble:

H(t,m; λ) ≈
N∑

n=1

wnh(xn(t)). (A.10)
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Let us consider the following formula:

H(t,m; λ + ∆λ) ≈
N∑

n=1

wn(1 + ∆λWn)h(xn(t)). (A.11)

Comparison with Eq. (A.10) reveals that

∂H(t,m; λ)

∂λ
≈

N∑
n=1

wnWnh(xn(t)) (A.12)

and
∂m(t, x; λ)

∂λ
≈

N∑
n=1

wnWnδ(x− xn(t)). (A.13)

The above formula can be interpreted as a parametric derivative (in weak sense) of
the solution of Eq. (A.2), and Wn = (∂λwn)/wn = ∂λ ln wn.
We will refer to a system with weights wn(1 + ∆λWn), kernel K(xk, xl; λ + ∆λ) and

πkl(λ + ∆λ) =
K(xk, xl; λ + ∆λ)wn(1 + ∆λWn)

xl

as the “disturbed ” system, while the original system is referred as an “undisturbed”
system. The time evolution of the disturbed system is as follows. Since Eqs. (A.6)
- (A.7) do not depend on λ, the only difference between the disturbed and undis-
turbed systems is at the acceptance-rejection step. The coagulation is accepted with
probability

πkl(λ + ∆λ)

π̂kl

, (A.14)

or rejected with probability

1− πkl(λ + ∆λ)

π̂kl

. (A.15)

After this step the average contribution of the kth particle to the functional (A.11)
reads:

h(xk + xl)wk(1 + ∆λWk)× πkl(λ + ∆λ)

π̂kl

+

h(xk)wk(1 + ∆λWk)× (1− πkl(λ + ∆λ)

π̂kl

).

Expanding the above formula with respect to ∆λ and keeping the terms up to O(∆λ)
one obtains the average contribution of the kth particle to the functional H:

h(xk + xl)wk(1 + ∆λ(Wk + ∂λ ln π))× πkl(λ)

π̂kl

+

h(xk)wk(1 + ∆λ(Wk − π
∂λ ln π

π̂ − π
))× (1− πkl(λ)

π̂kl

).

17



Comparison of the above formula with Eqs. (A.8)-(A.9) shows that the probabilities
of acceptance and rejection in the disturbed system can be the same as in the
undisturbed one, i.e., initially all factors Wk = 0, the system evolves along the
trajectory of the undisturbed system, while at each step (fictitious and non-fictitious)
the factors Wk have to be recalculated as

Wk = Wk + ∂λ ln(πkl) = Wk + ∂λ ln(K) + Wl, (A.16)

if the coagulation is accepted, or as

Wk = Wk − πkl
∂λ ln πkl

π̂kl − πkl

= Wk − wlK
∂λ ln(K) + Wl

ŵlK̂ − wlK
, (A.17)

if the coagulation is rejected. If the particle undergoes breakage or any other process
which (unlike coalescence) involves only one particle, the similar considerations yield
the following formula for recalculation of Wk. Let g(λ) be the breakage rate and
ĝ > g(λ) be a majorant. Then we accept the breakage with the probability g(λ)/ĝ
and recalculate the factor Wk as

Wk = Wk + ∂λ ln(g(λ)), (A.18)

or reject it with the probability 1− g(λ)/ĝ and recalculate the factor Wk as

Wk = Wk + ∂λ ln(1− g(λ)/ĝ) (A.19)

This method for sensitivity analysis of population balance equations has been tested
in our previous work [22] and it was shown that the estimation of the parametric
derivatives based on Eqs. (A.16), (A.17) has high dispersion. To understand the
origin of this dispersion it is enough to note that two identical particles with factors
W and −W , respectively, give zero contribution to the parametric derivative for
any (high) value of W . The numerical experiments show that the factors W can
grow infinitely which leads to unbounded dispersion of the calculated derivatives. In
order to reduce the dispersion we used an weighted particles algorithm which creates
one additional particle after each collision, then we used a clustering method [17] to
reduce the number of particles.

In the present investigation we use an alternative method which does not require the
time-consuming clustering procedure. Assume that we do not need to calculate the
parametric derivative of the solution ∂m(x)/∂λ but only derivatives of some first
moments of the particle size distribution: total mass, mean diameter, etc. Define a
set of functions h0(x), h1(x),... hK(x) (for example, hk(x) = xk/3). Substitution of
these functions into Eq. (A.12) yields a system of linear equations with respect to
Wn:

N∑
n=1

{hk(xn)wn}Wn =
∂Hk(m; λ)

∂λ
. (A.20)

The solution of the problem

min
Wn

1

2

N∑
n=1

W 2
n (A.21)
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which satisfies Eq. (A.20) does not change the parametric derivatives ∂Hk/∂λ of
the first K moments and reduces the scatter of the factors Wn.

Finally, the algorithm for calculation of the parametric derivatives is as follows. We
simulate the coagulation process according to Eqs. (A.6) - (A.9) and recalculate Wn

according to Eqs. (A.16) - (A.19). When the scatter of the factors Wn becomes too
high we solve the problem (A.20) - (A.21). Since we do not need an exact minimum
of (A.21), 2 − 4 iterations of a projective gradient method are enough to stabilize
the computations. Note that this procedure is not time-consuming and the required
CPU time scales almost linearly with the number of the preserved moments K. The
computational experiments with K spans from 6 to 24 give very close results. All
the results presented in this work are obtained with K = 16.

References

[1] O.M. Alifanov, E.A. Artyukhin, and S.V. Rumyantsev. Extreme Methods for
Solving Ill-Posed Problems with Applications to Inverse Problems. Begell House,
1995.

[2] G. K. Batchelor. The theory of homogeneous turbulence. Cambridge University
Press, 1956.

[3] D. Colella, D. Vinci, R. Bagatin, M. Masi, and E.A Bakr. A study on coales-
cence and breakage mechanisms in three different bubble columns. Chemical
Engineering Sci., 54(21):4767 – 4777, 1999.

[4] C. A. Coulaloglou and C. Tsouris. Description of interaction processes in ag-
itated liquid-liquid dispersions. Chemical Engineering Sci., 32:1289 – 1297,
1977.

[5] A. Eibeck and W. Wagner. Stochastic particle approximation for
Smoluchovski’s coagulation equation. Ann. Appl. Probab., 11:1137–1165, 2001.

[6] J.S. Ghalehchian and M.J. Slater. A possible approach to improving rotat-
ing disc contactor design accounting for drop breakage and mass transfer with
contamination. Chem. Eng. J., 75:131 – 144, 1999.

[7] J.C. Godfrey and M.J. Slater. Slip velocity relationships for liquidliquid extrac-
tion columns. Trans. I. Chem. E., 69:130 – 141, 1991.

[8] M. Goodson and M. Kraft. Simulation of coalescence and breakage: an assess-
ment of two stochastic methods suitable for simulating liquidliquid extraction.
Chemical Engineering Sci., 59:3865 – 3881, 2004.

[9] M. J. Hounslow and X. Ni. Population balance modelling of droplet coales-
cence and break-up in an oscillatory baffled reactor. Chemical Engineering
Sci., 59:819 – 828, 2004.

19
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