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Abstract

In this paper we find numerical solutions to a generalization of Smolu-
chowski’s coagulation equation using a bivariate mass-flow stochastic algo-
rithm. Specifically we simulate the growth and morphology of nanoparticles
in premixed laminar flames. The our model includes terms for particle incep-
tion, surface growth and particle sintering. A test simulation was implemented
to examine the stochastic algorithm under various simple starting conditions.
The production of SiO2 from a low-pressure premixed laminar flame doped
with SiH4 was investigated. A free-molecular kernel was used for the co-
agulation terms and a grain boundary diffusion model implemented for the
particle sintering. The flame itself was simulated using a skeletal H2/O2/Ar
mechanism including the SiH4 oxidation reactions. We were able to simulate
the transition from a bimodal particle size distribution to a unimodal particle
size distribution for the silica particles produced, and predict a value for an
effective fractal dimension of silica particles in a flame close to those reported
in the experimental literature.
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1 Introduction

The use of nano particles in industry is becoming more widespread since the physical
properties they possess may be different from those of the bulk material. As such,
the ability to model the particle size distribution (PSD) is extremely important as
the size and shape of the particles may affect the physical attributes of the final
product. The use of population balance models to study nano particle growth has
become more established, especially when studying metal oxides formed in flames
[1, 2]. These models of particle systems tend to focus on coagulation and particle
inception as this keeps the simulation simple, however these mechanisms alone may
not be sufficient to describe the full particle dynamics of the system accurately.
Most previous simulations have only tracked particle mass. Additional mechanisms,
for example sintering, can be incorporated into the simulation in order to describe
the surface area evolution.

Finite element methods have been used to generate numerical solutions to the
sintering-coagulation equation [3] but the exceedingly high computational expense
of this technique makes it grossly impractical as a simulation method. Stochastic
particle methods allow us to simulate this bivariate distribution without such com-
putational expense [4, 5, 6] and allow us to extend the model to include other particle
growth mechanisms. We add a term to the Smoluchowski coagulation equation that
describes the deposition of new mass onto the surface of particles. This addition,
along with particle sintering represents a more accurate model than inception and
coagulation alone.

In this paper we make use of a mass-flow algorithm [7, 8, 9] to study the evolu-
tion of the particle system over time. To derive the mass-flow algorithm, we write
Smoluchowski’s equation in terms of the mass density rather than the number den-
sity. Previous studies [5, 8] have shown that the mass-flow algorithm offers some
computational advantages over the direct simulation algorithm (Marcus-Lushnikov
process; [10, 11]).

This paper is arranged as follows. In section 2 we introduce an extended form
of Smoluchowski’s coagulation equation and discuss the sintering term. Section 3
introduces a simple simulation to test the algorithm and in section 4 we simulate a
flame producing silica particles.

2 A Generalization of Smoluchowski’s Coagula-

tion Equation

In order to model the growth and morphology of the particles within the system,
we extend Smoluchowski’s coagulation equation to include extra terms for particle
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inception, surface growth and particle sintering:
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with the initial condition n0(v, a). The number of particles of volume, v, and area,
a, at a time, t, is denoted by nt(v, a). The first term on the right hand side of
equation (1) describes the loss of surface area of a particle due to sintering. The
parameter t0 is the characteristic sintering time and takes the form of a function of
particle diameter dp and temperature T . The zero subscript denotes the smallest
particle that can exist in the system. The second and third terms describe how
the particles in the system coagulate together. The coagulation kernel, βv,v′(a, a′)
determines the probability with which any two particles will coagulate. The fourth
term describes a source of new particles into the system. The rate at which this
occurs, I incep comes from, in the case of flames, the chemical rate of production of
the simulated species. Finally the fifth term describes how particles grow by the
deposition of new mass directly onto the surface of an existing particle. Again, in
the case of flames, the rate of this process, Isurf comes from the gas phase kinetics.

There are many mechanisms to describe particle sintering and its rate. In this
paper, we make use of a boundary diffusion model that calculates the characteristic
sintering time as

t0 = AsintTd4
p exp

(
Bsint

T

)
, (2)

where Asint and Bsint are species-dependent constants, T is the temperature and dp

the particle diameter. The calculation of particle diameter brings its own problems.
In some papers, a very simple calculation of diameter is performed such that dp =
6v/a. This formula works well for a spherical particle, but has the unfortunate
consequence that a partially sintered particle has a calculated diameter less than
that of a fully sintered one. This is counter intuitive. In this paper we make use of
the collision cross-section to determine the particle diameter.
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Figure 1: A schematic representation of the collision cross section.

Consider two spheres of diameter 1 and r (r 6 1) that are touching (fig 1). The
projected view is the union of two discs. Let us call the projected distance between
the centres of the discs, D = OB. The cross sectional ares is
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In the case where r 6 1−D, the smaller sphere is completely obscured by the larger.
In this case, A(r,D) = π.

The point of contact between the spheres lies uniformly on the unit sphere. Let
us use spherical polar coordinates θ, φ with the z-axis along the line of projection.
The apparent distance between the spheres is D = (1 + r) sin θ. Thus the average
collision cross-section Σ(r) is
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This is not simple to compute. However the r = 1 case is done easily, corresponding
to the coagulation of identical spherical particles. In this case D = 2r sin θ = 2d1 =
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2d2. We have

Σ(1) =

∫ π
2
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The collision length ā is determined by Σ = πā2 and is therefore given by ā =
√

1 + 8
3π

.

We remark that 2
1
3 < ā < 2

1
2 which is to be expected, since the smaller bound cor-

responds to a spherical particle with the same total volume and the upper bound
corresponds to the sum of the areas of the two individual particles (so no account
is taken for one particle being partially obscured by the other).

Next we try to approximate ā(r) by νασβ where ν is the (scaled) volume and σ is the
scaled surface area. For the coagulated particle we have ν = 1 + r3 and σ = 1 + r2.
We impose the condition that ā(1) = νασβ as a constraint on α and β, leading to
2α+β = ā. We also assume for dimensional reasons that 3α + 2β = 1. Therefore
2(1+β)/3 = ā leading to formulae for α and β,
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Thus the sintering time now becomes

t0 = AsintTv4αa4β exp

(
Bsint

T

)
. (12)

We use a bivariate form of the free molecular kernel to simulate particle collisions
introduced by [12]. The kernel is given by

βv,v′(a, a′) =

(
kTa2

0

2πm0

) 1
2

K(x, x′), (13)

where k is Boltzmann’s constant, m0 is the mass of a primary particle, x = (ν, σ) =
(v/v0, a/a0) and K(x, x′) is a dimensionless function given by

K(x, x′) =

(
1
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) 1
2 [
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2 + (s(ν ′)σ′)

1
2
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. (14)

The function s(ν) is the surface area accessability function and is given by

s(ν) = λ1ν
γ−1 + λ2;

λ1 = 21−γ(DS − 2);
λ2 = 3−DS, (15)

where DS ∈ [2, 3] is a surface fractal dimension and γ ∈ [0, 1] is the surface area
scaling factor.
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3 The Test Simulations

In order to produce numerical solutions to the model, we made use of a mass-flow
stochastic algorithm developed in [5, 13]. This Monte Carlo algorithm has improved
scaling properties compared to that developed by Tandon and Rosner [4], as the
number of stochastic particles increases.

Test simulations were performed to show how the model deals with particle incep-
tion, coagulation, surface growth and sintering. Initially we set the surface growth
rate to be constant at a value of 0.1 per unit area per unit time, and an initial con-
centration of unity. The parameters DS and γ were set to 2.1 and 0.8 respectively.
The initial number of stochastic particles was 8192 and the results averaged over 20
runs.
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Figure 2: Total surface area for the first test simulation.

Figure 2 shows the evolution of the total area of a system of particles undergoing
coagulation, sintering and surface growth. Note that the initial surface growth that
occurs in the system (t 6 0.1) is quickly suppressed as sintering becomes more
prevalent. At around t = 3.5 the rate of sintering has slowed and the rate of surface
growth has become faster due to the increased average size of the particles.

The second test simulation included a particle source rate of 0.1 per unit volume
per unit time, in addition to surface growth, coagulation and sintering. Particle size
distributions for this system at various times are shown in Fig. 3.
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t = 1.25 t = 2.5

t = 3.75

Figure 3: Evolution of the PSD at various times

One can see from Fig. 3 that the initial peak of small particles falls off rapidly to
give a broadening of the distribution. Sintering can clearly be seen as a ridge in the
PSD moving across the plot from left to right as the surface area is reduced. Initially
the particles lie on the line of maximum surface area to the left of the diagrams.

4 Simulation of Silica Formation

We simulated the formation of SiO2 particles from a low-pressure premixed lami-
nar H2/O2/Ar flame doped with SiH4. The chemistry of the flame was calculated
using reactions for an H2/O2/Ar flame combined with a skeletal mechanism for the
oxidation of SiH4 as described in [1]. The flame was simulated using a 1D laminar
flame code [14] with information about the flame temperature and rate of produc-
tion of SiO2 obtained from PREMIX. The flame was burnt at an initial velocity of
144 cm/s at a pressure of 27.5 mbar. The ratio of H2/O2 was 1.69 and the ratio of
Ar/(H2 + O2) was 1.04. A linearly decreasing temperature gradient of −80 K/cm
was assumed in accordance with previous simulations [1].
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Figure 4: Flame parameters calculated by PREMIX.

This data was used as an input for the stochastic simulation. We used 65536 stochas-
tic particles in the simulation and set the initial concentration of particles in the
system to zero. The simulation took approximately 10 minutes to complete during
which time ∼ 108 jump events were performed.
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Figure 5: Volume PSD of silica at various times.

Figure 5 shows the evolution of the volume distribution of the silica particles. At
early times (t = 0.0063 s) a bimodal distribution is formed. The first peak is due to
small particles from the inception phase still being present in large numbers, whilst
the second peak is due to larger coalesced particles. Advancing forward through
time, the distribution broadens and becomes unimodal as the smaller particles co-
agulate with the larger ones.
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Figure 6: Time evolution of average particle diameter.

Figure 6 shows that the average particle diameter, as calculated using the method
described in section 2, rapidly increases at the start of the flame and slows towards
the end as the temperature decreases. Finally, Fig. 7 shows to what extent the
particles have sintered within the flame. At very early times (Fig. 7(a)) Nearly all
the particles lie on the line of complete sintering where a ∝ v2/3. As the particles
progress further through the flame where the temperature drops, the larger particles
start to move from the line of complete coalescence (Figs 7(b) and 7(c)). This be-
haviour is explained by the form of the characteristic sintering time, which increases
with particle diameter to the fourth power and is proportional to temperature. At
the end of the flame where the temperature has fallen to 503K we see that the
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particles lie mainly off the line of complete coalescence. If we put a line of best fit
through the data at 503K we obtain an average value for the fractal dimension of
the particles as calculated from

Df =
2 log(v/v0)

log(a/a0)
, (16)

of Df = 2.57 which is consistent with experimental observations [1].
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(a) t = 0.0117 s, T = 1358 K
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(b) t = 0.0264 s, T = 1026K
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(c) t = 0.0351 s, T = 730K
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Figure 7: Surface area vs volume at various temperatures within the flame.
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5 Conclusions

A generalization of Smoluchowski’s coagulation equation was applied to the growth
of nanoparticles in premixed laminar flames. A stochastic mass-flow algorithm was
used to compute numerical solutions to this model. The algorithm was then used
to simulate a premixed H2/O2/Ar flame doped with SiH4 to produce silica. The
PSD of the particles shows a bimodal distribution at early times that changes into a
unimodal distribution at later times. The rate of sintering was such that nearly all
particles were fully sintered in the flame. In addition to this a value for the fractal
dimension, Df , of the particles was calculated to be 2.57 which is consistent with
experimental data.
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