
An agent composition framework for the J-Park Simulator - a knowledge graph for the process industry

Preprint Cambridge Centre for Computational Chemical Engineering ISSN 1473 – 4273

An agent composition framework for the J-Park
Simulator - a knowledge graph for the process

industry

Xiaochi Zhou1, Andreas Eibeck1,

Mei Qi Lim1, Nenad B. Krdzavac1, Markus Kraft1,2,3

released: 13 May 2019

1 CARES
Cambridge Centre for Advanced Research and
Education in Singapore,
1 Create Way,
CREATE Tower, #05-05,
Singapore, 138602

2 University of Cambridge,
Department of Chemical Engineering
and Biotechnology,
Philippa Fawcett Drive ,
Cambridge, CB3 0AS
United Kingdom
E-mail: mk306@cam.ac.uk

3 Nanyang Technological University,
School of Chemical and
Biomedical Engineering,
62 Nanyang Drive,
Singapore,
637459

Preprint No. 227

Keywords: Process industry, Knowledge graph, Semantic Web, Semantic Web Service Composition, Agent,
Cross-domain, Linked Data

mailto:mk306@cam.ac.uk

Edited by

CoMo
GROUP

Computational Modelling Group
Department of Chemical Engineering and Biotechnology
University of Cambridge
West Cambridge Site
Philippa Fawcett Drive
Cambridge CB3 0AS
United Kingdom

Fax: + 44 (0)1223 334796
E-Mail: c4e@cam.ac.uk
World Wide Web: http://como.cheng.cam.ac.uk/

mailto:c4e@cam.ac.uk
http://como.cheng.cam.ac.uk/

Abstract

Digital twins, Industry 4.0 and Industrial Internet of Things are becoming ever more
important in the process industry. The Semantic Web, linked data, knowledge graphs
and web services/agents are key technologies for implementing the above concepts.
In this paper, we present a comprehensive semantic agent composition framework.
It enables automatic agent discovery and composition to generate cross-domain ap-
plications. This framework is based on a light-weight agent ontology, OntoAgent,
which is an adaptation of the Minimal Service Model (MSM) ontology. The MSM
ontology was extended with grounding components to support the execution of an
agent while keeping the compatibility with other existing web service description
standards and extensibility. We illustrate how the comprehensive agent composi-
tion framework can be integrated into the J-Park Simulator (JPS) knowledge graph,
for the automatic creation of a composite agent that simulates the dispersion of the
emissions of a power plant within a selected spatial area.

Highlights

• The light-weight ontology, OntoAgent, has been developed based on MSM
ontology.

• An agent composition framework based on OntoAgent has been developed.

• A cross-domain air pollution scenario is used to illustrate the agent composi-
tion framework.

1

Contents

1 Introduction 3

2 J-Park Simulator 6

3 OntoAgent 7

4 The agent composition framework 9

4.1 The composition agent . 10

4.2 The execution agent . 12

5 Use case 14

5.1 Agents in the JPS knowledge graph . 14

5.2 Demonstration . 15

6 Limitations and Outlook 18

7 Conclusion 19

8 Acknowledgements 19

A Appendices 20

A.1 Graph-based agent composition algorithm 20

A.2 Agent discovery function implementation in Java 20

A.3 Agent execution function implementation in Java 21

A.4 Domain and range restrictions on new roles of OntoAgent 25

A.5 Flowchart of agent discovery . 26

A.6 Flowchart of agent execution . 27

References 28

2

1 Introduction

An eco-industrial park (EIP) [27] aims at an industrial symbiosis that promises improve-
ment of energy and resource efficiency as well as reduction of environmental impact.
Numerous studies have been carried out focusing on resource networks within a single
domain such as water [17, 18, 36], energy [1, 22, 39], and material [3, 10, 34]. However,
in an EIP, symbiotic relationships do not only exist within single domain network as re-
source networks and entities across domains are intertwined and affect each other. In order
to achieve Pareto optimality among different domains, all domains need to be taken into
consideration simultaneously. Consequently, tools to simulate, analyze, optimize, and co-
ordinate heterogeneous components across multiple domains (e.g. to simulate a chemical
plant’s material production and consumption, and analyse its effect on the energy net-
work) are necessary. The establishment of such tools clearly requires the integration of
data and software tools from relevant domains. However, the integration is challenging
due to the friction of communication between different domains. For example, the term
"vessel" in the chemical engineering domain usually means pressurized container and yet
refers to a large boat in the transportation domain. Besides the communication friction,
due to the heterogeneity of data formats and conventions across domains, there is also the
lack of a uniform access to data.

The concept of a cross-domain knowledge graph has been identified as one of the solutions
to alleviate the communication friction and to provide uniform data access. The knowl-
edge graph is essentially an interconnected collection of terminologies and statements
across domains [4]. It stores and connects data semantically, i.e. each distinct concept,
instance, and relation is described by an unique Uniform Resource Identifier (URI)1 (e.g.
ontocape:Vessel2 for pressurized container and dbr:Vessel_(boat)3 for boat). The unique
mappings between URIs and concepts or instances lead to explicitness and disambigua-
tion of information. A collection of explicit declaration of concepts is referred to as an
ontology [35], and the set of tools and methods to process and utilize such semantic data
is regarded as semantic technology. The disambiguation makes the information in the
knowledge graph formal, i.e machine-readable. Therefore, the semantic knowledge graph
could avoid the friction of cross-domain communication with the unambiguity of infor-
mation. Meanwhile, the formality of data enables uniform access to them through queries
constructed in query languages such as SPARQL4. We have already implemented the J-
Park Simulator (JPS), a cross-domain knowledge graph for the process industry, which
includes ontologies in domains such as chemical process engineering, chemical kinetics,
internal combustion engines, etc.[4].

The dynamic nature of an eco-industrial park, requires the knowledge graph describing
such entities to cope with this aspect. Consequently, the knowledge graph must use com-
ponents that reflect and/or effect changes in the graph over time, e.g. constantly update
data and maintain the knowledge graph structure. In this paper, we refer to these compo-

1https://www.w3.org/Addressing/URL/uri-spec.html
2http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_realization

/plant_equipment/apparatus.owl#Vessel
3http://dbpedia.org/resource/Vessel_(boat)
4https://www.w3.org/TR/rdf-sparql-query/

3

nents as agents. We also defined the term "agent" in this paper to refer to applications and
web services that utilize semantic technologies and are accessible on World Wide Web.
Currently, there is a number of agents updating the JPS knowledge graph. For a cross-
domain knowledge graph where the contributors typically come from diverse professional
backgrounds, it is a good strategy to lower the barrier for creating new agents in order to
encourage its adoption and curb its investment cost.

Furthermore, in cross-domain scenarios, there will be simulation or optimization tasks
that require the consecutive execution of multiple agents, for example, the output of an
agent that simulates engine emissions is used as the input of an agent that models the
dispersion profile of the emission stream. In order to fulfill complex objectives such as
control and optimization, agents must be able to communicate and hence coordinate with
each other. At the moment, the coordination between the agents for the JPS knowledge
graph is hard-coded by developers. The hard-coded coordination is time-consuming to
implement and lacks flexibility in a dynamic environment. Semantic technologies have
been long applied for automatic coordination between agents [31], and such coordination
is also known as semantic-based agent5 composition. Semantic-based agent composition
could automatically interpret the functions and interfaces of agents, and plan their coor-
dination for achieving complex goals, on top of the machine-readable agent descriptions.
Moreover, a complete automated agent5 composition process also includes an execution
phase, in order to put the coordination plan in use [31].

The semantic description of agents5 is necessary for semantic-based agent5 discovery,
composition, and automated execution. Meanwhile, with the semantic descriptions, the
agents could be also represented in the knowledge graph so that the knowledge graph has
an uniform management for both data and agents. To model the descriptions, an agent5

ontology is necessary. Two most prevailing agent5 ontologies are Web Service Model-
ing Ontology (WSMO) [6] and OWL-S [19], which are well-established and expressive,
coming with software tools for agent5 discovery, composition, and execution. WSMO de-
scribes an agent’s capability, non-functional properties, interface and goal. OWL-S [19]
which is built on the Web Ontology Language (OWL), contains components including
profile, processes, and groundings. In the context of agent ontologies, grounding is the
linking between semantic and syntactic information. Typically, the serialization of an
HTTP request follows a certain syntactic format; therefore, a mapping is needed to con-
vert the semantic data into such a syntactic format. Such a mapping is an example of the
grounding. Although these two models could comprehensively describe agents5 and their
goals, they are not favored by the knowledge graph due to their heavy weight. Clearly, an
increased model complexity increases the cost for developers to adopt.

The semantic community have created some lightweight solutions. For example, the agent
description of Semantic Annotations for WSDL and XML Schema (SAWSDL) [15] is
minimal i.e. it does not directly define how agents are described, and only annotates
components in a Web Services Description Language (WSDL) description. WSDL is
an XML-based interface description language to describe agents on a syntactic level6. In
other words, SAWSDL depends on WSDL for execution hence the communication is stan-

5"agent" here refers to "web service"; however, in this paper, the two terms are interchangeable. For the
consistency, "web service" is replaced by "agent"

6https://www.w3.org/TR/2001/NOTE-wsdl-20010315

4

dard specific. WSMO-lite [14] is another minimized agent ontology to annotate WSDL
descriptions. Compared to SAWSDL, WSMO-lite provides richer information outside the
WSDL but its grounding is still restricted to WSDL. Another lightweight agent ontology
is hRESTs [16], which describes RESTful agents5, i.e. agents5 that follow the Represen-
tational State Transfer (REST) architecture style [7]. Minimal Service Model (MSM) is
an agent ontology that is not specific for any communication standards. MSM [28] only
captures the common components of the mainstream models above-mentioned; this on-
tology could be extended with other ontologies for additional description, e.g. including
the information for invocation. The purpose of this design is to maintain the compatibility
with existing standards such as WSDL, WSMO, and OWL-S. However, MSM’s ground-
ing mechanisms do not fit the agents which have adopted the lightweight communication
standard. Therefore, a lightweight agent ontology suitable for describing agents in the
above-mentioned knowledge graph is currently absent.

An agent5 composition framework is required for implementing the agent composition
and discovery. However, most of the existing agent composition frameworks are designed
for heavy agent ontologies such as WSMO and OWL-S. For example, SOA4All [20] pro-
posed a framework for working with DAML-S, which was later superseded by OWL-S.
Sirin et al. [33] developed a framework with the hierarchical task network (HTN) plan-
ner SHOP2 [24]. It works with agents described by OWL-S. The composition frame-
work OWLS-XPlan [12] also works with OWL-S. Fujii and Suda [8] introduced a frame-
work that uses Component service Model with Semantics (CosMoS), as an agent5 model,
which is also not considered lightweight. To the best of our knowledge, Rodriguez-Mier
et al. [30] developed the only known composition framework based on a lightweight on-
tology (MSM). However, this framework does not include the execution function, which
is vital for completing the composition process. Therefore, a complete agent composition
framework with the execution function and compatible with a lightweight agent ontology
is currently absent as well.

The purpose of this paper is to introduce and describe the implementation of a compre-
hensive agent composition framework that leverages semantic technologies for automatic
agent discovery and composition to generate cross-domain application. The paper in-
cludes the following:

• The introduction and description of OntoAgent, an ontology for describing agents,
which is an extension of MSM. With its light weight, OntoAgent lowers the cost of
creating agent instances in the cross-domain knowledge graph.

• The introduction and description of the agent composition framework which is
based on OntoAgent, and consists of agent composition, discovery, and execu-
tion functionalities. Such a framework enables the knowledge graph to coordinate
agents and execute them automatically. To the best of our knowledge, this is the
first agent composition framework working with a lightweight agent ontology that
supports execution functionality.

• The illustration of the unique agent composition framework in the context of the
JPS along with a cross-domain air pollution scenario.

The remaining parts are structured as follows. Section 2 gives an overview of the JPS,

5

which is the research platform for implementing the agent composition framework. Sec-
tion 3 describes the development of OntoAgent. Section 4 presents the implementation
of the unique agent composition framework. Section 5 illustrates how the agent com-
position framework can operate in the JPS for the automatic creation of a cross-domain
composite agent that simulates the dispersion profile for a power plant within a selected
area. Section 6 discusses the limitation of the current work and provides suggestions for
improvement. Section 7 outlines the conclusions for this paper.

2 J-Park Simulator

The JPS is a platform where components across domains share a common ground for data
management and semantic interoperability between each other.

Ontologies play pivotal roles in the JPS project. Ontologies from different domains of-
fer formal definition of concepts and relations in a certain field, the JPS project has been
developing and integrating the ontologies systematically. For example, OntoCAPE [21]
is a large-scale ontology for chemical process engineering, and it is the starting ontol-
ogy for JPS. OntoCAPE is then extended into OntoEIP [40], describing the eco-industrial
parks and their networks. Meanwhile, OntoCityGML, which is a semantic upgrade of
CityGML [9], is integrated to describe 3D models and other properties of buildings and
landscapes. OntoKin [5] is an ontology developed for chemical kinetics and provides
specification for chemical species and mechanisms. OntoEngine7 specializes in describ-
ing the operation of internal combustion engines, it specifies fuel used by the engine as
well as the corresponding combustion chemistry model.

The JPS builds a cross-domain knowledge graph following the linked data principle, so
that it could be deployed in a distributed fashion across the Web. Each host in this dis-
tributed structure stores a part of the knowledge graph and works as an independent au-
thority to control its own data. Moreover, agents update the structure and data of the
knowledge graph to reflect the dynamic nature of systems such as eco-industrial park or
smart grid.

Before the outcome of this paper is implemented in the JPS, the agents in the JPS were
simply software tools represented as agents5. To lower the barrier for creating agents,
the JPS agents use a lightweight communication standard that constructs HTTP requests
with JSON objects in key-value pairs. Due to the absence of semantic description, the
agents were not part of the knowledge graph and the coordination between agents was
hard-coded by developers. Figure 1 illustrates the components of the JPS so far.

This paper extends the JPS by integrating agent ontology to describe agents as well as
implementing the composition framework to automate the coordination between them.

6

Figure 1: The JPS knowledge graph and agents: the original status of the JPS is that
the knowledge graph (green layer) contains the terminologies (blue boxes) and
instances (light green nodes) of domain ontologies. On the agent layer (red
layer), the agents (red triangles) read data from the knowledge graph and up-
date it (dotted arrows). The agents cooperate with each other as well (solid
arrows).

3 OntoAgent

To better fit the specific requirements for the agent ontology in the context of a knowledge
graph, we customized the MSM ontology into OntoAgent. The role of OntoAgent is
to provide machine-readable descriptions of agents for automated operation of agents,
including agent discovery, composition, and execution on top of an underlying cross-
domain knowledge graph.

OntoAgent utilizes the skeleton of the MSM ontology and adds OWL classes and proper-
ties for grounding to support the invocation of the agents as part of an agent composition
framework. The extensions and their purposes are described in Table 1 while Figure 2
illustrates the structure of OntoAgent. Appendix A.4 provides detailed information on the
property restrictions of OntoAgent.

7http://www.theworldavatar.com/ontology/ontoengine/OntoEngine.owl

7

Table 1: Extension made upon the MSM agent ontology and their descriptions

OWL Class Description

ontoagent:Invocation To be the container of the invocation information.
OntoAgent may integrate more information
for invocation, this class provides clear separation
of such information.

OWL Properties Description

ontoagent:hasInvocation To connect the invocation information to the operations.

ontoagent:hasHttpUrl To define the HTTP address for invoking a
certain service of an agent.

ontoagent:hasKey To define the name of the key in the key-value pair
that contains the input JSON Object in the HTTP
requests

ontoagent:isArray To declare whether the I/O parameter
is an array of class defined by ontoagent:hasType.

ontoagent:hasType To directly connect the I/O parameters
with ontology classes.

The intention of adding grounding elements to MSM is not to create yet another ground-
ing standard but to capture the most common and fundamental elements of grounding
shared by the mainstream standards. Such a design will enable the OntoAgent to sup-
port the execution of agents in the JPS cross-domain knowledge graph while keeping the
extensibility and flexibility of MSM.

One key question for a minimal agent ontology is whether it provides sufficient and nec-
essary information to support each phase of the agent composition process, including
agent discovery, composition, and execution. OntoAgent has inherited the IO (Input and
Output) model from MSM instead of the IOPE (Input, Output, Precondition, and Effect)
model used by ontologies such as OWL-S [19], i.e. OntoAgent mainly describes the in-
put and output parameters of agents to represent them. Arguably, due to the reduction of
precondition and effects, the model loses its expressiveness for describing activities such
as booking a ticket, where the criteria of invoking an agent largely depend on the precon-
dition of this agent, which is affected by the effects of the preceding agents. However, in
our context, the majority of tasks focus on simulations and optimization, which are data-
centric, in the sense that whether an agent meets its invocation requirement depends on the
inputs it receives. In a data-centric scenario, the input/output (I/O) parameters of an agent
are sufficient to define the function of an agent hence support function-based discovery
and composition in most of the cases. The outcome from Rodriguez-Mier et al. [30] also
supports this argument.

8

Figure 2: The design of OntoAgent: the ovals denote the classes and the arrows with
annotation denote properties, of OntoAgent. The components within the dotted
box are the native MSM classes and relations, while those outside the box, with
the name-space ontoagent are newly defined in OntoAgent.

However, it is evident that the description of I/O data types could not differentiate agents
such as division agent and multiplication agent which have the same data flow but different
purposes. Nevertheless, in a cross-domain environment, where the tasks for agents are
very specific (e.g. to calculate the emission of an internal combustion engine), agents
with identical data-flow are rare. In future, concept specifications of finer granularity (i.e.
finer subdivision of concepts) could alleviate the problem.

For the execution of an agent, the basic grounding information provides the most essential
information for invocation: where to send the HTTP request and how to structure the
input. Such a grounding enables the implementation of an execution agent that is standard
neutral but potentially compatible with mainstream standards, in the context of the cross-
domain knowledge graph. The detail of the invocation mechanism will be discussed in
Section 4.2.

4 The agent composition framework

The purpose of implementing an agent composition framework is to fulfill tasks that re-
quire the consecutive execution of more than one agent, without hard-coded coordination.
An agent composition framework creates plans for agent coordination in an automated
and dynamic fashion, hence increase the efficiency and flexibility of coordinating agents.

9

The composition framework we designed contains two agents: the composition agent and
the execution agent. The composition agent takes the user requirement and creates the
composite agents. The other component of the composition framework, the execution
agent takes the description of composite agent and concrete input values as inputs and
executes the agents constituting the composite in sequence. Figure 3 demonstrates the
complete process of agent composition including the execution of the composite agent
and this section will introduce the implementation details of the composition agent and
the execution agent respectively.

Figure 3: The process of the agent composition implemented: Each blue panel denotes a
phase in the composition process. Solid arrows represent the process sequence
and the dotted ones are iterative sequence. The panels containing agents (red
nodes) represent composition results: 1© is the composition result with multi-
ple solutions; 2© is the optimized composite agent. The composition process
starts from defining the requirements for the composite agent, and ends with
the execution of the composite agent. The execution will be triggered when an
agent provides the input values.

4.1 The composition agent

The composition process starts from defining the requirements for the composite agent
by specifying the types of the I/O parameters, in the form of URIs8. The definition could
come from either a human user or an agent (for demonstration purpose in the use case,
some extra components are implemented to support human users). The discovery module

8https://www.w3.org/Addressing/URL/uri-spec.html

10

Figure 4: Knowledge graph integrated with OntoAgent and the composition agent:
now knowledge graph is populated with the OntoAgent ontology and its in-
stances(red nodes). Agents in action are represented by red triangles. The
agents layer (red layer) demonstrates the composition agent creating compos-
ite agents out of atomic agents. The dotted arrow denotes the composition agent
adding the new composite agent to the knowledge graph. The solid arrows de-
note the connection between agent instances in the knowledge graph and the
agents in action on the agent layer.

within the composition agent locates agents within the knowledge graph, that meet the
I/O requirements via a SPARQL query and reasoning (reasoning is not yet implemented
in the proof-of-concept prototype). The composition module works with the discovery
module iteratively to come up with the composition plan. In order to better work with
agents described by OntoAgent, the composition agent adopts a common graph-based
composition approach which utilizes the matching of semantic input-output parameters
to arrange sequences of agents. Such an approach has been widely applied for agent5

composition [2, 11, 13, 23, 25, 26, 29, 32, 37]. The essence of graph-based composition
is to append agents which fulfill the input requirements provided either by initial inputs
or outputs of other agents already appended to the composition result. The graph-based
composition algorithm repeats the process of appending new eligible agents until all the
initially required outputs for the composite agent are achieved. When all the required out-
puts are achieved or the process takes longer than the preset time-out value, the process of

11

composition terminates. Figure 4 illustrates how the composition agent creates a compos-
ite agent on top of the knowledge graph and algorithm 1 in the Appendix A.1 introduces
the composition algorithm in detail. In this algorithm, function discover_agent discovers
all the agents that are eligible for the composition. In other words, it returns agents of
which all inputs could be fulfilled by the inputs collected so for. Appendix A.2 shows
the simplified Java implementation of the function discover_agent while Appendix A.5
illustrates the implementation with a flowchart.

The iterative phases of agent discovery and composition yield one or more plans for the
agent coordination. Due to the existence of alternative solutions, the framework will need
to select out the optimal one. Therefore the process proceeds to the optimization phase.
The optimization module essentially eliminates the redundant agents when multiple ones
are providing the same data. In this implementation, the optimization is based on Quality-
of-Service (QoS), which reflects the performance of an agent. For now, the scores are set
by the developer. After the optimization, the optimal composition result will be created.
The result will be serialized in JSON format and stored. After that, whenever an execution
is triggered by either a human user or an agent, the composition process proceeds to the
execution phase.

4.2 The execution agent

The execution agent is a part of the agent composition framework. It takes composition
result as input, executes each atomic agent and feeds their outputs to the downstream
agents, according to the execution sequence stored in the composition result. It could
execute a single atomic agents as well.

The execution agent supports the invocation of agents described by OntoAgent but re-
mains potentially compatible with other standards. This is one of the major distinction
of our agent composition framework. As shown in Figure 5, the execution phase closely
works with the knowledge graph. In this phase, the execution agent reads the seman-
tic descriptions of agents within the serialized composition result, from the knowledge
graph. Appendix A.3 shows the simplified Java source code for the execution agent and
Appendix A.6 demonstrates the execution process with a flowchart. During the execu-
tion of an atomic agent, the agent takes data from the knowledge graph and updates the
knowledge graph with the new data produced.

The execution agent is customized to work with grounding information provided by On-
toAgent, Figure 6 explains how the execution agent utilizes the grounding information
for invocation. Firstly, with DataType properties ontoagent:isArray, msm:hasName, and
ontoagent:hasType alongside with the intrinsic mapping between the name and type, the
execution agent converts the output of the upstream agent into a JSON object that the
downstream agent accepts. Secondly, based on the properties ontoagent:hasHttpUrl and
ontoagent:hasKey, the execution agent constructs the HTTP request with a key-value pair.

12

Figure 5: The execution of a composite agent: the solid arrows mark the connection be-
tween the descriptions of the agents(red nodes) in the knowledge graph and the
implementation of agents in action (red triangles). The upward dotted arrows
denote the reading from the knowledge graph while the downward one depicts
the writing to the knowledge graph.

Figure 6: The execution agent’s invocation of an agent with OntoAgent description:
step 1© utilizes ontoagent:isArray, msm:hasName, and ontoagent:hasType
to construct a JSON object containing all the input data for invoking the agent.
Step 2© builds the full HTTP Request containing the input JSON object, based
on ontoagent:hasHttpUrl and ontoagent:hasKey, and sends the concrete re-
quest to the agent.

13

5 Use case

The OntoAgent ontology and the comprehensive agent composition framework are inte-
grated into the JPS. In this section, we illustrate how the agent composition framework
automates the creation of a cross-domain composite agent that simulates the dispersion
profile of the emission from a power plant within a selected area. This scenario considers
multiple domains such as urban landscape, meteorology, and chemical kinetic reaction
mechanisms. It serves as an example of an integrated analytical application that is based
on the integration of data and software tools from various domains. This composition
agent could potentially be used to assist in evaluating the suitability of proposed location
for a new power plant installation, with regards to the potential air pollution impact it
could have on the proximity.

5.1 Agents in the JPS knowledge graph

The JPS knowledge graph has been populated with a number of agents described by On-
toAgent and eight of them are relevant in this use case:

• City query agent: This agent returns the URI9 in DBpedia ontology in a selected
region. In the background, the agent requests Google Geocoding API10 and gets
the city name e.g. "Berlin", then through DBpedia Ontology Lookup service11, it
retrieves the URI based on the city name.

• Plant query agent: This agent has the same input as the city query agent. It queries
the JPS knowledge base and returns the URIs of all the power plants, described by
the "PowerPlant" class12 from OntoCAPE.

• Weather agent: There are three different weather agents for real-time weather data
of a selected city in order to demonstrate the optimization phase. The three weather
agents use Accuweather, YahooWeather, and OpenWeatherMap respectively. The
output weather condition is described by the WeatherOntology13.

• Building query agent: This agent takes both city and region as input and returns
URIs of buildings instances of OntoCityGML ontology by querying the JPS knowl-
edge graph.

• SRM agent: This agent wraps up SRM Engine Suite, a commercial software for
the simulation of exhaust emission from internal combustion engines (ICE), as an
agent. It takes the URI of reaction mechanism instance of OntoKin and the URI of
engine instance under OntoEngine as inputs and produces instances of OntoCAPE
"NonReusableWasteProduce" class.

9e.g. http://dbpedia.org/resource/Berlin for Berlin
10https://developers.google.com/maps/documentation/geocoding/start
11https://wiki.dbpedia.org/lookup
12http://www.theworldavatar.com/ontology/ontocape/chemical_process_system

/CPS_realization/plant.owl#Plant
13https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl

14

• ADMS Agent: Atmospheric Dispersion Modelling System (ADMS)14 is another
commercial software integrated into the JPS platform as an agent. This agent simu-
lates the dispersion of the pollutant given the weather condition, the dimensions of
surrounding buildings, and the details of the emission stream. Currently, there is an
absence of specific ontological vocabulary to describe the dispersion; therefore, we
use class "Table15" to annotate the dispersion grid that is in the tabular form.

5.2 Demonstration

This subsection demonstrates how the above-mentioned composite agent is created through
the agent composition framework implemented in the JPS. A series of screen-shots will
illustrate the steps of the composition process from defining of the composite agent to its
execution16.

As shown in Figure 7, the framework provides a graphical user interface (GUI) for users
to define a composite agent following the OntoAgent model, which includes components
such as operation, message content and message parts. The user could add components
to the composite agent using the plus buttons on each component. When a user presses
a plus buttons on a message part box (highlighted by the red rectangle), an Ontology
Lookup Interface (OLI) shown in Figure 8 will pop up for the user to define the ontology
class connected to this message part.

Due to the difficulty for human users to type URIs, an OLI is implemented to search for
URIs of ontology classes. The OLI loads a mapping between the natural language label
of an ontology class and its URI17 into an Apache Solr18 supported text search engine,
so that searching the term "plant" or "power plant" will return a series of URIs including
the URI for the ontology class power plant. For this use case, the inputs are defined as
"OntoKin:ReactionMechanism" and "OntoCityGML:EnvelopeType" and the output to be
"csvw:Table".

After defining the ontology classes of each message part, the user could press the com-
pose button in Figure 7 to start the composition process, which is supported by the algo-
rithm demonstrated in Appendix A.1. When the composition framework comes up with
the composition result, it shows the visualization of the composition result illustrated by
Figure 9. When the user presses the "Select Optimal Path" button, the framework will
optimize this composition result by eliminating agents with a lower score. The frame-
work then presents the optimal composition result as shown in Figure 10. By pressing the
"Send to executor" button, the user could proceed to the execution of the composite agent.
The implementation of agent execution is demonstrated in Appendix A.3.

For the execution phase, the framework provides an integrated GUI for data input and
output visualization. Figure 11 demonstrates the execution of the use case composite

14http://www.cerc.co.uk/environmental-software/ADMS-model.html
15https://www.w3.org/ns/csvw#Table
16The agent composition framework is accessible via http://www.theworldavatar.com/JPS_COMPOSITION/
17e.g. The class "http://www.theworldavatar.com/OntoEIP/OntoEN/power_plant.owl#PowerPlant" has

a property "rdfs:label", of which value is the text string "power plant"
18https://lucene.apache.org/solr/

15

Figure 7: GUI for defining a composite agent: the hierarchical structure reflects the On-
toAgent agent model and the boxes denote the components of OntoAgent such
as service, operation, message part, and message content. The plus buttons on
each component allows users to add more next-level components and hence to
adjust the number of inputs and outputs. Meanwhile, by selecting any box and
pressing delete, the user could also delete a component. In this use case, the
composite agent defined has two inputs and one output. For simplicity, hasIn-
putFault and hasOutputFault properties are removed. If click on the plus button
on the message part box, an Ontology Lookup Interface (OLI) will pop up and
allow the user to define the ontology classes of inputs and outputs. After defin-
ing the classes of all inputs and outputs, the user could use the compose button
to trigger the composition process.

Figure 8: Ontology lookup service: this GUI allows the users to define the composition
requirements by converting natural language terms into ontology classes.

agent. When the user finishes entering all the inputs, the framework will execute the
composite agent and then visualize the execution result in the same GUI.

16

Figure 9: Visualization of composition result for the use case: this use case requires a
composite agent that takes reaction mechanism and region as inputs and pro-
duces air dispersion simulation result (temporarily represented by Table class).
Each blue and white box denotes an agent, the annotation on its sides are short
terms for the I/O types. Arrows represent data flow between the agents. This
composition result gives three alternatives for weather data, the weather agents
connected with dotted arrows are to be eliminated due to their lower perfor-
mance scores (scores are currently defined by the developer).

Figure 10: Visualization of optimized composition result for the use case: the two weather
agents with a lower QoS score have been removed from the composition result
and hence the composition result is optimized.

17

Figure 11: Visualization of execution result: on the left is the sub-screen for inputs, in-
cluding the drop-down list for specifying the reaction mechanism and the map
for selecting the region. On the right is the visualization for the output, which
is the air dispersion grid.

6 Limitations and Outlook

The present implementation of OntoAgent and the agent composition framework have
some shortcomings. Firstly, as mentioned, OntoAgent only captures the inputs and out-
puts of an agent. Such a design limits the range of application for OntoAgent as it does
not describe activities such as booking a ticket. However, such a limitation is accept-
able for the current status of the knowledge graph, where the number of agents is limited
and the function of agents focuses on tasks such as optimization and simulation. In the
long run, when more tasks for the agent description emerge, one could easily extend the
functionality of OntoAgent with its extensibility. We trust such extensions will not bloat
OntoAgent, as the extensions could be designed in a modular way. Those who have the
needs to extend OntoAgent only need to learn the module of interest. For example, On-
toAgent is not able to describe a composite agent. Consequently, the composite agents
created are not yet written into the knowledge graph. In future, we will extend OntoAgent
to describe composite agents in a modularized fashion.

Secondly, this paper only introduces the proof-of-concept implementation of the agent
composition framework prototype. The evaluation of performance on phases such as
discovery, composition, and execution is left aside. However, the purpose of this paper
is to present a proof-of-concept design where agent composition framework is integrated

18

with a knowledge graph, increasing the robustness and scalability of this system will be a
major focus in the future.

Lastly, the current QoS-based optimization is built upon arbitrary agent performance
scores. We are now experimenting with the application of emerging technologies such
as blockchain-based smart contracts for agent performance evaluation and record man-
agement.

7 Conclusion

This paper presents the lightweight agent ontology OntoAgent that keeps the extensibility
and flexibility of MSM but supports grounding for execution which captures the funda-
mental elements for agent invocation. Its lightweight clearly decreases the cost of creating
an agent instance in the knowledge graph. We have also demonstrated that this agent on-
tology efficiently facilitates the phase of agent composition and execution in the scenario
of a cross-domain knowledge graph.

Also, the paper illustrates the implementation of a comprehensive agent composition
framework integrated with the execution agent, which works with the lightweight agent
ontology OntoAgent. The agent composition framework provides a solution to create
and execute composite agents to fulfill complex tasks on top of a cross-domain semantic
knowledge graph.

Lastly, the paper demonstrates the integration of OntoAgent and the agent composition
framework into the JPS and how the agent ontology and the framework work together
upon the JPS knowledge graph and creates a composite agent for the analysis of the air
pollution impact from power plants in a selected urban area. In future, we will use the
same framework for other implemented use cases, for example waste heat network agent
that optimizes a small inter-plant waste heat recovery network to maximize its overall
energy efficiency19 [38], world power plant CO2 calculation agent that estimates the CO2
emission from power plants all over the world using surrogate model20, and the agent for
building management of laboratories21 that monitors and predicts activities in chemical
laboratories.

8 Acknowledgements

This project is supported by the National Research Foundation(NRF), Prime Minister's
Office, Singapore under its Campus for Research Excellence and Technological Enter-
prise(CREATE) programme. Markus Kraft acknowledges the support of the Alexander
von Humboldt foundation.

19Accessible via http://www.theworldavatar.com:82/hw
20Accessible via http://www.theworldavatar.com/JPS_CO2EMISSIONS/
21Accessible via http://www.theworldavatar.com:83/BMSIndoor/

19

A Appendices

A.1 Graph-based agent composition algorithm

Algorithm 1 Composition Algorithm
1: function Composition(I0,O0) . I and O denote the user defined I/O parameters
2: G← /0 . G: the final composition result
3: C← /0 . C: the set of all agents discovered
4: Dcollected ← I0

5: repeat
6: i← i+1
7: Li← /0 . denotes one layer of agents
8: A← /0 . A: a temporal set for agents discovered in this iteration
9: A←discover_agent(D_collected)

10: for all a = {Ia,Oa} ∈ A do
11: if a /∈C then
12: Li← Li∪{a} . Push an agent in one layer
13: Dcollected ← Dcollected ∪{Oa}
14: end if
15: end for
16: C←C∪A
17: G← G∪{Li} . The final result G is an ordered array of layers
18: until (O0 ⊂ Dcollected) or time out
19: end function

A.2 Agent discovery function implementation in Java

1 public class AgentDiscovery {

2

3 public static ArrayList<String> discover_agent(ArrayList<String> inputs) {

4 ArrayList<String> agent_iris = new ArrayList<String>();

5 // Query the SPARQL Endpoint and generate a mapping

6 // between agents and their input types

7 Map<String, ArrayList<String>>

8 agents_and_inputs_mapping = query_sparql_endpoint();

9

10 for (Map.Entry<String, ArrayList<String>> entry :

11 agents_and_inputs_mapping.entrySet()) {

12 if (inputs.containsAll(entry.getValue())) {

13 /* if the agent's inputs is a subset of the inputs required,

14 this agent is considered eligible */

15 agent_iris.add(entry.getKey());

16 }

17 }

18 return agent_iris;

19 }

20

20

21 public static Map<String, ArrayList<String>> query_sparql_endpoint() {

22

23 Map<String, ArrayList<String>> agents_and_inputs_mapping =

24 new HashMap<String, ArrayList<String>>();

25

26 String agent_query_string =

27 "PREFIX msm:<http://www.theworldavatar.com/ontology/ontoagent/MSM.owl#> " +

28 "PREFIX ontoagent:<http://www.theworldavatar.com/ontology/OntoAgent.owl#> " +

29 "SELECT DISTINCT ?agent ?inputType" +

30 "WHERE " +

31 " { " +

32 " ?agent msm:hasOperation ?operation ." +

33 " ?operation msm:hasInput ?messageCotentsForInput ." +

34 " ?messageCotentsForInput msm:hasMandatoryPart ?mandatoryPart ." +

35 " ?mandatoryPart ontoagent:hasType ?inputType ." +

36 " }";

37

38 // The SPARQL query to retrieve the input types of agents

39 QueryExecution qe = QueryExecutionFactory.sparqlService(

40 "http://www.theworldavatar.com/damecoolquestion/agents/query",

41 agent_query_string);

42 ResultSet results = qe.execSelect();

43

44 // Fire the SPARQL query

45 while (results.hasNext()) {

46 QuerySolution result = results.next();

47 String agent = result.get("agent").toString();

48 String inputType = result.get("inputType").toString();

49

50 if(agents_and_inputs_mapping.containsKey(agent)) {

51 agents_and_inputs_mapping.get(agent).add(inputType);

52 }

53 else {

54 agents_and_inputs_mapping.put(agent, new ArrayList<String>());

55 }

56 }

57

58 return agents_and_inputs_mapping;

59 }

60 }

A.3 Agent execution function implementation in Java

1 public class ExecutionAgent {

2 /*
3 * The method receives the URIs of two consecutive agents and the output

4 * for the upstream agent, converts the output of the precedent agent

5 * to the format that the subsequent receives as input, and executes

6 * the subsequent agent with the formatted input.

7 */

8 public static JSONObject execute_an_agent(String upstream_agent_uri,

9 String downstream_agent_uri, JSONObject inputJSON) {

21

10

11 Map<String, String> name_mapping = generateNameMapping(

12 upstream_agent_uri, downstream_agent_uri);

13 JSONObject input_json = mapJSONObject(inputJSON, name_mapping);

14 return executeAgent(input_json, downstream_agent_uri);

15 }

16

17 // Generate a mapping between the potentially different keys between the two

18 // consecutive agents.

19 public static Map<String, String> generateNameMapping(

20 String upstream_agent_uri, String downstream_agent_uri) {

21

22 String query_for_downstream_agent_template =

23 "PREFIX msm:<http://www.theworldavatar.com/ontology/MSM.owl#> "

24 + "PREFIX ontoagent:<http://www.theworldavatar.com/ontology/OntoAgent.owl#> "

25 + "SELECT ?type ?key" +

26 + "WHERE "

27 + " { "

28 + " <%s> msm:hasOperation ?operation ."

29 + " ?operation msm:hasInput ?messageCotentsForInput ."

30 + " ?messageCotentsForInput msm:hasMandatoryPart ?mandatoryPart ."

31 + " ?mandatoryPart msm:hasType ?type ."

32 + " ?mandatoryPart msm:hasName ?key ."

33 + " }";

34

35 String query_for_upstream_agent_template =

36 "PREFIX msm:<http://www.theworldavatar.com/ontology/MSM.owl#> "

37 + "PREFIX ontoagent:<http://www.theworldavatar.com/ontology/OntoAgent.owl#> "

38 + "SELECT ?type ?key" +

39 + "WHERE "

40 + " { "

41 + " <%s> msm:hasOperation ?operation ."

42 + " ?operation msm:hasOutput ?messageCotentsForOutput ."

43 + " ?messageCotentsForOutput msm:hasMandatoryPart ?mandatoryPart ."

44 + " ?mandatoryPart msm:hasType ?type ."

45 + " ?mandatoryPart msm:hasName ?key ."

46 + " }";

47

48 QueryExecution qe_up = QueryExecutionFactory.sparqlService(

49 "http://www.theworldavatar.com/damecoolquestion/agents/query",

50 String.format(query_for_upstream_agent_template,

51 upstream_agent_uri));

52 ResultSet results_upstream = qe_up.execSelect();

53

54 QueryExecution qe_down = QueryExecutionFactory.sparqlService(

55 "http://www.theworldavatar.com/damecoolquestion/agents/query",

56 String.format(query_for_downstream_agent_template,

57 downstream_agent_uri));

58 ResultSet results_downstream = qe_down.execSelect();

59 return process_query_result_for_mapping(results_upstream,

60 results_downstream);

61 }

62

63 public static JSONObject mapJSONObject(

22

64 JSONObject output_from_upstream_agent,

65 Map<String, String> name_mapping) {

66

67 JSONObject input_for_downstream_agent = new JSONObject();

68 Iterator<String> keys = output_from_upstream_agent.keys();

69 while (keys.hasNext()) {

70 String key = keys.next();

71 String new_key = name_mapping.get(key);

72 input_for_downstream_agent.put(new_key,

73 output_from_upstream_agent.get(key));

74 }

75

76 return output_from_upstream_agent;

77 }

78

79 // Construct an HTTP request based on the input JSON Object and the grounding

80 // information of the agent

81 public static JSONObject executeAgent(JSONObject input_JSON_object,

82 String agent_uri) {

83

84 String key = "";

85 String url = "";

86 String query =

87 "PREFIX msm:<http://www.theworldavatar.com/ontology/MSM.owl#> "

88 + "PREFIX ontoagent: <http://www.theworldavatar.com/ontology.owl#>"

89 + "SELECT ?key ?HttpUrl" + "WHERE " + "{ "

90 + " <%s> msm:hasOperation ?operation ."

91 + " ?operation ontoagent:hasInvocation ?invocationContainer ."

92 + " ?invocationContainer ontoagent:hasKey ?key ."

93 + " ?invocationContainer ontoagent:hasKey ?HttpUrl ."

94 + "}";

95

96 // Make SPARQL query to retrieve grounding information for agent invocation

97 QueryExecution qe_up = QueryExecutionFactory.sparqlService(

98 "http://www.theworldavatar.com/damecoolquestion/agents/query",

99 String.format(query, agent_uri));

100

101 ResultSet invocation_info = qe_up.execSelect();

102 while (invocation_info.hasNext()) {

103 QuerySolution result = invocation_info.next();

104 key = result.get("key").toString();

105 url = result.get("HttpUrl").toString();

106 }

107 // Construct the HTTP request with information retreived from the semantic

108 // description of the agent.

109 URIBuilder builder = new URIBuilder().setScheme("http")

110 .setPath(url)

111 .setParameter(key, input_JSON_object.toString());

112

113 return executeGet(builder);

114 }

115

116 public static Map<String, String> process_query_result_for_mapping(

117 ResultSet results_upstream, ResultSet results_downstream) {

23

118 Map<String, String[]> type_name_mapping = new HashMap<String, String[]>();

119 Map<String, String> name_mapping = new HashMap<String, String>();

120 while (results_upstream.hasNext()) {

121 QuerySolution result = results_upstream.next();

122 String type = result.get("type").toString();

123 String name = result.get("key").toString();

124 String[] temp = new String[2];

125 temp[0] = name;

126 type_name_mapping.put(type, temp);

127 }

128

129 while (results_downstream.hasNext()) {

130 QuerySolution result = results_downstream.next();

131 String type = result.get("type").toString();

132 String name = result.get("key").toString();

133 type_name_mapping.get(type)[1] = name;

134 }

135

136 for (Map.Entry<String, String[]> entry : type_name_mapping

137 .entrySet()) {

138 String[] keys = entry.getValue();

139 name_mapping.put(keys[0], keys[1]);

140 }

141 return name_mapping;

142 }

143

144 // Carry out the HTTP request

145 public static JSONObject executeGet(URIBuilder builder) {

146

147 try {

148 URI uri = builder.build();

149 HttpGet request = new HttpGet(uri);

150 request.setHeader(HttpHeaders.ACCEPT, "application/json");

151 HttpResponse httpResponse = HttpClientBuilder.create().build()

152 .execute(request);

153 return new JSONObject(

154 EntityUtils.toString(httpResponse.getEntity()));

155 } catch (Exception e) {

156 }

157 return null;
158 }

159 }

24

A.4 Domain and range restrictions on new roles of OntoAgent

Role names Domain and range restrictions on new roles

hasInvocation ∃ ontoagent:hasInvocation.>v msm:Operation
>v ∀ ontoagent:hasInvocation.ontoagent:Invocation

hasHttpUrl ∃ ontoagent:hasHttpUrl.>v msm:Invocation
>v ∀ ontoagent:hasHttpUrl.
xsd:anyURI

hasKey ∃ ontoagent:hasKey.>v msm:Invocation
>v ∀ ontoagent:hasHttpUrl.
Datatypestring

isArray ∃ ontoagent:isArray.>v msm:MessagePart
>v ∀ ontoagent:isArray.
Datatypeboolean

hasType ∃ ontoagent:hasType.>v msm:MessagePart
>v ∀ ontoagent:hasType.
xsd:anyURI

25

A.5 Flowchart of agent discovery

26

A.6 Flowchart of agent execution

27

References

[1] H. Afshari, R. Farel, and Q. Peng. Improving the resilience of energy flow exchanges
in eco-industrial parks: Optimization under uncertainty. ASCE-ASME Journal of
Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 3
(2):021002, 2017. doi:10.1115/1.4035729.

[2] M. Aiello, N. van Benthem, and E. el Khoury. Visualizing compositions of services
from large repositories. In 2008 10th IEEE Conference on E-Commerce Technol-
ogy and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and
E-Services. IEEE, 2008. doi:10.1109/cecandeee.2008.149.

[3] E. Cimren, J. Fiksel, M. E. Posner, and K. Sikdar. Material flow optimization in
by-product synergy networks. Journal of Industrial Ecology, 15(2):315–332, 2011.
doi:10.1111/j.1530-9290.2010.00310.x.

[4] A. Eibeck, M. Q. Lim, and M. Kraft. J-Park Simulator: An ontology-based platform
for cross-domain scenarios in process industry, 2019. Submitted for publication.

[5] F. Farazi, J. Akroyd, S. Mosbach, P. Buerger, D. Nurkowski, and M. Kraft. On-
toKin: An ontology for chemical kinetic reaction mechanisms, 2019. Submitted for
publication.

[6] D. Fensel, F. M. Facca, E. Simperl, and I. Toma. Web service modeling ontol-
ogy. In Semantic Web Services, pages 107–129. Springer Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-19193-0_7.

[7] R. T. Fielding and R. N. Taylor. Architectural styles and the design of network-
based software architectures. https://www.ics.uci.edu/~fielding/pubs/
dissertation/fielding_dissertation.pdf. last accessed: 2019-04-13.

[8] K. Fujii and T. Suda. Semantics-based context-aware dynamic service composition.
ACM Transactions on Autonomous and Adaptive Systems, 4(2):12:1–12:31, 2009.
doi:10.1145/1516533.1516536.

[9] G. Gröger and L. Plümer. CityGML - interoperable semantic 3D city mod-
els. ISPRS Journal of Photogrammetry and Remote Sensing, 71:12 – 33, 2012.
doi:10.1016/j.isprsjprs.2012.04.004.

[10] H. Haslenda and M. Jamaludin. Industry to industry by-products exchange network
towards zero waste in palm oil refining processes. Resources, Conservation and
Recycling, 55(7):713–718, 2011. doi:10.1016/j.resconrec.2011.02.004.

[11] P. Hennig and W.-T. Balke. Highly scalable web service composition using binary
tree-based parallelization. In 2010 IEEE International Conference on Web Services.
IEEE, 2010. doi:10.1109/icws.2010.45.

28

http://dx.doi.org/10.1115/1.4035729
http://dx.doi.org/10.1109/cecandeee.2008.149
http://dx.doi.org/10.1111/j.1530-9290.2010.00310.x
http://dx.doi.org/10.1007/978-3-642-19193-0{_}7
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://dx.doi.org/10.1145/1516533.1516536
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.004
http://dx.doi.org/10.1016/j.resconrec.2011.02.004
http://dx.doi.org/10.1109/icws.2010.45

[12] M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning
with OWLS-XPlan. In Proceedings of the 1st Int. AAAI Fall Symposium on Agents
and the Semantic Web, pages 55–62. sn, 2005. URL https://www.aaai.org/
Papers/Symposia/Fall/2005/FS-05-01/FS05-01-008.pdf.

[13] S. Kona, A. Bansal, M. B. Blake, and G. Gupta. Generalized semantics-based service
composition. In 2008 IEEE International Conference on Web Services. IEEE, 2008.
doi:10.1109/icws.2008.118.

[14] J. Kopeckỳ and T. Vitvar. WSMO-Lite: Lowering the Semantic Web Services Bar-
rier with Modular and Light-Weight Annotations. In 2008 IEEE International Con-
ference on Semantic Computing, pages 238–244, 2008. doi:10.1109/ICSC.2008.54.

[15] J. Kopeckỳ, T. Vitvar, C. Bournez, and J. Farrell. Semantic Annotations for WSDL
and XML Schema. https://www.w3.org/TR/sawsdl/. last accessed: 2019-03-
11.

[16] J. Kopeckỳ, K. Gomadam, and T. Vitvar. hRESTS: An HTML Microformat for De-
scribing RESTful Web Services. In 2008 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology, volume 1, pages 619–625,
2008. doi:10.1109/wiiat.2008.379.

[17] Y. T. Leong, J.-Y. Lee, R. R. Tan, J. J. Foo, and I. M. L. Chew. Multi-objective op-
timization for resource network synthesis in eco-industrial parks using an integrated
analytic hierarchy process. Journal of Cleaner Production, 143:1268–1283, 2017.
doi:10.1016/j.jclepro.2016.11.147.

[18] Z. W. Liao, J. T. Wu, B. B. Jiang, J. D. Wang, and Y. R. Yang. Design methodol-
ogy for flexible multiple plant water networks. Industrial & Engineering Chemistry
Research, 46(14):4954–4963, 2007. doi:10.1021/ie061299i.

[19] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. OWL-S: Semantic markup for web services. http://www.ai.sri.
com/~daml/services/owl-s/1.2/overview/. last accessed: 2019-03-11.

[20] S. McIlraith and T. C. Son. Adapting golog for composition of semantic web
services. In Proceedings of the Eights International Conference on Principles
of Knowledge Representation and Reasoning, volume 2, pages 482–493, 2002.
URL http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/
Position/sheila.pdf.

[21] J. Morbach, A. Wiesner, and W. Marquardt. OntoCAPE: A (re) usable ontology for
computer-aided process engineering. Computers & Chemical Engineering, 33(10):
1546–1556, 2009. doi:10.1016/j.compchemeng.2009.01.019.

[22] S. K. Nair, Y. Guo, U. Mukherjee, I. Karimi, and A. Elkamel. Shared and practi-
cal approach to conserve utilities in eco-industrial parks. Computers & Chemical
Engineering, 93:221–233, 2016. doi:10.1016/j.compchemeng.2016.05.003.

29

https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-01/FS05-01-008.pdf
https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-01/FS05-01-008.pdf
http://dx.doi.org/10.1109/icws.2008.118
http://dx.doi.org/10.1109/ICSC.2008.54
https://www.w3.org/TR/sawsdl/
http://dx.doi.org/10.1109/wiiat.2008.379
http://dx.doi.org/10.1016/j.jclepro.2016.11.147
http://dx.doi.org/10.1021/ie061299i
http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/
http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/
http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/Position/sheila.pdf
http://semanticweb2002.aifb.uni-karlsruhe.de/proceedings/Position/sheila.pdf
http://dx.doi.org/10.1016/j.compchemeng.2009.01.019
http://dx.doi.org/10.1016/j.compchemeng.2016.05.003

[23] W. Nam, H. Kil, and D. Lee. Type-aware web service composition using boolean
satisfiability solver. In 2008 10th IEEE Conference on E-Commerce Technology and
the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services.
IEEE, 2008. doi:10.1109/cecandeee.2008.108.

[24] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman.
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research, 20:
379–404, 2003. doi:10.1613/jair.1141.

[25] S.-C. Oh, D. Lee, and S. R. Kumara. Web Service Planner (WSPR). International
Journal of Web Services Research, 4(1):1–22, 2007. doi:10.4018/jwsr.2007010101.

[26] A. M. Omer and A. Schill. Dependency based automatic service composition using
directed graph. In 2009 Fifth International Conference on Next Generation Web
Services Practices. IEEE, 2009. doi:10.1109/nwesp.2009.20.

[27] M. Pan, J. Sikorski, C. A. Kastner, J. Akroyd, S. Mosbach, R. Lau, and M. Kraft.
Applying Industry 4.0 to the Jurong Island Eco-industrial Park. Energy Procedia,
75:1536 – 1541, 2015. doi:10.1016/j.egypro.2015.07.313.

[28] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopeckỳ, and J. Domingue.
iServe: a linked services publishing platform. In Ontology Repositories and Editors
for the Semantic Web Workshop at The 7th Extended Semantic Web, volume 596,
2010. URL http://oro.open.ac.uk/23093/. last accessed: 2019-4-12.

[29] K. Raman, Y. Zhang, M. Panahi, and K.-J. Lin. Customizable business process com-
position with query optimization. In 2008 10th IEEE Conference on E-Commerce
Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce
and E-Services. IEEE, 2008. doi:10.1109/cecandeee.2008.152.

[30] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes. An integrated se-
mantic web service discovery and composition framework. IEEE Transactions on
Services Computing, 9(4):537–550, 2016. doi:10.1109/tsc.2015.2402679.

[31] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu. Web
services composition: A decade’s overview. Information Sciences, 280:218 – 238,
2014. doi:10.1016/j.ins.2014.04.054.

[32] M. M. Shiaa, J. O. Fladmark, and B. Thiell. An incremental graph-based approach to
automatic service composition. In 2008 IEEE International Conference on Services
Computing. IEEE, 2008. doi:10.1109/scc.2008.141.

[33] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for Web Service
composition using SHOP2. Web Semantics: Science, Services and Agents on the
World Wide Web, 1(4):377–396, 2004. doi:10.1016/j.websem.2004.06.005.

[34] R. R. Tan and K. B. Aviso. An inverse optimization approach to inducing resource
conservation in eco-industrial parks. In Computer Aided Chemical Engineering,
pages 775–779. Elsevier, 2012. doi:10.1016/b978-0-444-59507-2.50147-5.

30

http://dx.doi.org/10.1109/cecandeee.2008.108
http://dx.doi.org/10.1613/jair.1141
http://dx.doi.org/10.4018/jwsr.2007010101
http://dx.doi.org/10.1109/nwesp.2009.20
http://dx.doi.org/10.1016/j.egypro.2015.07.313
http://oro.open.ac.uk/23093/
http://dx.doi.org/10.1109/cecandeee.2008.152
http://dx.doi.org/10.1109/tsc.2015.2402679
http://dx.doi.org/10.1016/j.ins.2014.04.054
http://dx.doi.org/10.1109/scc.2008.141
http://dx.doi.org/10.1016/j.websem.2004.06.005
http://dx.doi.org/10.1016/b978-0-444-59507-2.50147-5

[35] Thomas R Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993. doi:10.1006/knac.1993.1008.

[36] B. T. C. Tiu and D. E. Cruz. An MILP model for optimizing water exchanges in eco-
industrial parks considering water quality. Resources, Conservation and Recycling,
119:89–96, 2017. doi:10.1016/j.resconrec.2016.06.005.

[37] Y. Yan, B. Xu, and Z. Gu. Automatic service composition using AND/OR graph.
In 2008 10th IEEE Conference on E-Commerce Technology and the Fifth IEEE
Conference on Enterprise Computing, E-Commerce and E-Services. IEEE, 2008.
doi:10.1109/cecandeee.2008.124.

[38] C. Zhang, L. Zhou, P. Chhabra, S. S. Garud, K. Aditya, A. Romagnoli, G. Co-
modi, F. D. Magro, A. Meneghetti, and M. Kraft. A novel methodology for the
design of waste heat recovery network in eco-industrial park using techno-economic
analysis and multi-objective optimization. Applied Energy, 184:88 – 102, 2016.
doi:10.1016/j.apenergy.2016.10.016.

[39] C. Zhang, L. Zhou, P. Chhabra, S. S. Garud, K. Aditya, A. Romagnoli, G. Co-
modi, F. D. Magro, A. Meneghetti, and M. Kraft. A novel methodology for the
design of waste heat recovery network in eco-industrial park using techno-economic
analysis and multi-objective optimization. Applied Energy, 184:88–102, 2016.
doi:10.1016/j.apenergy.2016.10.016.

[40] L. Zhou, C. Zhang, I. A. Karimi, and M. Kraft. An ontology framework towards de-
centralized information management for eco-industrial parks. Computers & Chemi-
cal Engineering, 118:49–63, 2018. doi:10.1016/j.compchemeng.2018.07.010.

31

http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1016/j.resconrec.2016.06.005
http://dx.doi.org/10.1109/cecandeee.2008.124
http://dx.doi.org/10.1016/j.apenergy.2016.10.016
http://dx.doi.org/10.1016/j.apenergy.2016.10.016
http://dx.doi.org/10.1016/j.compchemeng.2018.07.010

	Introduction
	J-Park Simulator
	OntoAgent
	The agent composition framework
	The composition agent
	The execution agent

	Use case
	Agents in the JPS knowledge graph
	Demonstration

	Limitations and Outlook
	Conclusion
	Acknowledgements
	Appendices
	Graph-based agent composition algorithm
	Agent discovery function implementation in Java
	Agent execution function implementation in Java
	Domain and range restrictions on new roles of OntoAgent
	Flowchart of agent discovery
	Flowchart of agent execution

	References

