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Abstract

This paper develops a new methodology to calculate the process rates in a kinetic
Monte Carlo (KMC) model of polycyclic aromatic hydrocarbon (PAH) growth. The
methodology uses a combination of the steady-state and partial-equilibrium approx-
imations. It shows good agreement with the results from simulations using a de-
tailed chemical mechanism under conditions relevant to flames (temperatures be-
tween 1000 and 2500 K, equivalence ratios between 0.5 and 10). The new methodol-
ogy is used to calculate the rate of different stochastic processes in KMC simulations
of PAH growth of premixed ethylene-oxygen flames. The resulting rates are only a
function of temperature and the main gas-phase species present in the flame environ-
ment. The results of the KMC model are shown to be consistent with the concen-
trations of species calculated using a well-established mechanism for the growth of
small PAH species.

Highlights
• Development of a combined steady-state and partial-equilibrium approxima-

tion.

• Stochastic jump process rate calculation consistent with the chemistry of small
gas-phase PAHs.

• Applied in KMC model of PAH formation in premixed flame.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are produced during the combustion of hy-
drocarbon fuels. These molecules are typically stable under flame conditions [73] and
negatively affect human health [42, 46]. PAHs play a crucial role in the formation of car-
bonaceous particles including soot, which has been shown to be toxic [36, 54] and has
serious climate repercussions [48, 61].

Soot grows as a result of the interactions between PAHs, hydrocarbons and free radical
species in flames. PAHs play a significant role in the growth of soot and are believed to
participate in the inception process [80]. For this reason, significant research has been
invested to develop an accurate understanding of PAH growth as part of a wider effort to
understand how PAHs and soot form and grow in a combustion environment.

The hydrogen abstraction, acetylene addition (often referred to as HACA) mechanism is
widely considered the main route to explain the growth of PAH species [21, 80]. The
WF mechanism [81] and subsequently the ABF mechanism [2] were some of the first
studies to describe the growth of small gas-phase PAHs by assuming successive HACA
sequences. The mechanism has been widely used and shows good agreement with ex-
perimental measurements [2, 50, 64]. Reactions from the ABF mechanism have been in-
cluded in a number of modern mechanisms, including the DLR mechanism [13, 69, 70],
the KM2 mechanism [82, 83], the CRECK mechanism [62, 63] and the Caltech mecha-
nism [5, 53]. These include improved small hydrocarbon chemistry and additional routes
towards the production of small PAHs like the contribution of cyclopentadiene or indene.
These works use HACA sequences to explain the growth of larger PAHs, similar to the
ABF mechanism.

It is widely thought that soot particles are incepted from moderately sized PAHs, of the
order of 10–16 rings [1, 6, 7, 51]. It is therefore desirable that simulations of PAH and
soot growth are able to describe the evolution of such PAHs. It is very common for
simulations of PAH growth leading to soot formation to use chemical mechanisms similar
to those discussed above to describe the composition of the gas-phase. Typically these
simulations solve an ordinary differential equation (ODE) for the concentration of each
species. However, the number of possible PAH species far exceeds the number of ODEs
that can be solved in practical simulations. For this reason, the PAH growth pathways in
the chemical mechanisms must be truncated. For practical reasons the truncation occurs
at PAH sizes much smaller than the sizes thought to be relevant to soot formation. For
example, the mass of PAHs forming nascent soot particles has been shown to be larger
than the mass of the largest PAHs contained in mechanisms [12, 33].

Rather than solving an ODE for the concentration of each species (mathematically this is
known as a particle number model because the model solves for the number concentration
of each entity, in this case each species), an alternative approach is to use a stochastic
numerical method to simulate the evolution of each entity within a given control volume
(mathematically this is known as a particle model). This approach is the basis of kinetic
Monte Carlo (KMC) models [28] and is suitable for problems with a very large number of
species. These schemes use a set of reaction rules to simulate the growth of an ensemble of
molecules, where the rules are often expressed in terms of reactions occurring at different
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sites with rates that are extrapolated from analogous gas-phase reactions.

A number of KMC models have been used to investigate in detail the growth of individual
PAH molecules. This approach allows fundamental insight into the PAH chemistry and
possible reaction pathways. Using this type of model Frenklach and co-workers studied
the surface growth rate of single soot particles [20], the growth of graphene-like structures
[84, 85], the evolution of graphene under oxidising conditions [67] and soot particle ox-
idation [26]. Violi and collaborators applied this type of model to investigate the growth
of soot precursors [43, 79], soot nucleation [38] and the effect of oxygen addition on PAH
growth [16, 18].

KMC models have also been used in the context of coupled simulations of PAH growth
and soot formation. Although methods have been developed to couple such models to the
gas-phase chemistry [9, 11], the prevailing methodology is to perform the simulation as
a post-process, having first solved the gas-phase chemistry by some other means. This
approach has been used to reproduce experimental laser ionisation mass spectra [12],
particle size distributions [8, 10, 65] and study the coagulation efficiency of soot particles
[59]. In these cases, the model must simulate the growth of a large ensemble of PAHs.
In these models, a simpler KMC scheme is required in order to keep the computations
tractable. One example of such a difficulty with PAH-KMC schemes is that they can
spend high computational effort to simulate reversible reactions where the forward and
reverse rates are large, but where there is only a small net rate of change. Often this
type of problem can be solved by estimating the contributions of intermediate species
using steady-state or partial-equilibrium approximations [for example 20, 58]. It is of
course important to ensure consistency between the approximated system and the original
mechanism.

The purpose of this work is to investigate the range of validity of the steady-state and
partial-equilibrium approximations in the context of PAH-KMC models [12, 58, 86]. The
paper presents a new methodology to compute the concentrations of PAH reaction inter-
mediates based on a combination of both approximations and computes a modified rate
equation. The methodology is formulated such that is consistent with the available gas-
phase mechanisms and such that it is suitable for inclusion in future KMC models of PAH
growth and soot formation.

2 Timescale separation approximations in models of PAH
growth

Timescale separation approximations often allow a simplified numerical treatment of the
processes that control a reaction system. They are based on the separation of fast and
slow processes. Typically a subset of the species concentrations are able to be estimated
by solving a linear system of equations (as opposed to coupled ODEs). Examples of such
techniques are the steady-state and partial-equilibrium approximations that we study in
this paper. Both methods are well-documented in the literature [29, 31, 44, 55, 75, 76].
The model equations are summarised in Section A.1 of the Appendix.

A number of related approximations have been used in other applications. For example,
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the simulation of turbulent combustion [56] and the generation of skeletal mechanisms
[57]. Methods worth mentioning are intrinsic lower dimensional manifolds [30, 47], com-
putational singular perturbation [31, 32, 57] and rate-controlled constrained equilibrium
[4, 39, 40]. The reader is referred to [29, 44, 55, 75] for a review of these techniques.

Timescale separation approximations can be applied to the reactions that control the
growth of PAHs. The HACA mechanism describes the consecutive production of radi-
cals and addition of acetylene molecules. Each intermediate step in the mechanism has a
different kinetic behaviour that needs to be analysed to identify possible timescale sepa-
rations. Figure 1 shows an example of the reaction routes that are available for the growth
of the most basic PAH, benzene growing to form naphthalene.

•••

•

•

•

Figure 1: Reaction path flux diagram showing the main reaction pathways between ben-
zene and naphthalene. Dashed blue arrows show reaction fluxes that are sim-
ilar in magnitude in both directions. Continuous red arrows show reaction
fluxes with reverse rates that are at least an order of magnitude smaller than
the forward rate at early times under flame conditions.

In Figure 1 reactions are shown as arrows and for simplicity only a single arrow is shown
when multiple reaction pathways are involved between two species. The figure not only
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illustrates some of the main reaction pathways in PAH growth, it also shows the behaviour
that can be observed for some of the intermediate species. Some reactions, shown as
dashed blue arrows, are typically fast in both the forward and reverse ways, while others,
shown as continuous red arrows, are usually fast only in one direction due to the high
stabilisation that the formation of a new aromatic ring can provide. This behaviour allows
a separation of fast and slow species that can be exploited to model the growth of this type
of molecule.

The concentrations of fast-forming intermediates can often be estimated using a steady-
state or partial-equilibrium approximation. In such cases, the concentration of these fast-
forming intermediates can be calculated by solving a linear system of the form

Mc = b (1)

where M is an Nf×Nf matrix and contains pseudo first-order rate constants for the con-
sumption and production of each of the fast species, c is the vector of the Nf concentrations
of the fast species, b is a vector that contains the production terms of fast species from
slow species and Nf is the number of fast species. The model equations and assumptions
behind them are summarised in Section A.1 of the Appendix.

The steady-state approximation has been widely used to analyse PAH chemistry. Early
works on the HACA pathways used it to explore the high and low temperature limits of
the mechanism [19, 21]. It has also been used to obtain single-step rates for addition
reactions [52] and to estimate the concentration of intermediate PAHs that participate
in soot inception [72]. Recently, the rate constants for the HACA pathways have been
re-examined in different studies in which a steady-state approximation was applied with
improved rate coefficients [27, 49], and which concluded that the HACA routes are the
main growth pathways in most flame conditions.

The steady-state approximation has also been used to estimate the number of active sites
on the surface of soot particles for a simple surface mechanism including five reactions
[23]. This approach estimates the number density of the available carbon-hydrogen sites
and requires the specification of an α-parameter (see [22] for a discussion of this param-
eter) as the fraction of sites that will be available to react. Such an approach has been
used in multiple studies [17, 64] and has been modified to account for reversibility [15],
additional pathways [83] and particle ageing effects [41, 66, 78]. Recently, an alternative
approach that expresses the instantaneous value of α in terms of state variables based on
consideration of the number of zig-zag and armchair sites has been proposed [22].

The steady-state approximation has been incorporated into a number of KMC models
of PAH growth. The fast-lived intermediates that are formed in some HACA reactions
have been modelled with this approach in the works of Frenklach and co-workers [20,
67, 68, 84, 85]. This allows the study of PAH growth without the need to spend long
computational times simulating highly reversible reactions. KMC models that simulate
an ensemble of PAHs have used this approximation to derive simplified rate equations for
various reaction sequences [10, 12, 35, 58, 59, 86]. In these studies, the model describes
a number of pathways for the addition and desorption of aromatic rings [58]. However,
the model makes a number of simplifications including assuming irreversible acetylene
addition and irreversible ring closures. A methodology that accounts for the reversibility
of these steps and that is valid across a wide range of conditions is still required.
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3 Methodology

In this work we study the range of validity of the steady-state and partial-equilibrium
approximations of the chemical reactions that control the growth of gas-phase PAHs with
the purpose to provide simplified rate equations for KMC models. In order to do so,
we consider ethylene-air simulations in a closed control volume under isothermal and
isobaric conditions at a pressure of one atmosphere. The effect of temperature and initial
equivalence ratio was studied. The temperature was varied from 1000 to 2500 K in 100 K
intervals. The equivalence ratios considered were 0.5, 1.0, 2.0, 5.0 and 10. All reaction
systems were solved until a stationary solution was observed.

The ABF mechanism [2] was selected as a reference mechanism for this study for the
following reasons: Its PAH reaction pathways contain mostly HACA sequences which,
although they do not explain all the pathways for the production of some small PAHs, are
able to explain the growth of larger molecules and are included in modern mechanisms
[5, 60, 69]. It includes ring condensation reactions which have been shown to be important
for PAH growth [77]. It includes five-member ring growth and armchair closure reactions,
both of which are fast processes that have been shown to affect the shape of larger PAHs
[10, 20]. Lastly, by choosing a mechanism that does not contain additional routes that are
unique to small PAHs, for example the production of naphthalene from cyclopentadiene
or indene, we can infer the rates of reaction for analogous processes acting on arbitrarily-
sized PAHs. For example, by treating the growth rate of naphthalene from benzene (see
Figure 2) as a proxy for a free-edge ring growth reaction.

Benzene, A1 Naphthalene, A2

(i)

(ii)

(iii)

Benzene, A1

Phenanthrene, A3

Phenanthrene, A3

Naphthalene, A2

Figure 2: Ring growth processes studied using the steady-state and partial-equilibrium
approximations. Notation as defined by Frenklach et al. [24].
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New steady-state and partial equilibrium approximations are proposed to calculate the
rates of the ring growth processes shown in Figure 2. Processes (i) and (ii) follow the
HACA pathways starting from different PAHs. Process (iii) corresponds to ring conden-
sation reactions where two benzene intermediates react to form phenanthrene. For each
process, a linear system resulting from a steady-state or partial equilibrium approximation
is solved for the concentration of key intermediate species. The resulting process rate is
then a function of only the concentrations of main gas-phase species and the morphol-
ogy of the PAH. This procedure can be generalised to obtain the process rates for any
arbitrarily-sized PAH in a KMC model.

The steady-state and partial-equilibrium approximations use a different set of species and
reactions for each process in Figure 2. The species and reactions were selected using
a combination of techniques. A path flux analysis of the ABF mechanism [2] combined
with a systematic inspection of reaction rates was used to determine important reactions
to include for each process. Reactions that did not contribute significantly were excluded.
Likewise, the intermediates that took part in these reactions were also excluded. The full
sets of species and reactions used for each process are detailed in Appendix A.2.

4 Results and discussion

In the sections that follow we study the range of validity of the steady-state and partial-
equilibrium approximations in models of PAH growth. In Section 4.1 we critically assess
the performance of the steady-state approximation in simulations of a closed isothermal
systems at different temperatures and equivalence ratios. In Section 4.2 we apply the
partial-equilibrium approximation to the same systems and assess its performance versus
that of the steady-state approximation. In Section 4.3, we introduce and investigate the
performance of a new combined steady-state–partial-equilibrium approximation. Finally,
in Section 4.4, we demonstrate the application of the new combined approximation in a
KMC simulation of the PAH chemistry in a premixed burner-stabilised flame.

4.1 Steady-state approximation

In this section we study the case where all PAH species participating in the ring growth
reactions, including intermediates and products, are in steady-state with the reactants.

In the case of the formation of naphthalene from benzene, Figure 2 process (i), benzene is
considered to be a slow species while naphthalene and all its intermediates are included in
the steady-state species set. In the case of the formation of phenanthrene from napthalene,
Figure 2 process (ii), naphthalene is considered to be a slow species while phenanthrene
and its intermediates are included in the steady-state species set. The full set of species and
reactions used for the steady-state approximation of each process is shown in Tables A.1
and A.2 in Appendix A.2. The ring condensation, Figure 2 process (iii), is not included
in the steady-state approximation because it includes a reaction that is non-linear in the
sense that it involves the reaction of two PAHs (Table A.3, reaction 17)-. This cannot be
included in a steady-state approximation based on linear equations (c.f. Equation 1).
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Figure 3 shows the concentrations of naphthalene and phenanthrene calculated using the
steady-state approximation versus reference solutions calculated using the full ABF mech-
anism in a closed isothermal system. For simplicity, only one equivalence ratio and four
temperatures are shown. The shaded area in the figure shows the range of residence times
relevant to the production of PAHs in a typical flame. The figure shows that the state-state
approximation closely matches the reference solutions at temperatures above 2000 K.
However, at lower temperatures the method shows significant differences from the refer-
ence solution at short times. The difference decreases with time (and given long enough,
good agreement is seen at all temperatures, see Appendix A.3). This is a well known
feature of the steady-state approximation. The fast species need an induction time, which
is a function of the lifetime of the slowest species in the approximation [3, 76], to achieve
their steady-state concentrations.
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1600 K
2000 K
2400 K

10 7 10 5 10 3 10 1 101 103
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1600 K
2000 K
2400 K

A3A2

Figure 3: Simulations of the reaction of ethylene in a closed isothermal system, initially
at an equivalence ratio of 5.0, to form naphthalene (A2, left panel) and phenan-
threne (A3, right panel). Solid lines show the results of simulations using the
full ABF mechanism. Circles show the concentration of each species calculated
using the steady-state approximation. The shaded area shows typical flame res-
idence times.

It is useful to define a metric to measure the quality of the steady-state approximation.
However, an instantaneous measurement of the error can be misleading because PAHs
are produced and consumed at different times under different conditions. For this reason,
we introduce a time-integrated metric to provide information about the error over the
timescales relevant to the study.

ε
ss

α
(τ;φ ,T ) = log

( ∫ τ

0 c ss
α
(t;φ ,T )dt∫

τ

0 c ref
α
(t;φ ,T )dt

)
,

ε̂
ss

α
(τ;φ ,T ) =

|ε ss
α
(τ;φ ,T )|

max
φ ,T

(ε ss
α
)

,

(2)

where ε ss
α
(τ;φ ,T ) is the time-integrated error in the steady-state approximation of species

α . It is computed as the logarithm of the ratio of the time integrals of c ss
α

, the concentration
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of species α calculated using the steady-state approximation, and c ref
α

, the reference solu-
tion calculated using the full ABF mechanism. ε̂ ss

α
(τ;φ ,T ) is normalised by the maximum

error found over the temperature-equivalence ratio space. It must be noted that in these
definitions we assume that the steady-state value is larger than the reference solution; a
trend that we observed in all simulations but that may not be applicable to other systems.

Figure 4 shows a map of ε̂ ss
α
(τ = 1.0s) versus temperature and equivalence ratio. The

upper limit of the integral was selected as larger than the typical flame residence times to
allow all significant errors to be captured by the time integral. The black lines show the
location of a soot island, which is a region that is known to be important for soot emissions
(in engine applications) [71]. It can be seen that errors accumulate at temperatures under
1700 K and equivalence ratios under 2.0, with some of these conditions being in the region
relevant to soot formation.
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Figure 4: Time-integrated steady-state error ε̂ ss
α
(τ = 1.0s) for the concentration of naph-

thalene (A2, left panel) and phenanthrene (A3, right panel) calculated via simu-
lations of the reaction of ethylene in a closed isothermal system as a function of
temperature and initial equivalence ratio and the concentration of each species
calculated using the steady-state approximation. The black lines show the re-
gion that is most important for soot emissions (in engine applications) [71].

The concentrations of most intermediates follow the steady-state approximation under
a wide range of conditions. However, species involved in the final ring-forming step
(Table A.1, reactions 21–25 and Table A.2, reactions 15–16) deviate from this behaviour
at the lower end of the temperature space in Figure 4. These include A1(C2H)C2H •

2 , A •
2

and A2 which are involved in the formation of naphthalene, and A2(C2H)C2H •
2 , A •

3 and
A3 which are involved in the formation of phenanthrene.

During the induction time, these reactions progress much more quickly in the forward
direction than in the reverse direction. The effect of this is that intermediate species are
consumed by the forward reactions without being replenished by the reverse reactions.
This is inconsistent with the steady-state approximation, which assumes that the rates of
the forward and reverse reactions are approximately equal. This is the leading cause of
the error shown in Figure 4.
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4.2 Partial-equilibrium approximation

Most species investigated in the previous section are controlled by reactions where the
forward and reverse rates are large compared to net rate of conversion to final product.
However, some species, notably those responsible for the error shown in Figure 4, show a
distinct induction period during which the forward (ring-forming) reactions proceed much
more quickly than reverse (ring desorption) reactions. This difference in the time scales
and the presence of an induction period suggest that the system might be amenable to a
partial-equilibrium approximation. In this instance, our primary interest is whether this
can improve the behaviour of the model during the induction period.

A set of partial-equilibrium species and reactions is proposed for each process shown in
Figure 2. In the case of processes (i) and (ii), these are a subset of the steady-state sets. In
the case of process (iii), the set excludes the non-linear reaction (Table A.3, reaction 17)
that prevented the use of the steady-state approximation for this process in Section 4.1.
The full set of species and reactions used for the partial-equilibrium approximation of
each process is shown in Tables A.1–A.3 in Appendix A.2.

In each case, the partial-equilibrium approximation excludes the ring-forming reactions
responsible for the formation of the final product PAHs A2 and A3, and the corresponding
radicals A •

2 and A •
3 . The concentrations of these species must be computed separately.

The set of ODEs governing the concentrations of these species may be written in the form

dcα

dt
= Pα −Lαcα , (3)

where Pα is the rate of production of species α and Lα is a pseudo-first order rate constant
for the loss of species α . During the induction period we expect the rate of production
to be much greater than the rate of loss (due to the rates of the ring-forming versus ring
desorption reactions). Whilst this condition holds, Equation (3) can be approximated as

dcα

dt
≈ Pα ,

and, noting that such that Pα is not a function of cα ,

cα ≈
∫ t

0
Pα dt. (4)

In the simulations that follow, it is assumed that A2+A •
2 and A3+A •

3 are close to equilib-
rium. Equations of the form of Equation (4) are solved for the total concentration of each
species and its corresponding radical, cA2

+ cA •
2

and cA3
+ cA •

3
. A detailed step-by-step

explanation of the treatment of these equations and reactions is given in Appendix A.2.1.

Figure 5 shows the concentrations of naphthalene and phenanthrene calculated using
the partial-equilibrium approximation versus reference solutions calculated using the full
ABF mechanism in a closed isothermal system. For comparison, we also show data calcu-
lated using the steady-state approximation. The figure shows that the partial-equilibrium
approximation performs better than the state-state approximation at low temperatures and
at short times. This is because of the improved treatment of the reactions responsible for
the induction period and the inclusion of process (iii) (see AppendixA.3).
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Figure 5: Simulations of the reaction of ethylene in a closed isothermal system, initially at
an equivalence ratio of 5.0, to form naphthalene (A2, top panels) and phenan-
threne (A3, bottom panels). Solid lines show the results of simulations using
the full ABF mechanism. Circles show the concentration of each species calcu-
lated using the steady-state approximation. Squares show the concentration of
each species calculated using the partial-equilibrium approximation.
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At longer times, the partial-equilibrium approximation performs less well due to neglect-
ing the loss term in Equation (3). In all cases, there is a crossover point after which the
steady-state approximation performs better than the partial-equilibrium approximation.
(The location of this point is a strong function of temperature. It is most obvious in the
cases at 1600 K.) This crossover point can be exploited in models of PAH growth.

4.3 A combined steady-state–partial-equilibrium approximation

We propose a new method that seeks to combine the strengths of the steady-state and
partial-equilibrium approximations. The idea is to use the partial-equilibrium approxima-
tion during the induction period, before switching to use the steady-state approximation
after the crossover point identified in the previous section.

The steady-state and partial-equilibrium approximations are combined as follows:

1. Use the steady-state approximation to evaluate the product concentrations, in this
case c ss

A2
and c ss

A3
. See Section 4.1.

2. Use the partial-equilibrium approximation to evaluate the product concentrations,
in this case c peq

A2
and c peq

A3
. See Section 4.2.

3. Determine the combined steady-state–partial-equilibrium product concentrations

c ss–peq
A2

=

{
c peq

A2
if λ

(
PA2

+PA •
2

)
>
(
LA2

cA23
+LA •

2
cA •

2

)
,

c ss
A2

otherwise,
(5)

and

c ss–peq
A3

=

{
c peq

A3
if λ

(
PA3

+PA •
3

)
>
(
LA3

cA3
+LA •

3
cA •

3

)
,

c ss
A3

otherwise,
(6)

where λ is a positive real number acting as a multiplier.

The rationale behind the criteria to determine the crossover point is that the production
terms will be greater than the loss terms during the induction period (see the discussion in
Section 4.2), such that the method will choose the partial-equilibrium approximation. At
later times as the system stabilises, the production and loss terms will be approximately
equal such that method will choose the steady-state approximation.

The multiplier λ is a parameter of the method. Its purpose is to guard against the case that
the system has stabilised such that the steady-state approximation is the desired choice, but
the relative values of the production and loss terms are such that the method imprudently
chooses the partial-equilibrium approximation. This was not observed here, and in all
cases the value of the parameter was set as λ = 1. However, it could conceivably become
important in the future, so is included for completeness.

Figure 6 shows the concentrations of naphthalene and phenanthrene calculated using the
combined steady-state–partial-equilibrium approximation versus reference solutions cal-
culated using the full ABF mechanism in a closed isothermal system. In contrast to the
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cases when either the steady-state or partial-equilibrium approximations are applied in
isolation, the figure shows that the combined steady-state–partial-equilibrium approxima-
tion performs well both at early times (so during the induction period) and at long time
(so when the system approaches equilibrium). Unsurprisingly, the main point at which
there is deviation from the reference solution is close to the crossover point. This is most
obvious in the case at 1600 K and can be predicted from the data in Figure 5.
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Figure 6: Simulations of the reaction of ethylene in a closed isothermal system, initially
at an equivalence ratio of 5.0, to form naphthalene (A2, left panel) and phenan-
threne (A3, right panel). Solid lines show the results of simulations using the
full ABF mechanism. Triangles show the concentration of each species calcu-
lated using a combined steady-state and partial-equilibrium approximations.

In order to assess the accuracy of the combined steady-state–partial-equilibrium method,
we define an error metric analogous to that in Equation (2)

ε
ss–peq

α (τ;φ ,T ) = log
(∫ τ

0 c ss–peq
α

(t;φ ,T )dt∫
τ

0 c ref
α
(t;φ ,T )dt

)
,

ε̂
ss–peq

α (τ;φ ,T ) =
|ε ss–peq

α
(τ;φ ,T )|

max
φ ,T

(ε ss
α
)

.

(7)

ε̂ ss–peq
α

(τ;φ ,T ) is normalised by the maximum error found over the temperature-equivalence
ratio space for the steady-state approximation. This choice is deliberate and is intended
to enable a direct comparison between errors calculated using Equations (2) and (7).

Figure 7 shows a map of ε̂ ss–peq
α

(τ = 1.0s) versus temperature and equivalence ratio. A
comparison with Figure 4 shows that the combined steady-state–partial-equilibrium per-
forms much better than the steady-state assumption applied in isolation. In particular, at
low temperatures and low equivalence ratios.
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Figure 7: Time-integrated steady-state–partial-equilibrium error ε̂ ss–peq
α (τ = 1.0s) for the

concentration of naphthalene (A2, left panel) and phenanthrene (A3, right
panel) calculated via simulations of the reaction of ethylene in a closed isother-
mal system as a function of temperature and initial equivalence ratio and the
concentration of each species calculated using the combined steady-state and
partial-equilibrium approximation. The black lines show the region that is most
important for soot emissions (in engine applications) [71].

4.4 A combined steady-state–partial-equilibrium KMC model

In this section, we demonstrate the application of the combined steady-state–partial-
equilibrium methodology to KMC simulations of PAH growth in a premixed burner-
stabilised ethylene-oxygen flame at an equivalence ratio of 2.4. The simulations are based
on the flame studied by Ciajolo et al. [14], albeit at range of cold-gas flow velocities in
order to vary the transition point between the steady-state and partial-equilibrium approx-
imations.

A fully-coupled simulation of the flame using the full ABF mechanism was used to obtain
reference data for the species concentrations and temperature. The KMC simulations
were performed as a Lagrangian post process, where the temperature and small-molecule
concentrations (up to and including benzene, A1) from the fully-coupled simulation were
imposed as boundary conditions.

The following sequence of jump processes were included in the KMC model

A1 −−→ A2, A2 −−→ A3, A3 −−→ A4, A2 −−→ A2R5, A1 −−→ A3,
A2 −−→ A1, A2 −−→ A3, A3 −−→ A4, A2R5 −−→ A2.

(8)

This is a superset of the processes in Sections 4.1–4.3. The sequence is truncated at
A4 to maintain consistency with the ABF mechanism for the purpose of testing. The
jump processes exist in pairs (for example, A1→ A2 and A2→ A1. This is important to
ensure consistency with the underlying chemistry, in this case the ABF mechanism. The
A3→ A1 process is an exception and is omitted because its rate was negligible. The full
set of species and reactions for each jump process is given in Table A.4 in Appendix A.2.
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The combined steady-state–partial-equilibrium approximation method is modified to ac-
commodate the new jump processes and to reflect the fact that the KMC model requires
the method to return a set of rates as opposed to a concentrations

1. Use the steady-state approximation to evaluate the rate of each jump process.

2. Use the partial-equilibrium approximation to evaluate the rate of each jump process.

3. Determine the combined steady-state–partial-equilibrium approximation rates

r ss–peq
A1→A2

=

{
r peq

A1→A2
if λ r peq

A1→A2
> rA2→A1

,

r ss
A1→A2

otherwise,
(9)

r ss–peq
A2→A3

=

{
r peq

A2→A3
if λ r peq

A2→A3
> rA3→A2

,

r ss
A2→A3

otherwise,
(10)

r ss–peq
A3→A4

=

{
r peq

A3→A4
if λ r peq

A3→A4
> rA4→A3

,

r ss
A3→A4

otherwise,
(11)

r ss–peq
A2→A2R5

=

{
r peq

A2→A2R5
if λ r peq

A2→A2R5
> rA2R5→A2

,

r ss
A2→A2R5

otherwise,
(12)

and

r ss–peq
A1→A3

= r peq
A1→A3

always, (13)

where r denotes the rate of a jump process. The calculated steady-state–partial-equilibrium
rates r ss–peq are used to determine which processes occur in the KMC simulation, which in
turn calculates the concentrations of the final products, A2, A3, A4 and A2R5.

Note that the desorption processes (bottom row of Equation 8 and right-hand side of the
inequalities in Equations 9–12) do not carry an ‘ss’ or ‘peq’ label because the rates of these
processes are not a function of the species concentrations calculated via the steady-state
or partial-equilibrium approximations. These rates are therefore calculated without either
approximation. The rate of the A1→ A3 process was taken from the partial-equilibrium
approximation because the process cannot be described using the steady-state assumption
(because of the non-linear reaction, Table A.3, reaction 17). The value of the multiplier
was set as λ = 1 for all cases. A detailed step-by-step explanation of the treatment of the
jump processes and reactions is given in Appendix A.2.2.

Figure 8 shows the concentrations of the products A2, A3, A4 and A2R5 calculated by the
KMC model using the combined steady-state–partial-equilibrium approximation versus
reference solutions calculated using the full ABF mechanism. The KMC model shows
substantial agreement with the reference data. The main deviations occur in the concen-
tration of A2 before the crossover point in Figure 8(a) (where the model uses the partial-
equilibrium approximation) and in the concentrations of A3 and A4 after the crossover
point in Figure 8(c) (where the model uses the steady-state approximation) and are due to
the approximate treatment of the chemistry. The relationship between the differences and
the cold-gas flow velocity remains to be investigated.
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The methodology demonstrated in Figure 8 allows KMC simulations of PAH growth
in flame environments without introducing significant additional complexity. This is
achieved by approximating the contributions of key intermediate species to the main PAH
growth processes. Although the intermediate species may be of interest for some appli-
cations, we propose this combined steady-state and partial-equilibrium methodology for
use in coupled simulations of PAH growth leading to soot (or other carbonaceous particle)
formation, where it is necessary for the model to simulate a large ensemble of PAHs.
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(a) Cold-gas flow velocity of 4 cm/s [as per 14].

Figure 8: Simulations of a premixed burner-stabilized ethylene flame at an equivalence
ratio of 2.4 [14] to form naphthalene (A2, top left), acenaphthylene (A2R5, top
right), phenanthrene (A3, bottom left) and pyrene (A4, bottom right). Solid
black lines show the results of fully-coupled flame simulations using the full
ABF mechanism. Coloured lines show the average result from 100 KMC sim-
ulations using a combination of the steady-state and partial-equilibrium ap-
proximations. The coloured shaded region surrounding the lines shows two
standard deviations to either side of the average KMC results. Part 1.
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Figure 8: Simulations of a premixed burner-stabilized ethylene flame. Part 2.
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5 Conclusions

This paper has investigated the range of validity of the steady-state and partial-equilibrium
approximations for ring growth processes in the context of PAH-KMC models. These
approximations were used to approximate the concentrations of intermediate species and
express key growth pathways as jump processes. Simulations of closed systems showed
that the steady-state approximation gave good results at high temperatures and long times,
whereas the partial-equilibrium approximation gave good results at short times and low
temperatures. A new methodology that combines both approximations was developed
and tested in closed systems. The methodology compares the rate of partial-equilibrium
growth with the rate of ring desorption to determine whether to use the steady-state or
partial-equilibrium approximation. The methodology showed a substantial improvement
in accuracy over the steady-state approximation across temperatures ranging from 1000
to 2500 K and equivalence ratios ranging from 0.5 to 10.

The proposed methodology was implemented in a KMC model of PAH growth to compute
the growth rate of stochastic jump processes. The application of the model was demon-
strated for simulations of a premixed ethylene flame. The results were in close agreement
with a reference solution obtained from a fully-coupled simulation of the flame using the
ABF mechanism. The ABF mechanism was selected because it contains well-established
HACA sequences for PAH growth which are common to many later mechanisms and
because it does not contain routes that are unique to small PAHs. This is an important
requirement for generalising the KMC model developed in this work. The new method-
ology has the potential to be used to study the growth of large ensembles of PAHs, for
example, in fully-coupled simulations of PAH growth and soot formation.
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A Appendices

A.1 Steady-state and partial-equilibrium model equations

The sections that follow summarise the development of the steady-state and partial-equilibrium
model equations used in this work. The exposition and the production and loss notation
closely follows that used in a number of related works [see for example 31, 34, 37, 45, 76].

A.1.1 General reaction equations

A general set of chemical reactions can be written in the form

N

∑
α=1

ν
′
αiχα

−−⇀↽−−
N

∑
α=1

ν
′′
αiχα , i = 1, . . . , I, (A.1)

where χ are the chemical species and ν ′
αi and ν ′′

αi are the forward and reverse stoichiomet-
ric coefficients of species α in reaction i. The rate of progress qi can be written as

qi = ki

N

∏
j=1

cν ′ji
j −

ki

Kci

N

∏
j=1

cν ′′ji
j , (A.2)

where ki is the forward rate constant, Kci is the equilibrium constant of reaction i and c j is
the concentration of species j. The net production rate ω̇α of species α is given as

ω̇α =
I

∑
i=1

(ν ′′
αi−ν

′
αi)qi. (A.3)

A.1.2 Production and loss terms

The net production rate ω̇α can be manipulated by substituting Equation (A.2) into Equa-
tion (A.3) to separate the terms responsible for the production and consumption of species
α

ω̇α =
I

∑
i=1

(ν ′′
αi−ν

′
αi)

(
ki

N

∏
j=1

cν ′ji
j −

ki

Kci

N

∏
j=1

cν ′′ji
j

)
, (A.4)

=
I

∑
i=1

(
ν
′′
αiki

N

∏
j=1

cν ′ji
j +ν

′
αi

ki

Kci

N

∏
j=1

cν ′′ji
j

)

−
I

∑
i=1

(
ν
′
αiki

N

∏
j=1

cν ′ji
j +ν

′′
αi

ki

Kci

N

∏
j=1

cν ′′ji
j

)
.

(A.5)

Assuming that all reactions are first order with respect to all species in the forward and
reverse reactions, Equation (A.5) can be rearranged to give

ω̇α = Pα −Lαcα , (A.6)
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where Pα and Lα are the production and loss terms of species α

Pα =
I

∑
i=1

P(i)
α
, where P(i)

α
= ν

′′
αiki

N

∏
j=1

cν ′ji
j +ν

′
αi

ki

Kci

N

∏
j=1

cν ′′ji
j , (A.7)

Lα =
I

∑
i=1

L(i)
α
, where L(i)

α
= ν

′
αiki

N

∏
j=1
j 6=α

cν ′ji
j +ν

′′
αi

ki

Kci

N

∏
j=1
j 6=α

cν ′′ji
j . (A.8)

In order to assist the analysis in the following sections, it is useful to introduce the terms

Pα,β = ∑
i∈Rβ→α

P(i)
α,β , where P(i)

α,β = ν
′′
αiki

N

∏
j=1
j 6=β

cν ′ji
j +ν

′
αi

ki

Kci

N

∏
j=1
j 6=β

cν ′′ji
j . (A.9)

Rβ→α is the set of reactions that produce species α from species β . The term Pα,β is a
pseudo first-order rate coefficient such that Pα,β cβ gives rate of production of species α

from species β under the first-order assumption made above and under the provision that
species α and β are on different sides of the reaction equation.1

The loss term is a pseudo first-order rate coefficient and has a connection with the lifetime
τα of species α

τα =
1

Lα

, (A.10)

which has been shown to be related to the time for which a short-lived species is present
in a reaction system [76].

A.1.3 Approximations based on timescale separation

In the analysis that follows, we assume a closed constant-volume isothermal system with
N species and I chemical reactions. A material balance over the system yields

dcα

dt
= Pα −Lαcα , α = 1, . . . ,N, (A.11)

where the right hand side describes the net production rate of species α and follows from
Equation (A.6), and c is the solution vector containing the molar concentrations of the
species.

Steady-state approximation

The steady-state approximation decomposes equation (A.11) into the following equations

0≈ Pα −Lαcα , α ∈ Sss, (A.12)
dcα

dt
= Pα −Lαcα , α /∈ Sss, (A.13)

1Under these restrictions, (ν ′
αi,ν

′
β i,ν

′′
αi,ν

′′
β i) = (0,1,1,0) or (1,0,0,1).
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where Sss denotes a subset of species that evolve rapidly relative to the other species in the
system. The underlying assumption is that these species reach a local steady-state, such
that the left hand side of Equation (A.12) tends to zero over timescales much smaller than
the timescales of Equation (A.13). Tikhonov’s theorem [74, 75] states that the solution of
Equations (A.12) and (A.13) approaches the solution of Equation (A.11) as the left hand
side of (A.12) tends to zero.

Equation (A.12) can be written as

Lαcα − ∑
β∈Sss

Pα,β cβ = Pα − ∑
β∈Sss

Pα,β cβ︸ ︷︷ ︸
=:bα

, α ∈ Sss. (A.14)

A key insight is that Equation (A.14) is linear in the concentrations of the species in
Sss if Sss is chosen such that no more than one species from Sss appears on any side of a
reaction. To see this, we note that under the given constraint, Lα is not a function of cα (see
Equation A.8) and Pα,β is not a function of cα or cβ (see Equation A.9 and note that Pα,β

describes the production of species α , such that species α is not a reactant). Furthermore,
bα does not depend on the species in Sss because the second term introduced on the right
hand side of Equation (A.14) is designed to exactly subtract those dependencies from Pα .

Under these constraints, Equation (A.14) can be written as a linear system

Msscss = bss, (A.15)

where css is a vector of the molar concentrations of the species in the set Sss,

Mss =


Lα1 −Pα1,α2 . . . −Pα1,αNss

−Pα2,α1 Lα2 . . . −Pα2,αNss

...
... . . . ...

−PαNss ,α1 −PαNss ,α2 . . . LαNss

 and bss =


bα1

bα2

...
bαNss

 ,
where αi, i = 1, . . . ,Nss is an enumeration of the species in the set Sss and

bα = Pα − ∑
β∈Sss

Pα,β cβ . (A.16)

Equation (A.15) can be solved for the concentrations of the species in the set Sss. The
concentrations of the remaining species must be solved by integrating Equation (A.13).
The solutions of these equations must be tightly coupled in order to obtain accurate results.
This approach that allows the reduction of the dimension of the set of ODEs from N to
N−Nss, reducing the computational cost of the problem.

Several authors have investigated the application of the steady-state approximation to
different systems [44, 55, 75, 76]. Its application to slow-forming species can produce
significant errors, whereas good results can be achieved given appropriate selection of
fast-forming species. The chemical lifetime of a species seems to be the best predictor to
determine whether it can be approximated or not by the steady-state assumption [75].
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Partial-equilibrium approximation

The partial-equilibrium approximation decomposes Equation (A.11) into two equations

dcα

dt
= Pα −Lαcα , α ∈ Speq, (A.17)

dcα

dt
= Pα −Lαcα , α /∈ Speq, (A.18)

where Speq denotes a subset of species whose concentrations are controlled by a set of
reactions that rapidly approach equilibrium, Rpeq. These should be reversible reactions
where the forward and reverse rates are large and approximately equal, and where at least
one species in the reaction (a reactant, a product or one of each) belongs to Speq.

The terms in Equation (A.17) can be further decomposed

dcα

dt
= (P peq

α
+P neq

α
)− (L peq

α
+L neq

α
)cα , α ∈ Speq, (A.19)

where P peq
α

and L peq
α

denote the contribution from reactions in Rpeq (and P neq
α

and L neq
α

denote
contributions from the remaining reactions) to Pα and Lα , such that

0≈ P peq
α −L peq

α cα , α ∈ Speq. (A.20)

Under constraints analogous to those described in relation to Equation (A.14), Equa-
tion (A.20) can be used to obtain a linear system for cpeq

Mpeqcpeq = bpeq, (A.21)

where cpeq is a vector of the molar concentrations of the species in the set Speq,

Mpeq =


L peq

α1
−P peq

α1,α2
. . . −P peq

α1,αNss

−P peq
α2,α1

L peq
α2

. . . −P peq
α2,αNss

...
... . . . ...

−P peq
αNss ,α1

−P peq
αNss ,α2

. . . L peq
αNss

 and bpeq =


b peq

α1

b peq
α2

...
b peq

αNss

 ,
where αi, i = 1, . . . ,Npeq is an enumeration of the species in the set Speq,

b peq
α

= P peq
α
− ∑

β∈Speq

P peq

α,β cβ , (A.22)

and P peq
α

, L peq
α

and P peq

α,β are defined as special cases of Equations (A.7), (A.8) and (A.9)

P peq
α = ∑

i∈Rpeq

P(i)
α

, (A.23)

L peq
α

= ∑
i∈Rpeq

L(i)
α

, (A.24)

and

P peq

α,β = ∑
i∈Rpeq∩Rβ→α

P(i)
α,β , (A.25)
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where the sum over reactions i ∈ Rpeq ∩Rβ→α should be understood as a sum over the
subset of reactions in Rpeq that produce species α from species β .

One important difference between the partial-equilibrium and steady-state approximations
is that the terms in the partial-equilibrium Equations (A.23–A.25) are defined in terms of a
subset of the reactions. One consequence of this is that the partial-equilibrium equations,
(A.18) and (A.20), are less tightly coupled than the steady-state equations, (A.12) and
(A.13).

A.2 Steady-state and partial-equilibrium reactions and species

Tables A.1–A.3 list the reactions and species used in steady-state and partial-equilibrium
approximations in Sections 4.1–4.3 of the main text.

24



Table A.1: Reactions used for the steady-state and partial-equilibrium approximations of
naphthalene (A2) growing from benzene (A1). Reactions above the midline
(1–20) are used in the partial-equilibrium approximation. All reactions (1–
28) are used in the steady-state approximation. The treatment of reactions
21–28 in the partial-equilibrium approximation is explained in Section A.2.1.
Rates taken from ABF mechanism [2].

No. Reaction

1 A1 +H −−⇀↽−− A1
• +H2

2 A1 +OH −−⇀↽−− A1
• +H2O

3 A1
• +H+ (M) −−⇀↽−− A1 + (M)

4 A1
• +C2H2 −−⇀↽−− A1C2H +H

5 A1
• +C2H2 −−⇀↽−− A1C2H2

6 A1C2H +H −−⇀↽−− A1C2H2
7 A1C2H +C2H −−⇀↽−− A1(C2H)C2H2 +H
8 A1C2H +H −−⇀↽−− A1C2H• +H2
9 A1C2H +OH −−⇀↽−− A1C2H• +H2O
10 A1C2H• +H+ (M) −−⇀↽−− A1C2H + (M)
11 A1 +C2H −−⇀↽−− A1C2H +H
12 A1C2H3 +H −−⇀↽−− A1C2H3

• +H2
13 A1C2H3 +OH −−⇀↽−− A1C2H3

• +H2O
14 A1C2H3

• +H+ (M) −−⇀↽−− A1C2H3 + (M)
15 A1

• +C2H4 −−⇀↽−− A1C2H3 +H
16 A1

• +C2H3 −−⇀↽−− A1C2H3
17 A1 +C2H3 −−⇀↽−− A1C2H3 +H
18 A1C2H3 +H −−⇀↽−− A1C2H2 +H2
19 A1C2H3 +OH −−⇀↽−− A1C2H2 +H2O
20 A1C2H• +C2H2 −−⇀↽−− A1(C2H)C2H2 +H

21† A1C2H2 +C2H2 −−⇀↽−− A2 +H
22† A1C2H3

• +C2H2 −−⇀↽−− A2 +H
23† A1

• +C4H4 −−⇀↽−− A2 +H
24† A1C2H• +C2H2 −−⇀↽−− A2

•

25† A1(C2H)C2H2
• +H −−⇀↽−− A2

•

26 A2 +H −−⇀↽−− A2
• +H2

27 A2 +OH −−⇀↽−− A2
• +H2O

28 A2
• +H+ (M) −−⇀↽−− A2 + (M)

† Indicates reactions contributing to Equation (A.30). See Section A.2.1.
Species sets:
Sss = {A •

1 ,A1C2H2,A1C2H,A1C2H•,A1C2H3,A1C2H •
3 ,A1(C2H)C2H •

2 ,A •
2 ,A2}.

Speq = {A •
1 ,A1C2H2,A1C2H,A1C2H•,A1C2H3,A1C2H •

3 ,A1(C2H)C2H •
2 }.

Sss \Speq = {A •
2 ,A2}.
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Table A.2: Reactions used for the steady-state and partial-equilibrium approximations of
phenanthrene (A3) growing from naphthalene (A2). Reactions above the mid-
line (1–14) are used in the partial-equilibrium approximation. All reactions
(1–19) are used in the steady-state approximation. The treatment of reactions
15–19 in the partial-equilibrium approximation is explained in Section A.2.1.
Rates taken from ABF mechanism [2].

No. Reaction

1 A2 +H −−⇀↽−− A2
• +H2

2 A2 +OH −−⇀↽−− A2
• +H2O

3 A2
• +H+ (M) −−⇀↽−− A2 + (M)

4 A2
• +C2H2 −−⇀↽−− A2C2H2

5 A2
• +C2H2 −−⇀↽−− A2C2H +H

6 A2 +C2H −−⇀↽−− A2C2H +H
7 A2C2H +H −−⇀↽−− A2C2H2
8 A2C2H2 +H −−⇀↽−− A2C2H +H2
9 A2C2H2 +OH −−⇀↽−− A2C2H +H2O
10 A2C2H +H −−⇀↽−− A2C2H• +H2
11 A2C2H +OH −−⇀↽−− A2C2H• +H2O
12 A2C2H• +H+ (M) −−⇀↽−− A2C2H + (M)
13 A2C2H +C2H −−⇀↽−− A2(C2H)C2H2 +H
14 A2C2H• +C2H2 −−⇀↽−− A2(C2H)C2H2 +H

15† A2C2H• +C2H2 −−⇀↽−− A3
•

16† A2(C2H)C2H2
• +H −−⇀↽−− A3

•

17 A3 +H −−⇀↽−− A3
• +H2

18 A3 +OH −−⇀↽−− A3
• +H2O

19 A3
• +H+ (M) −−⇀↽−− A3 + (M)

† Indicates reactions contributing to Equation (A.30). See Section A.2.1.
Species sets:
Sss = {A •

2 ,A2C2H2,A2C2H,A2C2H•,A2(C2H)C2H •
2 ,A •

3 ,A3}.
Speq = {A •

2 ,A2C2H2,A2C2H,A2C2H•,A2(C2H)C2H •
2 }.

Sss \Speq = {A •
3 ,A3}.
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Table A.3: Reactions used for partial-equilibrium approximation of phenanthrene (A3)
growing from benzene (A1). Reactions above the midline (1–12) are used in
the partial-equilibrium approximation. The treatment of reactions 13–17 is
explained in Section A.2.1. Rates taken from ABF mechanism [2].

No. Reaction

1 A1 +H −−⇀↽−− A1
• +H2

2 A1 +OH −−⇀↽−− A1
• +H2O

3 A1
• +H+ (M) −−⇀↽−− A1 + (M)

4 A1
• +C2H2 −−⇀↽−− A1C2H +H

5 A1
• +C2H2 −−⇀↽−− A1C2H2

6 A1C2H +H −−⇀↽−− A1C2H2
7 A1C2H +C2H −−⇀↽−− A1(C2H)C2H2 +H
8 A1C2H +H −−⇀↽−− A1C2H• +H2
9 A1C2H +OH −−⇀↽−− A1C2H• +H2O
10 A1C2H• +H+ (M) −−⇀↽−− A1C2H + (M)
11 A1 +C2H −−⇀↽−− A1C2H +H
12 A1C2H• +C2H2 −−⇀↽−− A1(C2H)C2H2 +H

13 A1 +A1
• −−⇀↽−− P2 +H

14 P2 +H −−⇀↽−− P2
• +H2

15† P2
• +C2H2 −−⇀↽−− A3 +H

16† A1 +A1C2H• −−⇀↽−− A3 +H
17† A1

• +A1C2H −−⇀↽−− A3 +H
† Indicates reactions contributing to Equation (A.30). See Section A.2.1.
Species sets:
Speq = {A •

1 ,A1C2H2,A1C2H,A1C2H•,A1(C2H)C2H •
2 }.

This process is only treated using the partial-equilibrium approximation.

27



Table A.4: Jump processes, reactions and species for the KMC model. For each process,
reactions above the midline are used in the partial-equilibrium approxima-
tion; all reactions (above and below the line) are used in the steady-state
approximation. Reactions below the midline are used to calculate the overall
rate of the process. See Section A.2.2. Rates taken from ABF mechanism [2].

Jump process Intermediate reactions

Free-edge
ring growth
A1 −−→ A2

1 A1 +H −−⇀↽−− A1
• +H2

2 A1 +OH −−⇀↽−− A1
• +H2O

3 A1
• +H+ (M) −−⇀↽−− A1 + (M)

4 A1
• +C2H2 −−⇀↽−− A1C2H +H

5 A1
• +C2H2 −−⇀↽−− A1C2H2

6 A1C2H +H −−⇀↽−− A1C2H2
7 A1C2H +C2H −−⇀↽−− A1(C2H)C2H2 +H
8 A1C2H +H −−⇀↽−− A1C2H• +H2
9 A1C2H +OH −−⇀↽−− A1C2H• +H2O
10 A1C2H• +H+ (M) −−⇀↽−− A1C2H + (M)
11 A1 +C2H −−⇀↽−− A1C2H +H
12 A1C2H3 +H −−⇀↽−− A1C2H3

• +H2
13 A1C2H3 +OH −−⇀↽−− A1C2H3

• +H2O
14 A1C2H3

• +H+ (M) −−⇀↽−− A1C2H3 + (M)
15 A1

• +C2H4 −−⇀↽−− A1C2H3 +H
16 A1

• +C2H3 −−⇀↽−− A1C2H3
17 A1 +C2H3 −−⇀↽−− A1C2H3 +H
18 A1C2H3 +H −−⇀↽−− A1C2H2 +H2
19 A1C2H3 +OH −−⇀↽−− A1C2H2 +H2O
20 A1C2H• +C2H2 −−⇀↽−− A1(C2H)C2H2 +H

21† A1C2H2 +C2H2 −−→ A2 +H
22† A1C2H3

• +C2H2 −−→ A2 +H
23† A1

• +C4H4 −−→ A2 +H
24† A1C2H• +C2H2 −−→ A2

•

25† A1(C2H)C2H2
• +H −−→ A2

•

Sss = {A •
1 ,A1C2H2,A1C2H,A1C2H•,

A1C2H3,A1C2H •
3 ,A1(C2H)C2H •

2 ,A •
2 ,A2} .

Speq = {A •
1 ,A1C2H2,A1C2H,A1C2H•,A1C2H3,A1C2H •

3 ,A1(C2H)C2H •
2 } .

Sss \Speq = {A •
2 ,A2} .

Continued on next page
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Table A.4 – continued from previous page
Jump process Intermediate reactions

Free-edge ring
desorption 1

A2 −−→ A1

1 A2 +H −−⇀↽−− A2
• +H2

2 A2 +OH −−⇀↽−− A2
• +H2O

3 A2
• +H+ (M) −−⇀↽−− A2 + (M)

4‡ A2 +H −−→ A1C2H2 +C2H2
5‡ A2 +H −−→ A1C2H3

• +C2H2
6‡ A2 +H −−→ A1

• +C4H4
7‡ A2

• −−→ A1C2H• +C2H2
8‡ A2

• −−→ A1(C2H)C2H2 +H

Free-edge
ring growth
A2 −−→ A3

1 A2 +H −−⇀↽−− A2
•+H2

2 A2 +OH −−⇀↽−− A2
• +H2O

3 A2
• +H+ (M) −−⇀↽−− A2 + (M)

4 A2
• +C2H2 −−⇀↽−− A2C2H2

5 A2
• +C2H2 −−⇀↽−− A2C2H +H

6 A2 +C2H −−⇀↽−− A2C2H +H
7 A2C2H +H −−⇀↽−− A2C2H2
8 A2C2H2 +H −−⇀↽−− A2C2H +H2
9 A2C2H2 +OH −−⇀↽−− A2C2H +H2O
10 A2C2H +H −−⇀↽−− A2C2H• +H2
11 A2C2H +OH −−⇀↽−− A2C2H• +H2O
12 A2C2H• +H+ (M) −−⇀↽−− A2C2H + (M)
13 A2C2H +C2H −−⇀↽−− A2(C2H)C2H2 +H
14 A2C2H• +C2H2 −−⇀↽−− A2(C2H)C2H2 +H

15† A2C2H• +C2H2 −−→ A3
•

16† A2(C2H)C2H2
• +H −−→ A3

•

Sss = {A •
2 ,A2C2H2,A2C2H,A2C2H•,A2(C2H)C2H •

2 ,A •
3 ,A3} .

Speq = {A •
2 ,A2C2H2,A2C2H,A2C2H•,A2(C2H)C2H •

2 } .
Sss \Speq = {A •

3 ,A3} .

Free-edge ring
desorption 1

A3 −−→ A2

1 A3 +H −−⇀↽−− A3
• +H2

2 A3 +OH −−⇀↽−− A3
• +H2O

3 A3
• +H+ (M) −−⇀↽−− A3 + (M)

4‡ A3
• −−→ A2C2H• +C2H2

5‡ A3
• −−→ A2(C2H)C2H2 +H

Continued on next page
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Table A.4 – continued from previous page
Jump process Intermediate reactions

Armchair
ring growth
A3 −−→ A4

1 A3 +H −−⇀↽−− A3
• +H2

2 A3 +OH −−⇀↽−− A3
• +H2O

3 A3
• +H+ (M) −−⇀↽−− A3 + (M)

4 A3
• +C2H2 −−⇀↽−− A3C2H2

5 A3
• +C2H2 −−⇀↽−− A3C2H +H

6 A3 +C2H −−⇀↽−− A3C2H +H
7 A3C2H +H −−⇀↽−− A3C2H2

8† A3
• +C2H2 −−→ A4 +H

9† A3C2H +H −−→ A4 +H
10† A3C2H2 −−→ A4 +H

Sss = {A •
3 ,A3C2H2,A3C2H,A4} .

Speq = {A •
3 ,A3C2H2,A3C2H} .

Sss \Speq = {A4} .

Armchair
desorption
A4 −−→ A3

1‡ A4 +H −−→ A3
• +C2H2

2‡ A4 +H −−→ A3C2H +H
3‡ A4 +H −−→ A3C2H2

Ring
condensation
A1 −−→ A3

1 A1 +H −−⇀↽−− A1
• +H2

2 A1 +OH −−⇀↽−− A1
• +H2O

3 A1
• +H+ (M) −−⇀↽−− A1 + (M)

4 A1
• +C2H2 −−⇀↽−− A1C2H +H

5 A1
• +C2H2 −−⇀↽−− A1C2H2

6 A1C2H +H −−⇀↽−− A1C2H2
7 A1C2H +C2H −−⇀↽−− A1(C2H)C2H2 +H
8 A1C2H +H −−⇀↽−− A1C2H• +H2
9 A1C2H +OH −−⇀↽−− A1C2H• +H2O
10 A1C2H• +H+ (M) −−⇀↽−− A1C2H + (M)
11 A1 +C2H −−⇀↽−− A1C2H +H
12 A1C2H• +C2H2 −−⇀↽−− A1(C2H)C2H2 +H

13 A1 +A1
• −−⇀↽−− P2 +H

14 P2 +H −−⇀↽−− P2
• +H2

15∗ P2
• +C2H2 −−→ A3 +H

16∗ A1 +A1C2H• −−→ A3 +H
17∗ A1

• +A1C2H −−→ A3 +H

Speq = {A •
1 ,A1C2H2,A1C2H,A1C2H•,A1(C2H)C2H •

2 } .
This process is only treated using the partial-equilibrium approximation.

Continued on next page
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Table A.4 – continued from previous page
Jump process Intermediate reactions

Five-member
ring growth at

zig-zag
A2 −−→ A2R5

1 A2 +H −−⇀↽−− A2
•+H2

2 A2 +OH −−⇀↽−− A2
• +H2O

3 A2
• +H+ (M) −−⇀↽−− A2 + (M)

4 A2
• +C2H2 −−⇀↽−− A2C2H2

5 A2
• +C2H2 −−⇀↽−− A2C2H +H

6 A2 +C2H −−⇀↽−− A2C2H +H
7 A2C2H +H −−⇀↽−− A2C2H2
8 A2C2H2 +H −−⇀↽−− A2C2H +H2
9 A2C2H2 +OH −−⇀↽−− A2C2H +H2O
10 A2C2H +H −−⇀↽−− A2C2H• +H2
11 A2C2H +OH −−⇀↽−− A2C2H• +H2O
12 A2C2H• +H+ (M) −−⇀↽−− A2C2H + (M)
13 A2C2H +C2H −−⇀↽−− A2(C2H)C2H2 +H
14 A2C2H• +C2H2 −−⇀↽−− A2(C2H)C2H2 +H

15† A2
• +C2H2 −−→ A2R5 +H

16† A2C2H +H −−→ A2R5 +H
17† A2C2H2 −−→ A2R5 +H

Sss = {A •
2 ,A2C2H2,A2C2H,A2C2H•,A2(C2H)C2H •

2 ,A2R5} .
Speq = {A •

2 ,A2C2H2,A2C2H,A2C2H•,A2(C2H)C2H •
2 } .

Sss \Speq = {A2R5} .

Five-member
ring desorption 1

A2R5 −−→ A2

1‡ A2R5 +H −−→ A2
• +C2H2

2‡ A2R5 +H −−→ A2C2H +H
3‡ A2R5 +H −−→ A2C2H2

1 The rates of the desorption processes are independent of the concentration of intermediate PAH
species, and can therefore be evaluated without a steady-state or partial-equilibrium approximation.
†/‡ Reversible reactions whose forward and reverse contributions are split between jump processes.
The reactions are still treated as reversible for the purpose of solving Equation (A.14) for css.
∗ Reactions treated as irreversible. The reverse rates were observed to be negligible.
†/‡/∗ Reactions used to calculate the overall rate of each jump process. See Section A.2.2.
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A.2.1 Treatment of non-partial-equilibrium reactions

The partial-equilibrium approximations in this work operate on a subset of reactions that
exclude the formation of naphthalene (A2, Table A.1) and phenanthrene (A3, Tables A.2
and A.3). The concentrations of A2 and A3 must be calculated separately.

The concentrations of A2 and A3 are controlled by the final reactions in Tables A.1 and A.2

A2 +H
k26−−⇀↽−−
k−26

A •
2 +H2, (Table A.1, reaction 26)

A2 +OH
k27−−⇀↽−−
k−27

A •
2 +H2O, (Table A.1, reaction 27)

A •
2 +H+(M)

k28−−⇀↽−−
k−28

A2 +(M), (Table A.1, reaction 28)

and

A3 +H
k17−−⇀↽−−
k−17

A •
3 +H2, (Table A.2, reaction 17)

A3 +OH
k18−−⇀↽−−
k−18

A •
3 +H2O, (Table A.2, reaction 18)

A •
3 +H+(M)

k19−−⇀↽−−
k−19

A3 +(M). (Table A.2, reaction 19)

An algebraic relationship between the concentrations cA2
and cA •

2
, and cA3

and cA •
3

can be
derived by applying a steady-state or partial-equilibrium approximation to each of these
sets of reactions [see for example 20]. In this work, a partial-equilibrium approximation
is used to derive the following relationships

cA •
2
= cA2

(
k26cH + k27cOH + k−28

k−26cH2
+ k−27cH2O + k28cH

)
, (A.26)

cA •
3
= cA3

(
k17cH + k18cOH + k−19

k−17cH2
+ k−18cH2O + k19cH

)
. (A.27)

In the case of the ODE-based simulations (Sections 4.2 and 4.3), the concentrations of
species in the set α /∈ Speq are calculated by solving Equation (A.18). The concentrations
of the main PAH products, A2 and A3, are treated as a special case and are calculated using
Equations (A.26) and (A.27) in conjunction with solving equations of the same form as
Equation (4) to find the total concentration of each species and its corresponding radical

cA2
+ cA •

2
≈
∫ t

0
P neq

A2
+P neq

A •
2

dt, (A.28)

cA3
+ cA •

3
≈
∫ t

0
P neq

A3
+P neq

A •
3

dt, (A.29)

where

P neq
α

= ∑
i∈Rneq

P(i)
α

, (A.30)
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is the production of species α due to the reactions in the set Rneq and P(i)
α is defined as

per Equation (A.7). The reactions in Rneq contributing to Equations (A.28) and (A.29)
are marked with a dagger (†) in Tables A.1–A.3. Note that Table A.3, reaction 17 has a
dependency on the concentration of P •2 . This is evaluated using the relationship

cP2
=

k13cA1
cA •

1
+ k−14cP •

2
cH2

k−13cH + k14cH
(A.31)

cP •
2
=

k14cP2
cH

k−14cH2
+ k15cC2H2

(A.32)

arising from the application of a steady-state approximation to Table A.3, reactions 13–15.

The rationale behind the special treatment of A2 and A3 is that it avoids the need to solve
tightly coupled ODEs for the non-partial-equilibrium PAH species. This reduces the com-
putational complexity of the method, so is desirable in the context of our objective to
develop a computationally efficient model.

A.2.2 Calculation of KMC jump process rates

The KMC model calculates the concentrations of A2, A2R5, A3 and A4 by performing a
kinetic Monte Carlo simulation using the jump processes in Table A.4. The temperature
and small-molecule concentrations (up to and including benzene, A1) are imposed as
boundary conditions. For each jump process, the concentrations of the (PAH) species
in either Sss or Speq are calculated by solving Equation (A.15) for css or Equation (A.21)
for cpeq, depending on the choice of method. In both cases, the rates of the jump processes
are calculated by evaluating the rates of the reactions marked †, ‡ and ∗ in Table A.4.

Similar to the treatment of the non-partial-equilibrium reactions in the ODE-based simu-
lations (see Section A.2.1), the KMC model uses Equations (A.26) and (A.27) to calculate
A2 and A3 in conjunction with tracking the total concentrations cA2

+ cA •
2

and cA3
+ cA •

3
.

Likewise, equations (A.31) and (A.32) are used to calculate the concentration of P •2 in
order to evaluate the rate of the phenyl addition (Table A.4, reaction 15).

The mechanism in Table A.4 can be generalised (not shown here) to describe the growth
of arbitrarily-sized PAHs. See for example the work by Frenklach and co-workers [20, 25]
and Celnik et al. [10].

A.3 Effect of ring condensation reactions

Figure A.1 shows the concentrations of A2 and A3 calculated using the partial-equilibrium
approximation without the inclusion of ring condensation reactions (Figure 2 process (iii)
in the main text) versus reference solutions calculated using the full ABF mechanism in a
closed isothermal system. For comparison, we also show data calculated using the steady-
state approximation. The figure shows that given long enough, good agreement is seen
between the steady-state approximation and the reference solutions. Comparison with
Figure 5 (in the main text) shows that both the improved treatment of reactions during the
induction period and the inclusion of process (iii) in the partial-equilibrium approximation
are important to achieve agreement with the reference data for A3 at early times.
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(a) Naphthalene (A2).
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(b) Phenanthrene (A3).

Figure A.1: Simulations of the reaction of ethylene in a closed isothermal system, ini-
tially at an equivalence ratio of 5.0, to form naphthalene (A2, top panels)
and phenanthrene (A3, bottom panels). Solid lines show the results of sim-
ulations using the full ABF mechanism. Circles show the concentration of
each species calculated using the steady-state approximation. Squares show
the concentration of each species calculated using the partial-equilibrium
approximation. Neither approximation includes process (iii).
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