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Abstract

In this paper, we illustrate the relevance of ontologies and semantic technologies
in process industry and discuss how they can support the interoperability between
agents in cross-domain scenarios. We present a comprehensive industrial air pollu-
tion scenario, that has been implemented as part of the J-Park Simulator, to analyze
questions related to interoperability. The J-Park Simulator utilizes ontologies and
acts as platform for integrating real-time data, knowledge, models and tools to fulfill
objectives such as simulation and optimization in cross-domain and multi-level sce-
narios. It utilizes ontologies that are designed in a modular structure from different
application domains and a distributed knowledge graph to store and link the data.
We conclude that the architecture of JPS supports interoperability in cross-domain
scenarios. The final discussion of the industrial air pollution scenario also reveals
open questions that should be addressed in future works.

Highlights

• The importance of ontologies and semantic technologies for cross-domain sce-
narios in process industry is illustrated.

• The main architectural principles of J-Park Simulator are presented.

• A modular structure for domain ontologies and a distributed knowledge graph
are proposed to support the interoperability of agents in cross-domain scenar-
ios.

• An implementation of an industrial air pollution scenario is used to analyze the
interoperabilty between agents and to discuss open questions for future work.
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1 Introduction

Software tools for modelling, optimization and simulation are decisive in process indus-
try. Interoperability between different tools and models has always played an important
role in designing and simulating larger composed structures such as chemical plants. In-
teroperability can be described as the ability of systems to understand each other and to
use each other’s functionalities [1]. As the complexity and choice of tools increase in the
future, interoperability will become even more critical. It is also considered as one of the
key factors of Industry 4.0 [2]. To achieve interoperability, components and systems that
are involved in the same application scenario "must be capable of automatically interpret-
ing each other’s roles and ’understanding’ each other", and consequently, semantics and
models are important research topics for Industry 4.0 [3].

Interoperability and semantics are especially critical in cross-domain scenarios which we
will illustrate with an industrial air pollution scenario. This scenario is used through-
out this paper and can be summarized as follows: The emissions of a power plant are
estimated and by considering the effects of surrounding buildings and real-time weather
conditions, the dispersion profiles for different pollutants are simulated. This short de-
scription already contains concepts from different domains such as "power plant", "pollu-
tant", "building" and "weather". We implemented this scenario by utilizing two pieces of
commercial software - one for estimating the plant’s emissions and another for simulating
the dispersion of the emitted pollutants. Consequently, both software have to share data
related to emissions and pollutants. In addition, the second software has to process data
related to weather conditions and buildings that are in the vicinity of the plant.

If we are only interested in the industrial air pollution scenario for a specific plant at a
specific location, its implementation would be straight-forward. But this is not true if we
want to vary, extend, generalize and/or combine the scenario with other scenarios. For ex-
ample, we might want to extend the scenario to include additional emission sources such
as chemical plants or vessels in a port or replace the commercial software estimating emis-
sions with other simulation tools or with real-time measurements. We might also want to
use the same scenario to determine the locations of new decentralized power plants in
order to adhere to emission levels for nearby buildings. In addition, the power plant could
be part of an eco-industrial park with chemical plants as its consumers and/or it could be
connected to a smart grid where some of the buildings’ roofs are equipped with solar pan-
els. A cross-domain simulation would allow predictions for power demand, market prices
and consumer behaviour etc. based on factors such as weather conditions. However, such
complexity raises the question of how components and systems can access and understand
information from different sources, e.g. building data from different locations.

In order to deal with the increasing complexity, a generic approach is required. Ontologies
and related technologies can provide a uniform framework to describe data semantically,
to share knowledge and to cope with heterogeneity in cross-domain applications. An
ontology "is an explicit specification of a conceptualization" [4]. It defines and describes
the concepts of an application domain and their relationships to each other in an expressive
format that allows for logical reasoning and inference.

Ontologies have been designed and used by many application domains. However, we will
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only mention a few references that are relevant for the process industry below. Batres [5]
gives a comprehensive overview about ontologies that have been used in process systems
engineering. OntoCAPE is a large-scale ontology developed for computer-aided process
engineering [6]. Wiesner et al. [7] use OntoCAPE to integrate information from different
software tools and phases in process engineering. Zhou et al. [8] extend OntoCAPE for
management of information in eco-industrial parks.

ISO 15926 is a standard that supports the exchange and integration of information from
all phases of the life cycle of chemical plants [9]. It allows the use of different formats
such as XML (Extensible Markup Language). Parts 8 and 12 of the standard refer to the
semantic description with OWL (Web Ontology Language). Moreover, the data model
of ISO 15926 is proposed as an upper ontology [10]. The DEXPI (Data Exchange in
the Process Industry) initiative [11] supports interoperability with respect to ISO 15926.
Fillinger et al. [12] illustrate a prototype for an XML-based data exchange between P&ID
tools from different vendors by using ISO 15926 and tools from DEXPI.

Bramsiepe et al. [13] analyze methods to reduce lead time in chemical engineering pro-
cess and plant design. They identified proprietary formats for data exchange as one of the
key challenges in plant design and speculate that OntoCAPE, ISO 15926 and ISO 10303
(STEP, Standard for the Exchange of Product model data) could increase the interchange-
ability of data in chemical industry. Muñoz et al. [14] present a batch control ontology
that is structured according to ANSI/ISA-88, a standard for batch control, and applied it
successfully to the optimization of a simulated plant scenario.

According to [15], Industry 4.0 envisages an increasing number of machines, devices and
services that are dynamically connected and make decentralized decisions by accessing,
comprehending and combining a variety of local and global information (such as sensor
data, electronic documents and models). Pötter et al. [16] illustrate that many ideas of
Industry 4.0 are applicable to process industry despite that the nature of batch and con-
tinuous processes is different from processes in manufacturing industry. Consequently,
challenges associated with heterogeneity and interoperability will also arise in process
industry in the context of Industry 4.0. Ontologies seem to be particularly suitable in
scenarios where querying, reasoning and inference on heterogeneous data is required.
For example, Graube et al. [17] present an approach to integrate and link heterogeneous
industrial data from different systems and enterprises using ontologies and related tech-
nologies.

In this paper, we will use the J-Park Simulator (JPS) to analyze how to tackle heterogene-
ity and interoperability in complex cross-domain scenarios. JPS is part of the C4T project
(Cambridge Centre for Carbon Reduction in Chemical Technology) [18] and acts as plat-
form for integrating real-time data, knowledge, models and applications from different
domains to fulfill objectives such as simulation and optimization. The initial goal of JPS
is the reduction of CO2 emissions from the industrial park on Jurong Island. To achieve
this, a uniform and holistic approach was applied to different levels of modelling (unit,
process, plant and industrial network level) and networks (for energy, power, waste and
materials) [19], [20].

The use of ontologies and related semantic technologies in JPS for multi-level and cross-
domain modelling and for decentralized management of data and knowledge has been
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successfully proven [21], [8]. The purpose of this paper is to illustrate how ontologies can
also support interoperability between different applications in cross-domain scenarios.
We will use JPS as a research platform to analyze this question along with the industrial
air pollution scenario.

The remaining parts of this paper are organized as follows. Section 2 summarizes the
main ideas of ontologies and linked data in an incomprehensive manner. Sections 3,
4 and 5 present the main architectural principles of JPS: Section 3 recaps the modular
structure of domain ontologies that are currently used in JPS. Section 4 presents the JPS
knowledge graph that is used to store and link concrete data and information and can be
distributed over the World Wide Web. Section 5 illustrates how agents can operate on the
JPS knowledge graph and collaborate with each other. In JPS, the term "agent" is used in a
very broad context to refer to applications and services that utilize semantic technologies
and are accessible on World Wide Web. In order to facilitate better understanding of JPS
agents, we will first present the current implementation of these agents for the industrial
air pollution scenario. This is followed by discussions of open questions concerning the
current implementation and an outlook on how to address these questions in the future.
Section 6 outlines the conclusions for this paper.

2 Semantic Web Stack

In 2012, Google added information boxes on the right side of its search result pages. When
searching e.g. for "Marie Curie", the information box will present precise information
about the scientist such as where she was born, when she died and whom she was married
to etc. To achieve this, Google annotated and interlinked data semantically and stored
them into an internal graph that represents knowledge in the form of grammatical triples.
For example, the expression "Marie Curie was born in Warsaw" consists of the subject
"Marie Curie", the predicate "was born in" and the object "Warsaw" where the subject
and the object are nodes in the graph and the predicate is a directed edge from the subject
to the object node. The expression "Marie Curie died on 04/07/1934" can be represented
in the same way where the subject node coincides with the former example and the object
node represents a concrete date. Similarly, further triples from expressions such as "Marie
Curie is married to Pierre Curie", "Warsaw is capital of Poland" and "Pierre Curie was
born in Paris" can be added to obtain a larger knowledge graph. "Marie Curie", "Warsaw",
"Poland" etc. are not just strings but entities that can be related to each other. As Google
has pointed out, the knowledge graph "also models all these inter-relationships. It’s the
intelligence between these different entities that’s the key" [22].

The main principles behind knowledge graphs can be traced back to ideas of the semantic
web and linked data that aim at the semantic description, understanding and integration
of data on the World Wide Web [23], [24]. The World Wide Web Consortium (W3C) has
published several standards and formats, the so-called semantic web stack, as basis for
the semantic web [25]. Since the J-Park Simulator (JPS) relies heavily on these ideas,
standards and related technologies, we will give an incomprehensive overview of some of
its key concepts below.

An ontology formalizes the idea of grammatical triples and defines a vocabulary to de-
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Figure 1: A Biodiesel plant on Jurong Island represented in different formats: a) graph
with instances (green nodes), relations (orange and red arrows), individual
assertions (purple arrows) and classes (purple nodes), b) Aspen Plus process
flow model, and c) machine readable format in RDF/XML.

scribe an application domain in a semantic way. It distinguishes between classes, in-
stances and relations: Classes denote concepts that constitute the application domain, in-
stances represent concrete individuals of a given class and relations define which classes
and instances can be linked to each other. The domain of a relation is specified by a con-
crete class and its range by a concrete class or data type (such as date). An instance can be
linked to another instance or data value (such as "04/07/1934") using a relation only if the
instances and values are consistent with the domain and range of that relation. In the ex-
pression "Marie Curie was born in Warsaw" the terms "Marie Curie" and "Warsaw" could
be defined as instances of classes "Person" and "City" respectively, and "was born in" as
relation with domain "Person" and range "City". In order to define classes, instances and
relations, ontologies provide particular axioms and assertions.

The left side of figure 1 illustrates another example: It is greatly simplified and only
presents some aspects of an existing Biodiesel plant on Jurong Island; the complete ex-
ample was realized in detail as part of JPS in combination with simulations in Aspen Plus
[21]. The upper right side of figure 1 shows the corresponding process flow model. The
Biodiesel plant itself is represented as an instance of the class "Plant" and contains equip-
ment instances of various classes such as "Pump", "Stirred Tank" and "Vessel" that are
connected to each other. The relations "contains" and "is connected to" are represented by
orange and red arrows respectively; purple arrows denote the individual assertion to de-
fine instances of a given class. Consequently, the graph in figure 1 represents expressions
such as "P-301 is a Pump", "R-303 is a Stirred Tank" and "P-301 is connected to R-303".

JPS uses the Web Ontology Language (OWL) which is a powerful language for expressing
ontologies. Its functionalities go far beyond the presented examples and allow the defini-
tion of sub classes, synonyms, properties of relations (such as symmetry, reflexivity and
transitivity) etc. that can be used for reasoning and inference. Ontologies in OWL can be
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serialized, stored and exchanged in different formats, e.g., the lower right side of figure 1
shows a machine readable snippet in RDF/XML format that describes the Biodiesel plant.
For purpose of illustration, we will use human readable names for all entities, e.g. "Plant",
"R-303" and "is connected to", throughout this paper. Instead, OWL makes use of URLs
(Uniform Resource Locators) to identify and resolve entities as web resources in a glob-
ally unique way1. Consequently, data that are distributed over the World Wide Web can be
described and linked in a semantic way to eventually form a "giant global graph". OWL,
RDF (Resource Description Framework) and XML (Extensible Markup Language) are
parts of the semantic web stack. Moreover, it contains SPARQL, a language for semantic
queries, and SWRL, a language to define rules.

3 Modular Cross-Domain Ontologies

JPS utilizes various ontologies that define classes and relations for different application
domains at different levels. They are often designed and developed independently from
each other and can be combined in a modular manner. These ontologies usually do not
contain instances2 and are applicable to different concrete scenarios. Table 1 lists exam-
ples of ontologies currently used in JPS.

OntoCAPE [6] is a large-scale ontology describing different aspects and levels for the
domain of Computer Aided Process Engineering. It consists of four layers that are sub-
divided into more than fifty modules: the upper layers define more general concepts, e.g.
from systems theory, while the lower layers are application-oriented and define concepts
such as process units and plant equipment. OntoCAPE was the first ontology that was
integrated into JPS and can be used to model chemical plants [21].

In general, JPS aims to integrate existing ontologies and standards as much as possible.
Some of these existing ontologies have been slightly adapted to meet the dynamic re-
quirements of JPS. Other ontologies such as OntoEIP, OntoPowSys and OntoKin have
been designed and developed by researchers involved in the JPS project.

OntoEIP is a skeletal ontology to describe eco-industrial parks, inter-plant connectivities
and networks for energy, power, water and materials. It has been applied as the framework
for creating a decentralized knowledge graph of Jurong Island [8]. OntoKin consists
of approximately 50 classes and 120 relations to represent reaction mechanisms [26].
OntoPowSys defines classes and relations for electrical power systems. OntoCityGML
is an ontology to describe 3D models of cities and landscapes and was generated from
the XML standard CityGML [27] by researchers from University of Geneva [28]. The
Weather Ontology was created by researchers from Technical University of Vienna [29].

1For example, the instance "Biodiesel Plant" from figure 1 is identified in JPS by the URL
http://www.theworldavatar.com/kb/sgp/jurongisland/biodieselplant3/BiodieselPlant3.owl. Requesting this
URL will return an OWL file in RDF/XML format with information about the plant. Actually, OWL allows
the use of IRIs (Internationalized Resource Identifiers) which are more general than URLs.

2The separation is similar to the use of T-box and A-box in description logic where the A-box contains
statements that use conceptual models from T-box.
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Table 1: Examples of ontology from different domains used in JPS.

Ontology Domain
OntoCAPE Computer aided process engineering [6]
OntoEIP Eco-industrial park [8]
OntoKin Reaction mechanisms [26]
OntoPowSys Electrical power system [8]
OntoCityGML Cities and landscapes [28]
Weather Ontology Weather [29]
DBpedia Cross-domain knowledge extracted from Wikipedia [30]

4 Distributed Knowledge Graph

JPS uses a knowledge graph to store and link information semantically. There is no stan-
dard definition for knowledge graphs but the number of instances in a knowledge graph
is usually much larger than the number of its classes [31]. To allow for a high degree of
reusability, many classes and relations in JPS are defined and bundled in modular ontolo-
gies as described in section 3. However, the JPS knowledge graph is defined as a structure
which contains both the modular ontologies and the large number of instances, data values
and their relations. Entities in the JPS knowledge graph are usually expressed in OWL
(Web Ontology Language). But JPS can also utilize published linked data that are not ex-
pressed in OWL, e.g., JPS uses classes and instances from DBpedia, an RDF knowledge
graph that contains extracted knowledge from Wikipedia. For the sake of completeness,
DBpedia is added to table 1.

For the industrial air pollution scenario, two power plants, "Heizkraftwerk Mitte" in Berlin
and "Energiecentrale" in The Hague, have been added to the JPS knowledge graph. We
will focus on the power plant "Heizkraftwerk Mitte" in the following description. Figure
2 illustrates some related instances such as the power plant’s chimney and waste stream
in a simplified manner. The scenario mainly utilizes classes from OntoCAPE, OntoKin,
OntoCityGML, DBpedia and weather ontology which are represented as blue boxes. We
have migrated publicly available CityGML data for Berlin and The Hague to OntoCi-
tyGML and loaded them into two "triple stores" that allow for high-performance seman-
tic queries with SPARQL. The two resulting knowledge bases for Berlin and The Hague
can be considered as part of the entire JPS knowledge graph. Figure 2 sketches the on-
tological representation of a building in Berlin in the lower right corner. Moreover, the
OntoKin knowledge bases provide detailed information about concrete reaction mecha-
nisms in OWL. For example, one of the reaction mechanisms used in the scenario is a
mechanism involving 109 species and 543 elementary reactions as proposed in [32].

Figure 2 also gives an idea of the current structure of JPS knowledge graph. Previous
works for the JPS included description and optimization for chemical plants, power plants
and various networks on Jurong Island as depicted by the upper left corner. Actually, the
electrical network consists of nearly five hundred instances of classes such as "Bus" and
"Transmission Line" from OntoPowSys which are coupled with chemical plants and waste
heat recovery networks.
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Figure 2: Simplified part of JPS knowledge graph: Blue boxes denote reusable domain
ontologies, purple nodes correspond to classes and green nodes to instances.
Orange and red arrows denote different types of relations and purple arrows
individual assertions.

Since the JPS knowledge graph is based on the principles of linked data, it can be dis-
tributed over the web. Zhou et al. [8] have demonstrated how this could be used to es-
tablish a decentralized information management system of Jurong Island. In a real-world
industrial air pollution scenario, the detailed ontological representation of "Heizkraftwerk
Mitte" proprietary technology would be kept private, while only the waste stream becomes
part of an external interface with controlled access. In contrast, the knowledge base for
buildings in Berlin could be published as part of a governmental open data strategy and
be queried using SPARQL in a similar way as DBpedia.

5 Agents and Interoperability

Figure 3 summarizes the main principles of JPS: The lower layer (blue boxes) denotes
the modular and reusable domain ontologies. The middle layer (green) stores and links
instances and data values and uses the ontologies for their semantic descriptions. Both
the lower and the middle layer form the JPS knowledge graph which can be distributed
over the World Wide Web, i.e. its sub graphs can be distributed on different web nodes
(represented by green rectangles). The upper layer (red) consists of agents (represented
by triangles) that interact with each other and operate on parts of the knowledge graph,
depending on their granted access privileges.

This section consists of two parts: The first part presents the current implementation of
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Figure 3: Main principles of JPS illustrated for industrial air pollution scenario: a)
modular domain ontologies (blue), b) distributed knowledge graph (green and
blue), c) agents (red) operating on the knowledge graph and interacting with
each other.

the industrial air pollution scenario. It focuses on the agents’ operation on the knowledge
graph and on the semantic interoperability between agents, i.e. their ability to understand
the exchanged data. The second part addresses questions arising from the current im-
plementation and discusses how we could leverage the unleashed potential of semantic
technologies to solve some of these questions in the future.

5.1 Implementation of the industrial air pollution scenario

JPS agents apply the semantic web stack, in particular SPARQL for semantic queries.
They can read and understand information from the knowledge graph and modify its data
values and structure. They can communicate with each other and exchange information
via the knowledge graph and semantic input and output parameters. They use HTTP
(Hypertext Transfer Protocol) for calling each other and mainly JSON (JavaScript Object
Notation) for exchanging input and output parameters. Consequently, they could also run
on different web nodes.

In the industrial air pollution scenario, the user selects a plant instance, a reaction mech-
anism instance and a region as the input parameters and initiates the simulation. The
resulting dispersion profile can be viewed in a browser as shown in figure 4. After ini-
tiating the simulation, a coordination agent calls the other agents with the required input
and output parameters in a consecutive manner; in figure 3 these agents are numbered
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from 1 to 5. All parameters are expressed in a semantic way, e.g., the selected plant is an
instance of OntoCAPE class "Plant" and the selected reaction mechanism is an instance
of OntoKin class "Reaction Mechanism"; both are identified by their URLs. The selected
region is an instance of OntoCityGML class "EnvelopeType" with a nested structure that
specify the coordinate reference system and coordinates of a spatial rectangular area.

The first agent uses Google’s Geocoding API in combination with DBpedia’s lookup ser-
vice to retrieve the closest city to the selected region as an instance with its URL. The
second agent requests a public web service for the real-time weather conditions close
to the selected region and translates the non-semantic response into a semantic format
using the weather ontology. The third agent uses the city URL to locate the correspond-
ing building knowledge base, retrieves the coordinates of the selected plant from the JPS
knowledge graph and queries for the buildings in the vicinity of the plant.

There are some trade-offs concerning the estimation of emissions from the power plant at
this implementation stage: The industrial air pollution scenario focuses on demonstrating
cross-domain interoperability rather than on detailed modelling of the power plant. SRM
Engine Suite3 is a tool for simulating exhaust gas emissions from internal combustion
engines, and our research groups have comprehensive experience with it. In the industrial
air pollution scenario, it is used as a proof of concept for the overall JPS architecture
and will facilitate the integration of computational chemistry in JPS in the future. The
fourth agent works as an ontological wrapper for SRM Engine Suite: it uses the URL
of the selected reaction mechanism to query for the details from the OntoKin knowledge
base and stores them into the SRM configuration files. The agent then starts the SRM
simulation, annotates the simulation results semantically and modifies the waste stream
of the selected plant in the knowledge graph.

Finally, the coordination agent calls the fifth agent, the ontological wrapper for the At-
mospheric Dispersion Modelling System4 (ADMS). This agent reads the waste stream
information from the knowledge graph and queries for detailed information of the sur-
rounding buildings, e.g. position and height, from the corresponding building knowledge
base. It translates the building details together with the waste stream and weather in-
formation into the proprietary format of the ADMS input file and executes the ADMS
simulation. ADMS estimates the concentration values in the selected region for all pol-
lutants originating from the waste stream of the selected plant. The resulting output file
can be annotated semantically by utilizing the W3C’s standard for tabular data [33] and
processed for visualization as shown in figure 4.

5.2 Discussion and Outlook

Agents involved in the industrial air pollution scenario map back and forth between on-
tologies and proprietary formats of utilized software products and web services. The
associated additional implementation efforts might not be appropriate for a unique sce-
nario where all involved software components and their communication are established
and well-defined in advance. While this is indeed the case for the current implementation

3see http://cmclinnovations.com/products/srm/
4see http://www.cerc.co.uk/environmental-software/ADMS-model.html
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Figure 4: Simulated dispersion profile of emissions estimated for the power plant
"Heizkraftwerk Mitte" in Berlin. The figure shows the concentration profile for
the selected pollutant, CO, at a height of zero meter taking into consideration
the effects of surrounding buildings and real-time weather conditions.

of the industrial air pollution scenario, the vision of JPS goes further beyond:

First of all, the implementation was carried out in such a way that it is applicable to any
power plant that exhibit the same semantic structure as its waste stream in the knowledge
graph. We have proven this for the power plant "Energiecentrale" in combination with
migrated CityGML data from The Hague. In fact, this implementation could be easily
extended to any emission source with the same waste stream structure. But in unmanaged
environments such as the World Wide Web, different or variations in vocabularies are
used for describing waste streams (or any other entities, e.g. weather, region, etc.). Con-
sequently, the question of how to ensure interoperability and hence reusablity of agents
in a more general context arises. Here, the full potential of semantic technologies comes
into play. For example, ontology matching systems [34] can facilitate the semi-automatic
alignment of classes from different ontologies that denote the same concept. Once classes
have been aligned, they can be declared as synonymous using OWL. This in combination
with logical reasoning can be used to automatically transform information into a seman-
tically equivalent form that can be further processed by other agents.

Secondly, we use the term "agent" in JPS in a very broad context as already mentioned.
Software agents usually exhibit some degree of intelligence and autonomy and can collab-
orate with other agents to achieve common goals. In contrast, agents involved in the in-
dustrial air pollution scenario provide stateless services which are called by a coordination
agent with suitable input parameters. On the other hand, we have started to equip soft-
ware components with semantic capabilities such that their input and output parameters,
functionality and properties could be described using its own ontology. These semantic
descriptions would also be part of the JPS knowledge graph in the future. This allows an
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agent to discover and communicate with other agents and combine their functionalities in
an adaptive and automated manner. By doing so, JPS will be able to benefit greatly from
research on semantic web services [35], service discovery and service composition [36].

Thirdly, although the JPS knowledge graph is extensible and scalable by design, most data
that are available on the web currently are not described semantically. For the industrial air
pollution scenario, we migrated from cityGML to OWL representation in advance. Alter-
natively, there are technologies such as ontology-based data access [37] that can translate
semantic queries expressed in SPARQL into queries that act on relational databases and
annotate the resulting data semantically on-the-fly. Hence, non-semantic data can also
be integrated into the JPS knowledge graph with some additional mapping effort. Once
JPS agents understand these data, they can also combine, query and reason on these data
that is from different types of sources, i.e. JPS is not restricted to semantically described
sources.

Fourthly, this paper mainly illustrates the conceptual principles of the JPS architecture and
the use of semantic technologies. As mentioned, JPS agents use HTTP and mainly JSON
for communicating with each other. We will now elaborate on the technological details
further. Researchers participating in the C4T project work in different domains and ex-
plore different aspects of CO2 emission reduction. JPS integrates their work (simulations,
optimization algorithms, models, knowledge bases, experimental data etc.) by combin-
ing it with each other and 3rd party simulation software (SRM Engine Suite, ADMS,
Aspen Plus etc.). This leads to a large variety of technologies being used for imple-
mentation, e.g. diverse programming languages (Java, JavaScript, Python, C++, etc.),
web servers (Apache Tomcat, Node.js, nginx), triple stores (Apache Jena Fuseki, Eclipse
RDF4J), solvers (GAMS, MATLAB etc.), Ethereum, Docker etc. While technological
heterogeneity usually adds complexity for integration and maintenance, it is unavoidable
when dealing with cross-domain context and will also facilitate innovation. Since tech-
nological heterogeneity does not affect semantic interoperability between JPS agents, the
integration capabilities of JPS have been proven.

Fifthly, currently the user has to initiate the simulation for the industrial air pollution
scenario manually. In the future, the simulation of the air pollutant’s dispersion could
be triggered automatically e.g. due to changing weather conditions or periodic real-time
measurements of plant emissions. When the power plant is modelled in more details, a
changing prognosis of power demand could also trigger the recalculation of the plant’s
waste stream which in turn would lead to an updated simulation of the pollutants’ dis-
persion. In that sense, the knowledge graph becomes dynamic and evolves with time as
changes in one node, e.g. real-time sensor data from a physical device, are propagated
progressively by agents to the related nodes.

The above discussion can be used to derive the following categorization for the JPS agents:
Type-0 agents operate on the real-world boundary of JPS and facilitate the information ex-
change via input activities (from users or sensors) or output activities (for reporting and
visualizing results or for controlling actuators). Type-1 agents estimate, simulate, opti-
mize and/or query the knowledge graph. Type-2 agents add and/or remove elements of
the instance-level of the knowledge graph, i.e. the middle layer (in green) in figure 3.
For example a type-2 agent could add a heat exchanger to an existing chemical plant as
a result of an energy optimization. Type-3 and type-4 agents unleash the full potential
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of ontologies by providing higher-level and more generic functionalities. Type-3 agents
facilitate the integration of existing vocabularies and domain knowledge into JPS and sup-
port ontology matching and the transformation of semantically equivalent structures. In
the second above-mentioned point, in the future, the knowledge graph would be comple-
mented by an "agent ontology" and instances describing the agents’ functionalities and
characteristics. This would allow type-4 agents (with the support of type-3 agents) to pro-
vide services for agent discovery and composition and to create new agents that control,
simulate and optimize composed structures. Both type-3 and type-4 agents would be able
to raise the current level of semantic interoperability to a higher level that allows for auto-
mated adaptive behavior in cross-domain scenarios of increasing complexity as described
in the introduction.

As mentioned above type-1 agents can take multiple forms. A sub-set of this agent type
plays an important role in JPS. These type-1 agents can be either based purely on data
or on physical or chemical insight, i.e. a mathematical model motivated by natural laws.
Even if such a model is based on physics and/or chemistry in almost all cases the model
contains parameters that need estimating. Hence, as pointed out in [38], a full model is
not only defined by its mathematical form but also by the data and methodology that is
used in the process of parameter estimation. This needs to be taken into account if one is
interested to improve the predictive power, evaluation speed or uncertainty analysis of a
particular model. The methods that are used to do this form agents in their own right. For
parameter estimation both frequentist or Bayessian methods have been employed. The
construction of surrogate models of the original mathematical model often forms an im-
portant part of the process. In this paper surrogate model creation, parameter estimation,
experimental design and error propagation were carried out using MoDS (Model Develop-
ment Suite) [39]. The models of a biodiesel plant [40] and an internal combustion engine
[41] serve as examples for type-1 agents that are based on surrogates which are currently
in use in JPS. In both cases experimental design plays an important role. Both space fill-
ing [42] and adaptive methods have been developed [43]. Constructing surrogates from
data alone has become more and more popular with the ubiquity of rich data sources.
Deep learning methods represent an important and widely used class of methods. How to
choose the best method for a particular data set depends on the user requirements. Ma-
chine learning algorithms have been used to make this choice [44]. All of these methods
mentioned above have been or will be employed in JPS.

6 Conclusions

This paper illustrates the use of ontologies and semantic technologies in process indus-
try and focuses on how they can support the interoperability between agents in cross-
domain scenarios. We presented a comprehensive industrial air pollution scenario that
utilizes concepts from different domains such as process engineering, reaction mecha-
nisms, weather and buildings. The implementation of this scenario involves two pieces
of commercial software, for estimating a power plant’s emissions and for simulating the
emitted pollutants’ dispersion profile, three web services and knowledge bases for build-
ings and reaction mechanisms. In this paper, we used the scenario as a case study to
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analyze and discuss questions related to interoperability between agents.

The industrial air pollution scenario was constructed as part of the J-Park Simulator (JPS),
an integration platform that relies on the semantic web stack and utilizes domain ontolo-
gies that are designed in a modular structure. Instances and their relations are defined
using these ontologies. All entities (classes, instances and relations) are identified by
their globally unique URLs and form the distributed JPS knowledge graph. This is the
basis for semantic interoperability between JPS agents: JPS agents can exchange seman-
tic information through reading from and writing to the knowledge graph and by using
entities (identified by their URLs) as parameter values in their HTTP requests and re-
sponses. Semantic interoperability is further supported by the modular structure of the
domain ontologies and their publication on the World Wide Web as linked data because
both encourage the reuse of the ontologies for the same concepts.

However, in complex scenarios and unmanaged environments, JPS agents have to work
with various ontologies that can be describing the same concepts and should also be able
to adapt to changing requirements. The full potential of ontologies and associated re-
search results on reasoning and inference, service discovery and composition, ontology
matching, etc. can be fully unleashed in such situations. We believe that this potential will
overcompensate the additional mapping efforts in our current implementation, and we will
apply some of these results in our future works to achieve a higher level of interoperability
in JPS.
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