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Abstract

In this paper we derive and test an extended mass-flow type stochastic par-
ticle algorithm for simulating the growth of nanoparticles that are formed in
flames and reactors. The algorithm is able to simulate coagulation that dom-
inates such systems, along with particle formation and surface growth. We
simulate three different configurations for the creation of nanoparticles. The
oxidation of SiH4 to SiO2 and Fe(CO)5 to Fe2O3 in a premixed H2/O2/Ar
flame were investigated under different initial concentrations of SiH4 and
Fe(CO)5 respectively. In addition, the oxidation of TiCl4 to TiO2 in a tubular
flow reactor was investigated. A simple reaction mechanism for the conversion
of Fe(CO)5 to Fe2O3 was suggested, based on prior experimental data along
with estimated transport properties for the species considered in this system.
The simulation results were compared to experimental data available in the
literature.
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1 Introduction

In this paper we present a solution method for population balance models which
describes the synthesis and the dynamics of inorganic nanoparticles. One important
route of their production is the synthesis in flames and plug flow reactors. The
models which describe this process can divided into three parts: a particle source
linked to the gas-phase rate of production, a surface growth term linked to the gas-
phase concentration of a precursor species and the surface area of the particles, and
a coagulation term whose rate is determined by a coagulation kernel.

There exist three main ways to simulate such systems: the method of moments [1],
the sectional method [2] and stochastic particle methods [3, 4]. The method of mo-
ments constructs moment evolution equations for the system, which then progresses
through time so giving various moments of the particle system. This method is
relatively simple to implement and fast as regards computational time; however it
cannot fully recover the particle size distribution (PSD) and introduces a closure
problem. For the PSD we require the sectional method. This is best thought of as
a finite element method. If we wish to expand the model to more than one variable,
for example mass and surface area, then the sectional method takes an exceedingly
long time to execute. In one experiment, the simulation took over 100 days to run
[5].

Stochastic particle methods have been developed for some years. In 1972, Gillespie
first used a stochastic model to simulate cloud droplet growth [6]. More recently,
Eibeck and Wagner applied these ideas to coagulation and fragmentation, deriving
both the direct simulation algorithm (DSA) and mass-flow algorithm (MFA) with
accompanying convergence proofs and introducing fictitious jumps for the reduction
of the complexity of the algorithm [7, 8, 9]. These methods have since been applied to
chemical engineering by Goodson and Kraft who studied the convergence properties
of the algorithm [10] and by Grosschmidt et al. [4] who applied the algorithm to
the production of silica. A similar extension to the model, subsequently solved by
a stochastic MFA has been performed by Debry et al. in [11]. However, there are a
number of differences between their algorithm and the one used in [4]. In [11] they
make use of a deterministic time step equal to the maximum value of a majorized
coagulation kernel, but do not discuss the introduction of fictitious jumps. They
also use operator splitting methods to simulate processes other than coagulation
and make use of a bin method for particle storage and selection. Their algorithm
scales with time as N

√
N rather than linearly with N and demonstrated in [10].

In this report we introduce the extension of the MFA [12, 9] for the solution of
the Smoluchowski coagulation equation with surface growth and a particle source.
The algorithm presented in this paper calculates an exponentially distributed time
step based on a majorant kernel and introduces fictitious jumps to compensate for
the use of the majorant, uses stochastic jumps for all processes and makes use of a
binary tree method for the determination of the particle partners. The algorithm
presented in this paper is derived from first principles from the original equation
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stated.

The algorithm is then compared to test situations and real physical systems for
which experimental measurements have been obtained. The surface growth term is
proportional to the surface area of the particles and accounts for the deposition of
new mass onto the surface of a particle. We apply this algorithm to the production
of titania. In this system, the surface reaction rate and the gas phase oxidation rate
are not independent; however the algorithm is also able to simulate systems where
this is not the case.

The report is organized as follows. Section 2 briefly describes solving the 1D flame
equations and coupling the results with the population balance model. Section 3
describes the particle model and details the three main processes that are simulated:
surface growth, particle inception and coagulation. Section 4 derives the stochastic
solution method for the population balance model, and presents a description of the
mass-flow algorithm for its solution. In Section 5 the performance of the mass-flow
algorithm is compared to that of the direct-simulation algorithm. Section 6 intro-
duces the three simulated particle systems and the results of those computations.
Finally, Section 7 presents the conclusions of the work.

2 Coupling the Flame Simulations to the Popula-

tion Balance Model

In order to simulate the 1D inhomogeneous particle system, we first solve the flame
equations associated with that system. The flame equations [13] describe the evolu-
tion of the various species created and destroyed in the flame and include convection
and diffusion along with other mechanisms. We solve the flame equations using the
1D flame code, PREMIX [14]. PREMIX solves the equations using a damped form
of Newton’s method, thus allowing various properties of the flame to be determined.
For the Stochastic simulation, we require three pieces of information from the so-
lution to the flame model: The velocity field, the temperature field and the rate of
production of the particulate species along the length of the axis.

It is important to mention at this point that the population balance model is spa-
tially homogeneous in nature. As such, what is simulated is a Lagrangian view of
particles in a control volume that is convected along with the velocity field. We
assume that no particles leave the control volume up or down stream and that mass
can only enter the volume from the gas phase production of the desired species (from
the particle source or surface growth).

In order to use the results from the PREMIX code in the stochastic coagulation
code, it is necessary to convert the independent variable from a spatial coordinate
to a time coordinate. It is straightforward to calculate the velocity, V , of the flow
field at any point, n, using the flow rate, Q, and density, ρ :

Vn =
Qn

ρn

. (1)
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The time, tn, is then calculated from the average speed between points n and n− 1
and the distance between these points:

tn = 2
n∑

n=1

xn − xn−1

Vn + Vn−1

, t0 = 0. (2)

This is the same as numerically integrating 1/velocity with respect to distance.

The Temperaure, Tn, and rate of production of the particle species, ω̇n, can now be
written in terms of time and used for the population balance model.

3 Population Balance Model

The model we construct for the growth of nanoparticles in flames contains three
different processes: a particle source, surface growth and coagulation. The governing
equation is given below

∂

∂t
c(t, x) =

1

2

x−1∑
y=1

K(x− y, y)c(t, x− y)c(t, y)

−
∞∑

y=1

K(x, y)c(t, x)c(t, y) + I infcin(x)

+Isurf [ax−1c(t, x− 1)− axc(t, x)] , (3)

where c(t, x) is the concentration of particles of size x (where x is a dimensionless
volume = v/v0), at time t. We also state the initial condition:

c(0, x) = c0(x) > 0. (4)

The sections which follow describe the terms in equation (3).

3.1 Particle Source

New mass is allowed to enter the system as particles produced from the gas phase.
The equation that describes the time evolution of this process is shown below:

∂

∂t
c(t, x) = I infcin(x), (5)

where cin describes a source of particles of unit size:

cin(x) = δ(x− 1) = δ1, (6)

and the rate of production, I inf comes directly from the gas phase rate of production
of these monomers.
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3.2 Surface Growth

Some particle systems, for example TiCl4 → TiO2, allow particles to grow through
the deposition of new mass directly onto the surface of an existing oxide particle. In
certain circumstances, it is an important operation and thus should be included in
a simulation [15]. The size evolution of particles due to surface growth is described
by:

∂

∂t
c(t, x) = Isurf [ax−1c(t, x− 1)− axc(t, x)] , (7)

where Isurf is the rate of surface deposition of new mass and ax is the surface area
of a particle of size x. Both parameters are described below.

In the case of TiO2 it is possible to approximate the system into one reaction as
opposed to a set of coupled reactions. The reaction of TiCl4 + O2 → TiO2 + 4Cl2
has an overall observed rate such that the rate of loss of TiCl4 is:

dC

dt
= −KC,

where C is the concentration of TiCl4 remaining in the system and K is the rate
constant. The parameter K is made up of two competing mechanisms; one which
reacts TiCl4 with O2 to form monomers of TiO2, and has an associated rate constant
of kg, and another process which tries to react TiCl4 on the surface of an oxide
particle (and hence is termed surface growth), with an associated rate of ksAD.
Here AD is the Area Density of the system, with units of cm2/cm3 (i.e. the total
surface area of the particles divided by the total volume of all the particles). The
two rates are related through the overall rate constant thus:

K = kg + ksAD (8)

The total amount of TiCl4 removed from the system remains the same irrespective
as to whether surface growth is included or not. The reacted TiCl4 is then split
between surface growth and particle inception with the rates being:

Iinf = kgCNA [#/m3s], and Isurf = ksCNA [#/m2s] (9)

where NA is Avogadro’s constant. Note that kg is calculated from prior knowledge
of K and ks by rearranging equation (8).

In order to perform this algorithm we must calculate the surface area a from the
volume using the expression

a = 4π

(
3m0

4πρ

)2/Df

x
2

Df = σx
2

Df ,

where the fractal dimension Df is defined by

(
v

v0

) 2
Df

=

(
a

a0

)
. (10)

The subscript (0) denotes the smallest particle size. Typical values for Df range
from 1.7 to 2.5 for non-spherical particles. Df = 3 for spherical particles.
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3.3 Coagulation Model

Coagulation of particles is modelled using Smoluchowski’s coagulation equation [16]
with a kernel suitable for the flames simulated:

∂

∂t
c(t, x) =

1

2

x−1∑
y=1

K(x− y, y)c(t, x− y)c(t, y)

−
∞∑

y=1

K(x, y)c(t, x)c(t, y). (11)

The first term in equation (11) describes the increase in concentration of particles
of size x due to the coagulation of two smaller particles whose size sum to x. The
second term describes the decrease in the concentration of particles of size x that
occurs whenever a particle of size x coagulates with any other particle. These two
operators describe the coagulation behaviour of the system.

The rate of coagulation of any two particles is given by:

K(x, y) =

(
3

4π

) 2
3
(

8πkbT

ρs

) 1
2
(

m1

ρs

) 1
6

︸ ︷︷ ︸
α

(
1

x
+

1

y

) 1
2 (

x
1

Df + y
1

Df

)2

︸ ︷︷ ︸
β

, (12)

where α can be thought of as the scaling factor of the kernel and β is the dimension-
less kernel. In the scaling factor, kb is Boltzmann’s constant, T is the temperature,
ρs is the particle density and m1 is the mass of the smallest particle.

The Kernel used in this investigation (eq. 12) is for coagulation occurring in the
free-molecular regime. This is applicable when the mean free path of a particle is
considerably greater than its effective diameter.

4 Solving the Population Balance Model

4.1 Deriving the Mass-Flow Weak Form

In this section we introduce the mass-flow weak form of the extended Smoluchowski
equation. From this we are able to choose the generators of the stochastic process.

We start with the integral form of equation (3):

∂

∂t
c(t, x) =

1

2

∫ x

0

K(x− y, y)c(t, x− y)c(t, y) dy

−
∫ ∞

0

K(x, y)c(t, x)c(t, y) dy + I infcin(x)

+Isurf [ax−1c(t, x− 1)− axc(t, x)] . (13)
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The equation is now multiplied by a continuous, compactly-supported test function,
φ(x), and integrated over all x:

∂

∂t

∫ ∞

0

φ(x)c(t, x) dx =

∫ ∞

0

φ(x)c0(x) dx +

∫ ∞

0

φ(x)I infcin(x) dx

+

∫ ∞

0

φ(x)Isurfσ(x− 1)2/Df c(t, x− 1) dx

−
∫ ∞

0

φ(x)Isurfσx2/Df c(t, x) dx

+
1

2

∫ ∞

0

φ(x)

∫ x

0

K(x− y, y)c(t, x− y)c(t, y) dy dx

−
∫ ∞

0

φ(x)

∫ ∞

0

K(x, y)c(t, x)c(t, y) dy dx. (14)

In order to get the equation into a form that allows the generators to be evaluated
simply, certain substitutions can be made. The variable x in the first surface growth
term is substituted for another variable, y = x− 1, yielding,

∫ ∞

0

φ(y + 1)Isurfσy2/Df c(t, y) dy −
∫ ∞

0

φ(x)Isurfσx2/Df c(t, x) dx. (15)

In consequence the above equation may be written as:

∫ ∞

0

[φ(x + 1)− φ(x)] Isurfσx2/Df c(t, x) dx. (16)

Now, using the identity:

∫ ∞

0

∫ ∞

0

Ψ(x, y) dy dx =

∫ ∞

0

∫ x

0

Ψ(x− y, y) dy dx, (17)

we can rewrite the last two terms of equation (14) as

∫ ∞

0

∫ ∞

0

[
1

2
φ(x + y)− φ(x)

]
K(x, y)c(t, x)c(t, y) dy dx. (18)

Combining equations (16) and (18) with equation (14) and allowing P to be a
measure-valued solution of the equation, we obtain

∂

∂t
〈φ, P (t)〉 = 〈φ, P0〉+

∫

N
φ(x)I infP in(t, dx)

+

∫

N
[φ(x + 1)− φ(x])Isurfσx2/Df P (t, dx)

+

∫

N2

[
1

2
φ(x + y)− φ(x)

]
K(x, y)P (t, dx)P (t, dy), (19)

and

〈φ, P (t)〉 =

∫

N
φ(x)P (t, dx). (20)
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The total mass of the system is calculated by:
∫

N
xP (t, dx). (21)

We now call the measure,

Q(t, dx) = xP (t, dx), t > 0, (22)

the mass density and introduce a new continuous compactly-supported test function,
ψ(x), such that xψ(x) = φ(x). Thus we can now consider the Mass Flow Equation:

∂

∂t
〈ψ,Q(t)〉 = 〈ψ, Q0〉+

∫

N
ψ(x)I infQin(t, dx)

+

∫

N
[(x + 1)ψ(x + 1)− xψ(x)] Isurfσx2/Df

Q(t, dx)

x

+

∫

N2

[ψ(x + y)− ψ(x)]
K(x, y)

y
Q(t, dx)Q(t, dy). (23)

4.2 Deriving the Stochastic Generators

In order to solve equation (23) we introduce a sequence of measure-valued jump
processes Q(N) ∈ {λ ∑N

i=1 δxi
| λ ∈ R, xi ∈ N}, such that the sequence converges in

distribution to Q as N →∞. We now let

Q(N) = λ(N)R(N). (24)

Accordingly set

R(N) =
N∑

i=1

δxi and λ(N) = λ
(N)
0

(
N

N − 1

)α

. (25)

For notational convenience in what follows we will drop the superscript (N).

The measure R represents a set of stochastic particles and λ an overall scaling
factor. The parameter λ0 is calculated from the initial concentration of particles in
the system c0(x) by

λ0 =
c0(x)

N
. (26)

Let us define the quantity Ψ(α,R) as

Ψ(α,R) = λ0

∫

N

(
N

N − 1

)α

R( dx)ψ(x) =

∫

N
Q( dx)ψ(x). (27)

In consequence we will generate solutions to

∂

∂t
Ψ(α,R) = GN

i Ψ(α, R) + GN
s Ψ(α, R) + GN

c Ψ(α,R), (28)
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for all N , where GN
i , GN

s and GN
c are the stochastic generators for particle inception,

surface growth and coagulation respectively. Matching terms from equation (28)
with terms in equation (23) allows us to write down the forms of the generators.

We define the coagulation generator, GN
c to be

GN
c Ψ(α, R) = λ2

0

(
N

N − 1

)2α ∫

N2

[ψ(x + y)− ψ(x)]
K(x, y)

y
R( dx)R( dy). (29)

In order to cast this into the form of a Markov jump generator, we define

Jc(α, R, x, y) = (α,R + δx+y − δx), (30)

and hence substituting equation (27) into equation (29) gives

GN
c Ψ(α,R) = λ0

(
N

N − 1

)α ∫

N2

[Ψ(Jc(α, R, x, y)−Ψ(α, R)]
K(x, y)

y
R( dx)R( dy).

(31)

Likewise we define the particle inception generator, GN
i to be

GN
i Ψ(α, R) = λI inf

∫

N
ψ(x)Rin(t, dx) = I infψ(1). (32)

Recalling that cin = δ(x− 1). We define

Ji(α,R, y) = (α + 1, R + δ1 − δy), (33)

thus giving

GN
i Ψ(α,R) =

I inf

λ0

(
N − 1

N

)α+1 ∫

N
[Ψ(Ji(α, R, y))−Ψ(α,R)]

R( dy)

N
. (34)

Finally we let the surface growth generator, GN
s , be

GN
s Ψ(α, R) = Isurfσλ0

(
N

N − 1

)α ∫

N
x2/Df

[(
1 +

1

x

)
ψ(x + 1)− xψ(x)

]
R( dx),

(35)
with jumps

Js1(α,R, x) = (α, R + δx+1 − δx) (36)

and
Js2(α,R, x, y) = (α + 1, R + δx+1 − δy). (37)

It follows that the generator may be written

GN
s Ψ(α, R) = Isurfσ

∫

N
x2/Df [Ψ(Js1(α,R, x))−Ψ(α, R)]R( dx)

+
N − 1

N
Isurfσ

∫

N2

x2/Df−1[Ψ(Js2(α, R, x, y))−Ψ(α,R)]R( dx)
R( dy)

N
. (38)
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4.3 An Algorithm for the Simulation of Nanoparticles with
Surface Growth and Inflow (MFA)

In this section we describe the stochastic mass-flow algorithm. For a particle system
x1, ..., xN the generators (29-38) describe how and when these particles interact
either with themselves or the surrounding gas phase. The principle works as follows.
We wait a exponentially distributed time with parameter equal to the sum of all
rates. After this time we let the particles interact. This interaction will be called
jump, motivated by the underlying ’jump-process’. The nature of interaction is
determined by the probability of each possible physical process, which is a function of
the current state of the system. The corresponding event is chosen probabilistically
according to the rates of each process.

The surface growth term is implemented as two separate possible jumps, one which
changes the overall scaling and one which does not. This is required due to the
way that mass flow in implemented. A majorant form of the coagulation kernel,
K̂(xi, xj), will also be introduced into the algorithm [10]. This is done to change
the way the double sum over all particle pairs in the coagulation generator is calcu-
lated. Instead of one double sum with complexity O(N2) we instead calculate two
independent sums and multiply them, thus reducing the complexity down towards
O(N). This introduces the concept of fictitious jumps where time advances but no
jump is performed. Fictitious jumps occur with probability

1− K(xi, xj)

K̂(xi, xj)
, (39)

and so care must be taken in choosing the majorant such that we reduce the number
that occur.

The algorithm is as follows:

1. Generate initial state (x1, ..., xN , λ = λ0, α = 0) and choose tstop

2. Calculate the total area density, AD from:

AD = λ

N∑
i=1

ai

xi

= λσ

N∑
i=1

x
2/Df

i

xi

(note that we must divide through by an extra xi to account for the fact that
we are in the mass-flow regime)
and hence calculate kg from:

kg = K − ksAD.

3. Wait an exponentially distributed time step τ , with parameter

ρ̂(p) = ρ̂c(p) + ρi(p) + ρS1(p) + ρS2(p)

11



ρ̂(p) = λ

N∑
i=1

N∑
j=1

K̂(xi, xj)

xj

+
I inf

λ
+Isurf

N∑
i=1

σx
2/Df

i +Isurf

(
N − 1

N

) N∑
i=1

σx
2/Df−1
i

and increase time according to

t 7→ t + τ

if t > tstop then stop the simulation, else go to 4.

4. With probability
ρi(p)

ρ̂(p)

goto 5, else goto 6.

5. Perform a particle inception step:

(a) Add a cluster of Size 1 to the system and remove one of size x where x
is chosen uniformly from the particle array.

(b) α 7→ α + 1.

(c) go to 2.

6. With probability
ρS1(p)

ρ̂(p)− ρi(p)

goto 7 else goto 8.

7. Perform a surface growth step (type 1):

(a) Choose a particle, i, according to the distribution:

x
2/Df

i∑N
k=1 x

2/Df

k

(b) Replace particle i and with a particle of size xi + 1.

(c) Go to 2.

8. With probability
ρS2(p)

ρ̂(p)− ρi(p)− ρS1(p)

goto 9 else goto 10.

9. Perform a Surface Growth step (type 2):

(a) Choose a particle, i, according to the distribution:

x
2/Df−1
i∑N

k=1 x
2/Df−1

k

and a particle j uniformly.
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(b) Replace particle j with a particle of size xi + 1.

(c) α 7→ α + 1.

(d) Go to 2.

10. Perform a coagulation step:

(a) Choose particles i and j according to the distribution:

K̂(xi,xj)

xj∑
i,j

K̂(xj ,xj)

xj

, i 6= j.

(b) With probability
K(xi, xj)

K̂(xi, xj)

add a particle of size (xi +xj) to the particle array and remove one of size
xi. Otherwise the jump is fictional and the particles have not interacted.

(c) Go to 2.

13



5 Numerical Investigation of the Mass-Flow Al-

gorithm

5.1 The Test Simulation

A test case was used in order to study the convergence properties of the MFA against
the DSA for speed and accuracy. The parameters for the test case were as follows:

Table 1: Parameters for the test case.

Name Parameter value

Kernel scaling factor α 1.0
Inflow rate (inception) I inf 0.5
Inflow rate (surface) Isurf 0.0
Fractal dimension Df 2.1
Number of particles N 2097152
Number of runs L 1
Initial concentration co(x) 1.0
Length of simulation tstop 5.0
mass of monomer m0 1.0
volume of monomer v0 1.0

To study the systematic error of the algorithm, we use an approximation parameter
ζ(t) which corresponds to the solution obtained using one run at the largest feasible
N .

Typical macroscopic properties such as the moments of a distribution are of the
form

F (t) =

∫ ∞

0

φ(x)c(t, x) dx, (40)

which are approximated (as N →∞) by the random variable

ξ(N)(t) =
1

N

N∑
i=1

φ(xi(t)). (41)

One can then estimate the expected value of the estimator ξ(N) over a number of L
independent runs. The corresponding values of the random variable are denoted by
ξ(N,1)(t), ..., ξ(N,L)(t). The empirical mean of these being determined by

η(N,L)(t) =
1

L

L∑

l=1

ξ(N,l)(t). (42)
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using these results one is now in the position to write down an estimate to the true
absolute error, e

(N,L)
abs (t) thus:

ẽ
(N,L)
abs (t) = |η(N,L)(t)− ζ(t)|, (43)

and an estimate of the percentage relative error:

ẽ
(N,L)
rel (t) = 100× |η(N,L)(t)− ζ(t)|

ζ(t)
. (44)

From this an estimate of the error over the time interval [0, T ] can be calculated,

ctot =
1

M + 1

M∑
i=0

ẽ(N,L)(ti) (45)

where M is the number of discrete divisions over the time interval. In a similar way,
an average for the percentage relative error can be found.

The main macroscopic quantity we look at in this paper are the average mass and
the first and second moments of the distribution. In the mass-flow formulation, the
average mass proportional to the harmonic mean of the sizes {xi}

m0

(
1

N

N∑
i=1

x−1
i

)−1

, (46)

the nth mass moment is calculated by

Mn =
c0v0m

n
0

N

(
N

N − 1

)α N∑
i=1

xn−1
i . (47)

In this investigation, the simulation was run for eight hours at each value of N ,
allowing as many runs within that time as the simulation could perform. The input
parameters were as in table 1 with the exception of N (which varied from 128 to
16384) and L (which varied inversely with N). In this way the product N × L was
kept approximately constant.

5.2 Results of the Test Simulation

The results for the cpu times and errors in the first three moments were as follows:

One can see from table 2 and figure 1 that the CPU time for the mass flow algorithm
scales linearly with N . This is in agreement with the improved direct simulation
algorithm (DSA) as investigated by Goodson and Kraft in [10] and is a consequence
of using a linearly majorant kernel for the coagulation calculations.

The reduction of the total error in average size (figure 2) seems to fall as 1/
√

N
after an initial rate proportional to 1/N . This is in contrast to the convergence
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Table 2: CPU times and errors for algorithm.

N tsr [s] ctot Ave Size %ctot Ave Size %ctot M2 %ctot M3

128 0.39425 0.079237 0.96699 0.81405 2.1103
256 0.76793 0.038381 0.48252 0.43410 1.1106
512 1.5545 0.019825 0.23995 0.22174 0.56378
1024 3.1492 0.011917 0.13249 0.12075 0.29748
2048 6.4304 0.0080560 0.081518 0.085047 0.18720
4096 13.188 0.0056460 0.052420 0.068252 0.14136
8192 29.219 0.0047430 0.043318 0.051557 0.10644
16384 61.637 0.0039410 0.033091 0.046613 0.092308

properties reported in [10] which seems to indicate that the algorithm converges as
1/N throughout. The discrepancy here would seem to come from the way in which
the investigation was carried out. In this paper, the investigation was run for eight
hours as this gave statistical errors in the solution of the same order of magnitude of
those calculated in [10] (of approximately 0.07). In [10] this was sufficient to ensure
that the statistical error (cstat) was considerably less than the systematic error (ctot).
Using the mass flow algorithm however, the initial systematic error was two orders
of magnitude less than if the DSA had been used. As such the statistical error was
larger than the systematic error and thus the order of convergence as defined in [17]
and stated in [10] could not be calculated.

Figure 3 shows the relative errors for average size and for the second and third
moments of the distribution. As with the total error in average size, the errors in
these quantities also decrease as 1/

√
N .
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6 Simulated Systems

Two of the three particle systems are simulated as low pressure H2/O2/Ar flames
doped with a precursor (SiH4 and Fe(CO)5 to generate particles of SiO2 and Fe2O3,
respectively). The third reaction scheme describes the oxidation of TiCl4 to TiO2

at atmospheric pressure in a simple plug-flow reactor.

6.1 Low Pressure H2/O2/Ar Flame with SiH4 Precursor

The SiH4 gas phase kinetics are described by a combined mechanism, which contains
18 H2/O2/Ar reactions plus a further 26 reactions to describe the oxidation of SiH4 to
SiO2[18]. All thermodynamic and transport properties were found in the CHEMKIN
[19] and TRANFIT [20] libraries, respectively. The flames in this section were
simulated at low pressures (30 mbar) and at a velocity of 1.32 m/s.

The evolution of SiO2 particles under varying input concentrations of SiH4 was
investigated. The concentration was varied between 131 and 524 ppm with all other
input parameters held constant as shown in table 3. For the coagulation simulation,
the particle number N was set to 1024 and the simulation results averaged over 50
runs (L = 50). The fractal dimension of the silica particles, Df , was set to be 2.23.

The CPU time for the 50 runs was 34.18 seconds during which there were on average
35000 jumps performed per run.

Figure 4(a) shows how the particle inception rate, I inf evolves over time at various

18



Table 3: Input parameters for SiH4 to SiO2 flame.

Parameter Value

initial flame velocity 1.32m/s
Pressure 30 mbar
H2 : O2 1.69mol:mol
Ar : (H2 + O2) 1.36 mol:mol
SiH4 concentration 131 - 524 ppm
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Figure 4: Production rates and temperature profiles for laminar flames producing
SiO2 with varying initial concentrations of SiH4.
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initial concentrations of SiH4. The important features of the plot are that the initial
time for particle inception (t = 0s) and for the end of particle inception (t ≈ 0.002s)
remains the same regardless of the initial concentration of SiH4. All that does change
is the height of the maxima that occurs at t = 0.00058s.

Figure 4(b) shows that the temperature profile of the flame changes negligibly with
the change in initial concentration. This indicates that the flow field (figure 5(a))
and hence the coupling between distance and time along the flame (figure 5(b)) will
be unchanged also.
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Figure 5: Velocity and distance profiles for laminar flames producing SiO2 with
varying initial concentrations of SiH4.

Figure 6 shows the result of the coagulation simulation. The simulated results agree
excellently with the experimental measurements of Lindackers et al. [18], predicting
the increase in average particle mass with the initial concentration of SiH4.
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6.2 Low pressure H2/O2/Ar Flame with Fe(CO)5 Precursor

Previous investigations into simulating the coagulation of Fe2O3 particles have as-
sumed instantaneous decomposition of the Fe(CO)5 into Fe2O3 [21]. For this paper
a simple skeletal mechanism was proposed. The following Fe(CO)5 kinetics were
estimated from the experiments of Giesen et al.[22] and Woiki et al.[23]:

Fe(CO)5
k1→ FeCO + 4CO (48)

FeCO
k2→ Fe + CO (49)

4Fe + 3O2
k3→ 2Fe2O3 (50)

The three rate constants were fit to a modified Arrhenius equation:

kf = AT β exp

(−EA

RT

)
, (51)

with the coefficients for the three chemical equations shown in table 4.

Table 4: Rate constants for the proposed Fe(CO)5 to Fe2O3 mechanism.

A[cm,mol,s] β[ ] EA[cal/mol]

k1 4.00× 109 0.0 17290.0
k2 7.00× 109 0.0 17290.0
k∗3 7.00× 1012 0.0 0.0

Note that k3 has been modified to k∗3 to allow for the reaction rate to be first order
with respect to iron concentration and zeroth order with respect to oxygen concen-
tration. The third reaction (eq. 50) is a much simplified form of the mechanism to
account for the oxidation of Fe to Fe2O3. Its kinetics have been estimated in order to
make that particular reaction faster than the other two reactions. We justify making
this assumption as the paper by Janzen and Roth [21] assumes instant formation
of Fe2O3 from Fe(CO)5 at the start of the flame, whereas the paper by Giesen et
al.[22] gives a finite rate for the decomposition of Fe(CO)5. Since there is no further
information about the rates, we chose to allow the oxidation part of the mechanism
to not be the rate limiting step, hence its more rapid rate.

The transport properties of the Fe compounds were also estimated. This was done
by comparing the molecules’ size and shape to other species within the TRANFIT
database and extrapolating/estimating values as required. The resulting TRANFIT
constants are contained in table 5.
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Table 5: Estimated transport properties for Fe compounds.

Species C1 C2 C3 C4 C5 C6

Fe 0 2999.0 3.76 0.00 0.00 0.00
Fe(CO)5 2 400.0 5.9 0.00 0.00 1.00
Fe(CO) 1 400.0 3.9 0.00 0.00 1.00
Fe2O3 2 400.0 4.5 0.00 0.00 1.00

The various constants are as follows:
C1 = Shape constant where 0 = single atom, 1 = Linear molecule, 2 = Non-linear
molecule
C2. The Lennard-Jones potential well depth ε/kB [K]
C3. The Lennard-Jones collision diameter σ

[
Å

]
C4. The dipole moment µ in Debye [10−18cm3/2erg1/2]
C5. The polarizability α

[
Å3

]
C6. The rotational relaxation collision number Zrot at 298k

The equations that use these constants can be found in the TRANFIT manual [20].

The evolution of Fe2O3 particles was investigated for a flame with initial conditions
as shown in table 6. The coagulation simulation parameters were set to N = 1024,
L = 50 and Df = 3.0. The simulation took 35.28 seconds for the 50 runs.

Table 6: Input parameters for Fe(CO)5 to Fe2O3 flame.

Parameter Value

initial flame velocity 1.32 m/s
Pressure 30 mbar
H2 : O2 1.00 mol:mol
Ar : (H2 + O2) 1.04 mol:mol
Fe(CO)5 concentration 524 ppm

Figures 7(a) and 7(b) show how the particle inception rate and temperature vary
with time for this particular flame. Note that in [21] the total amount of Fe2O3 that
enters the system (the integral of figure 7(a) over time) is already in the system at
time t = 0.

Figure 8 shows the result of the coagulation simulation. The evolution of the particle
diameter over time is in good agreement with the experimental data of Janzen et
al. [21]. This result was obtained using a fractal dimension of 3.0, which implies
that the particles sinter rapidly to spherical particles.
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Figure 7: Production rates and temperature profiles for a laminar flame producing
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The next set of simulations involved changing the initial concentration of Fe(CO)5

between 262 and 1572 ppm whilst keeping all other variables constant. The param-
eters of the flame were as in table 7. The simulation parameters for the coagulation
were again N = 1024, L = 50 and Df = 3.0. The simulations took between 30 and
50 seconds to complete.

Table 7: Input parameters for Fe(CO)5 to Fe2O3 flames with varying initial con-
centrations of Fe(CO)5.

Parameter Value

initial flame velocity 1.32 m/s
Pressure 30 mbar
H2 : O2 1.00 mol:mol
Ar : (H2 + O2) 1.04 mol:mol
Fe(CO)5 concentration 262 - 1572 ppm

In figures 9(a) and 9(b) we see how the particle inception rate and temperature
evolve over time. Note that the behaviour shown for the production rate curves is
similar to the silica flames simulated under varying inlet concentration. However
the inception period is more rapid in this case.

Figure 10 shows the results of the coagulation simulation. The illustrations and
measurements show different trends, which seems odd especially when considering
the excellent agreement that was obtained for the similar silica system. It is of note
that the simulations carried out in [21] also over predict the particle diameters to a
similar order of magnitude. This discrepancy is put down to a lack of kinetic data
being available for the oxidation of FeCO5 to Fe2O3 along with subtleties that may
lie in the coagulation. The flatness of the experimental results would indicate that
there is only a slight increase in the amount of Fe2O3 entering the system. As such
there may be some concentration-dependant limiting factor in the oxidation rate.
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Figure 9: Production rates and Temperature profiles for Laminar flames producing
Fe2O3 with varying initial concentrations of Fe(CO)5.

6.3 TiCl4 → TiO2 Plug-Flow Reactor System

The final system simulated was the oxidation of TiCl4 to form titania in a plug-
flow reactor. Because this is a simple system, information about the kinetics of the
reactions, the initial concentrations of reactants and the temperature profile of the
reactor are sufficient for a simulation.

The oxidation of TiCl4 to form TiO2 is modelled as a single reaction:

TiCl4 + O2
K→ TiO2 + 2Cl2, (52)

where K is the sum of the gas-phase and surface-growth rates as explained in Section
3.2. The kinetic data for this reaction is taken from the paper by Spicer et al.[15]
whilst the thermodynamic data is taken from the NIST website [24]. No transport
data are required.

The system was first simulated at 1400 K, with initial concentrations of TiCl4 of
10−4 and 10−6 mol/m3. At these conditions and with 4096 stochastic particles, the
simulations took little over 28 seconds per run.

Figure 11 shows how the first moment of the particle size distribution (total mass)
increases over time. The rate of inception of new mass (the slope of the curve) is the
same for both systems as is the point in time at which inception ceases. Figure 12
shows how the average particle mass increases over time. The extra mass speeds
up the coagulation process and allows a rapid increase in average particle mass at
around t = 0.1 s. This effect is due to the large particles in the system coagulating
very rapidly with the newly incepted particles in accordance with the coagulation
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kernel. Once inception has ceased, the rate of the increase in particle mass becomes
independent of the initial concentration of TiCl4.
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Figure 11: M1 vs Time for TiO2 system

The titania system was next simulated at a much higher initial concentration of TiCl4
so as to make surface growth more noticeable. The temperature was again 1400 K
but the initial concentration of TiCl4 was now 1.0 mol/m3. Under these conditions
and simulating 4096 stochastic particles, the simulations took 59.54 seconds per run
when simulating surface growth and 52.60 seconds per run when not.

Figure 13 shows various properties of the TiCl4 system, simulated both with and
without surface growth. In figure 13(a) we see that the average mass of the particles
is larger when surface growth is included in the simulation compared to when we
simulate particle inception and coagulation only. Figure 13(b) shows that the same
amount of mass is entering the system irrespective of whether there is surface growth
or not. This shows that the addition of mass directly to a particle is more important
than the increase in the concentration of particles for coagulation. Finally figure
13(c) shows the PSD of the systems at time t = 0.001 s. We see that when surface
growth is included in the simulation, a small additional peak is formed at particle
mass = 8m0. This corresponds to small particles that normally would not form in
large numbers through coagulation being formed via surface growth.
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concentration of 10−6 mol/m3.

7 Conclusions

In this paper we have shown how a model for nanoparticle growth may be trans-
formed into a weak form and hence how the generators of the stochastic process are
deduced. This led us to derive a new mass-flow algorithm, which is able to simulate
the coagulation, inception and surface-growth processes.

The algorithm was used to simulate a test situation for which various convergence
properties could be calculated. The algorithm was found to scale linearly with the
normalization parameter, N , as regards CPU time whilst the total errors in average
size and second and third moments were found to decrease as 1/

√
N . For small N ,

when the systematic errors dominate the solution, the error was found to decrease
linearly in N . The total error in the solution for these simulations was initially
two orders of magnitude less than when compared to the similar direct-simulation
algorithm.

Three particle systems were simulated using the mass-flow algorithm. The silica
system was simulated for increasing initial concentrations of the precursor SiH4,
with the results calculated being in excellent agreement with the experimental data
obtained from the literature. Iron oxide was also simulated under varying initial
concentrations of the precursor. At low concentrations, the results were in very
good agreement with the experimental data obtained from the literature. At higher
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simulated.
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concentrations however, the difference between the model and the experiments dif-
fered greatly. This has been attributed to a lack of kinetic data for the oxidation
of FeCO5. Finally the titania system was simulated at high and low initial concen-
trations of TiCl4, both with and without surface growth. It was found that surface
growth is most important for high initial concentrations of TiCl4. When simulated
with surface growth, the average mass of the system was increased and the PSD
showed a secondary peak for small particles.

Acknowledgements

The authors would like to thank the EPSRC (grant number GR/R85662/01) for
the financial support of Neal Morgan under the title ‘Mathematical and Numeri-
cal Analysis of Coagulation-Diffusion Processes in Chemical Engineering’ and the
Oppenheimer Fund for the support of Clive Wells.

31



References

[1] M. Frenklash and S. Harris. Aerosol dynamics modelling using the method of
moments. Journal of colloid and interface science, 118(1):252–262, 1986.

[2] S.E. Pratsinis, H. Bai, P. Biswas, M. Frenklach, and S.V.R. Mastrangelo. Ki-
netics of TiCl4 oxidation. Journal of the American Ceramics Society, 73:2158–,
1990.

[3] P. Tandon and Daniel E. Rosner. Monte Carlo simulation of particle aggregation
and simultaneous restructuring. J. Colloid Interface Sci., 213:273, 1999.

[4] D. Grosschmidt, H. Bockhorn, M. Goodson, and M. Kraft. Two approaches to
the simulation of silica particle systems. Proc. Combust. Inst., 29:1039–1046,
2002.

[5] H. Mühlenweg, A. Gutsch, A. Schild, and S.E. Pratsinis. Process simulation of
gas-to-particle-synthesis vis population balances: Investigation of three models.
Chemical Engineering Science, 57:2305–2322, 2002.

[6] D. T. Gillespie. The stochastic coalescence model for cloud droplet growth. J.
Atmospheric Sci., 29:1496–1510, 1972.

[7] A. Eibeck and W. Wagner. Approximate solution of the coagulation-
fragmentation equation by stochastic particle systems. Stochastic Analysis and
Application, 18:921–948, 2000.

[8] A. Eibeck and W. Wagner. An efficient stochastic algorithm for studying coag-
ulation dynamics and gelation phenomena. SIAM Journal of Scientific Com-
putating, 22:802–821, 2000.

[9] A. Eibeck and W. Wagner. Stochastic particle approximations for Smolu-
chowski’s coagulation equation. Annals of Applied Probability, 11:1137–1165,
2001.

[10] M. Goodson and M. Kraft. An efficient algorithm for simulating nano-particle
dynamics. Journal of Computational Physics, 183:210–232, 2002.

[11] E. Debry, B. Sportisse, and B. Jourdain. A stochastic approach for the nu-
merical sinulation of the general dynamics equation for aerosols. Journal of
Computational Physics, 184:649–669, 2003.

[12] H. Babovsky. On a Monte Carlo scheme for Smoluchowski’s coagulation equa-
tion. Monte Carlo Methods Appl, 5(1):1–18, 1999.

[13] N Peters and J Warnatz, editors. Numerical methods in laminar flame propa-
gation: a GAMM-Workshop. Braunschweig: Vieweg, 1982.

32



[14] J. Kee, K. Grcar, M. D. Smooke, and J. A. Miller. PREMIX: A FORTRAN pro-
gram for modelling steady laminar one-dimensional premixed flames. Technical
report, SANDIA National Laboratories, 1985.

[15] P.T. Spicer, O. Chaoul, S. Tsantilis, and S.E. Pratsinis. Titania formation by
TiCl4 gas phase oxidation, surface growth and coagulation. Journal of Aerosol
Science, 33:17–34, 2002.
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