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Abstract

The mathematical description of a new detailed particle model for polydisperse
titanium dioxide aggregates is presented. An aggregate particle is represented as
a collection of overlapping spherical primary particles and the model resolves the
composition, radius and position coordinates of each individual primary to form
a detailed geometrical description of aggregate morphology. The particle popula-
tion evolves under inception, coagulation, condensation, sintering and coalescence
processes. The detailed particle population balance model is coupled to detailed
gas-phase chemistry using operator splitting. Titanium dioxide particles are formed
through collision limited inception and condensation reactions of Ti(OH)4 from the
gas-phase, produced from the thermal decomposition of titanium tetraisopropoxide
(TTIP) precursor. A numerical study is performed by simulating a simple batch re-
actor test case to investigate the convergence behaviour of a number of functionals
with respect to the maximum number of computational particles and splitting time
step. A lab-scale hot wall reactor is simulated to briefly demonstrate the advantages
of a detailed geometrical description. Simulated particle size distributions were in
reasonable agreement with experimental data. Further evaluation of the model and a
parametric sensitivity study are suggested.

Highlights:

• New multivariate PBM with detailed morphological description of titania aggre-
gates.

• Overlapping spheres model of aggregates, resolving position of individual primaries.

• Particles evolve under inception, condensation, coagulation and sintering.

• Convergence behaviour investigated for a batch reactor test case.

• Experimental hot-wall reactor simulated.
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1 Introduction

Titanium dioxide (titania, TiO2) particles are an important industrial product manufac-
tured mainly for use in pigments. Other applications include photocatalysts, catalyst
supports and functionalised nanoparticles. The functionality of the product is strongly
influenced by the size, morphology and crystalline phase of the particles. Despite its
commercial importance, a comprehensive understanding of the formation of TiO2 and the
mechanisms that control the particle properties is still lacking, and optimisation of the
industrial manufacturing process remains largely empirical.

The two main approaches to manufacturing TiO2 particles are flame synthesis and liquid-
phase chemistry. Flame synthesis has some advantages over liquid-phase chemistry in
providing an inexpensive, continuous route for large-scale production of high quality
product with fewer waste products [20, 46, 56]. The oxidation of titanium tetrachlo-
ride (TiCl4), typically performed either in flame or an oxygen plasma, is a key route for
the industrial manufacture of TiO2 particles. An alternative route for producing TiO2,
the thermal decomposition of titanium tetraisopropoxide (TTIP), is often preferred in lab-
scale studies because TTIP is less corrosive and easier to handle.

Population balance modelling, complemented by experiments, provides a way to investi-
gate the mechanisms controlling particle properties. The particular approach chosen for
a modelling study involves two main considerations: the model used to describe the par-
ticles and particle processes, and the method employed to solve the population balance
equations. The choice of one will influence the choice of the other. Most importantly,
the chosen approach should be informed by the nature of the system being modelled
and the desired degree of detail. Menz and Kraft [38] emphasise the importance of se-
lecting an appropriate model for the system being simulated, and warn against using an
over-simplified model to interpret experimental data. The simplest, one-dimensional coa-
lescent sphere model [19] describes only the mass, volume or monomer composition of a
particle. Two-dimensional models, typically describing a particle by its surface area and
volume, can represent a simple aggregate structure and allows sintering to be modelled
[32, 66]. Often an assumption of monodisperse primary particles is made to allow primary
number and volume to be determined, but bivariate models can also incorporate primary
polydispersity [25]. More detailed multivariate models are capable of resolving the mass
of individual primary particles, their connectivity [48, 52], and even their detailed internal
composition [13]. The most detailed models usually represent an aggregate particle as
a union of intersecting spheres [15, 39–41], providing a full geometrical description of
fractal-like particles.

Various methods have been applied to solve the particle population dynamics of TiO2.
These include moment methods [2, 27, 36, 58], sectional methods [25, 26, 31, 43, 55, 59,
61, 66] and stochastic methods [1, 6, 35, 64, 67]. Moment methods are typically fast and
easily coupled to gas-phase chemistry and flow dynamics, but do not resolve the particle
size distribution (PSD). Sectional methods allow for some resolution of the PSD by divid-
ing the distribution into a number of sections, but at greater computational expense. Both
methods are generally limited to particle models with one or two internal dimensions.
Stochastic methods, on the other hand, allow the number of internal dimensions to be ex-
tended to include a very detailed description of particles. However, spatial inhomogeneity
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is not easily incorporated. Xu et al. [67] simulated TiO2 nanoparticles in flame using com-
putational fluid dynamics coupled to a population balance Monte-Carlo model with three
internal dimensions: the size, surface area and crystalline phase of particles. Another ap-
proach, used successfully to simulate the internal structure of soot particles, has been to
post-process existing flame data with a very detailed particle model [13, 41, 53, 68].

Discrete element methods (DEMs) can also be applied effectively to models with large
numbers of interacting primary particles. DEMs have been used to perform very detailed
studies of particle process dynamics and investigate their effects on the evolution of parti-
cle morphology, incorporating a high level of physical detail. Studies have often focussed
on understanding the effect of a limited number of processes at one time, such as sintering
[15, 16], coagulation [22, 23], and coagulation and surface growth [29, 30].

Detailed population balance models provide a powerful tool to investigate the mecha-
nisms that control particle morphology and facilitate the simulation of quantities that are
directly comparable to experimental observations. For example, size distributions and
mass spectra of the particles [13, 34], transmission electron microscopy (TEM) images
and optical band gap measurements [68]. Such models also enable the option to include
key physical details in the model. For instance, models where the particle growth is a
function of the aggregate composition [11, 12], or where sintering and neck growth are
resolved for pairs of neighbouring primary particles [42, 48, 49, 63]. Moreover, physical
properties are strongly influenced by particle morphology such as collision diameter [69],
mobility diameter [14, 54], or optical properties [18]; thus, the degree of model detail can
a have significant impact on the interpretation of simulation results and comparison with
experimental measurements. Models that capture sufficient physical detail also make it
possible to further post-process simulation data to study the post-synthesis treatment of
particles [35].

In this paper, we develop a new detailed population balance model for polydisperse tita-
nium dioxide aggregates with inception, coagulation, sintering, coalescence, and conden-
sation. The new particle description, or type-space, represents an aggregate particle as a
collection of overlapping spheres. This is based on the approach used by Mitchell and
Frenklach [39, 40] to model aggregation with surface growth for a single collector parti-
cle, and later extended by Morgan et al. [41] to an ensemble of particles. An overlapping
spheres model was also employed by Eggersdorfer et al. [15, 16] to simulate multiparticle
sintering. We utilise the overlapping spheres approach to model surface growth, sintering,
primary particle coalescence and coagulation, incorporating a ballistic cluster-cluster col-
lision model [28] to determine the particle configuration following a coagulation event.
The radius, composition and position of each individual primary particle are resolved
allowing the morphological evolution of each aggregate to be simulated.

The new model overcomes some of the limitations identified in earlier models [48, 52]
while preserving their efficient data structures. These earlier models did not track the
coordinates of individual primary particles but rather their connectivity, which required an
assumption on the fractal dimension when calculating the radius of gyration and collision
diameter, or when simulating a TEM-style image. Furthermore, sintering was resolved
by a common surface area for each pair of neighbouring primaries. While this allowed
individual necks to sinter at different rates the model did not account for the effect of
sintering on the primary diameter, instead resolving only a spherical equivalent diameter.
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The particle model developed in this work is presented in the context of titanium dioxide
synthesised from TTIP precusor: a widely studied system. However, the model can be
easily adapted to different precursor chemistry (e.g. TiCl4) or even different materials e.g.
soot or silica.

The purpose of this paper is to present the mathematical description of a new particle
model; specifically, to give the model equations and describe how the particle geometry
is manipulated under individual processes. The algorithms used to effect these changes
are also provided. We briefly study the numerical behaviour of the model, investigating
the convergence of a number of average properties for a simple batch reactor test case.
Finally, we simulate the hot wall reactor experiment of Nakaso et al. [43] to examine
some of the features of the model. A more comprehensive evaluation of the model against
experimental data and sensitivity study of the model parameters will be presented in a
future work.

2 Detailed chemistry

The chemical model consists of a TTIP decomposition mechanism combined with hy-
drocarbon combustion chemistry described by the USC-Mech II model [62]. The TTIP
decomposition model contains 25 Ti species and 65 reactions, and describes two of the
main decomposition pathways identified by Buerger et al. [8]. The decomposition product
for both pathways is titanium tetrahydroxide (Ti(OH)4), which is treated as the collision
species for the particle inception and condensation reactions in the particle model.

3 Particle model

In this section the new detailed particle model is presented. First we describe the parti-
cle type-space – the mathematical representation of a particle – followed by the particle
processes. Particles evolve through inception, coagulation, condensation, sintering and
coalescence. Details on the implementation of the model including the data structure and
algorithms are provided in Appendices A and B.

3.1 Type-space

The type-space is the mathematical description of a particle. The detailed particle type-
space is illustrated in Fig. 1. An aggregate Pq containing np(Pq) primary particles, mod-
elled as overlapping spheres [15], is represented by

Pq = Pq(p1, ..., pnp(Pq),C), (1)

where a primary particle pi, with i ∈ {1, ...,np(Pq)}, is represented by

pi = pi(ηi,ri,xi). (2)
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Figure 1: An illustration of the detailed particle model type-space. An aggregate particle
composed of primary particles (solid lines) modelled as overlapping spheres
(indicated by dashed lines).

ηi is the primary composition and can represent the number of units of TiO2, as in this
work, or could contain a more detailed description of the internal primary structure; for
example, the crystal phase composition. ri is the radius of the primary, and xi is the po-
sition of the primary centre. It is convenient to express the primary coordinates relative
to the centre of mass of the aggregate particle because this simplifies some computations,
such as calculating the radius of gyration or performing rotations of the particle during co-
agulation. For the purpose of calculating the aggregate centre of mass we assume that the
primaries are point masses. The degree of overlap between two neighbouring primaries,
pi and p j, is resolved by their centre to centre separation

di j = |xi−x j|. (3)

The primary particles are stored in a binary tree data structure as in earlier works [48, 52].
The data structure enhances computational performance by allowing very efficient selec-
tion of primaries and interrogation of their properties, but does impose some constraints
on the primary connectivity within a particle. It would be possible to determine primary
connectivity using only the coordinates; however, for the purpose of performing computa-
tions the binary tree connectivity is used. A binary tree is ideal for representing branched
structures, but closed loops cannot be represented. A closed loop (shown in Fig. 18b)
is a path that can be taken from a primary that returns to the primary passing through
successive neighbours only once.

The binary tree is represented in Eq. (1) by the connectivity matrix C. The connectiv-
ity matrix is a binary lower triangular matrix of dimension np(Pq)× np(Pq) with matrix
elements

Ci j =

{
0, if pi and p j are not neighbouring;
1, if pi and p j are neighbouring.

(4)

The following assumptions are made in the model equations:

1. Neck cross-sections are circular;

2. Neighbours are determined by the binary tree connectivity.
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The first assumption implies that the effect of multiple overlaps between primaries (as
shown in Fig. 19) are not considered. This is also a consequence of the second assumption
– the binary tree connectivity which does not allow for looped structures. Further detail on
the binary tree data structure, connectivity and the assumptions is provided in Appendix A.

Under these assumptions a number of primary particle properties can be derived for the
model of overlapping spheres [15]. The volume of a primary pi is given by the volume of
a sphere of radius ri minus the volume of the caps created by overlaps with its neighbours

vi =Vsph(ri)−∑
j

Vcap(ri,xi j),

=
4
3

πr3
i −

1
3

π ∑
j
(2r3

i + x3
i j−3r2

i xi j), (5)

where we sum over j neighbours of pi, and xi j is the distance from the centre of primary
pi to the neck formed with a neighbour p j

xi j =
d2

i j− r2
j + r2

i

2di j
. (6)

Primary particles are assumed to be composed of units of TiO2, so ηi = ηTiO2,i, and the
volume can also be calculated as

vi =
ηTiO2,iMTiO2

ρTiO2
NA

, (7)

where MTiO2
is the molar mass of TiO2, ρTiO2

is the density of TiO2 (taken to be that of
anatase, ρTiO2

= 3.9 gcm−3), and NA is the Avogadro constant.

The partial derivatives of vi give the area of the neck created by the overlap with a neigh-
bour p j

An,i j =
∂vi

∂xi j
= π(r2

i − x2
i j), (8)

and the free surface area of the primary pi

Ai =
∂vi

∂ ri
= 4πr2

i −2π ∑
j
(r2

i − rixi j). (9)

3.2 Particle processes

3.2.1 Inception

Inception is modelled as a bimolecular collision of two Ti(OH)4 molecules forming a
particle consisting of a single spherical primary containing two units of TiO2:

Ti(OH)4 +Ti(OH)4 −→ PN(p1)+4H2O. (10)
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The rate of inception is calculated using the free molecular kernel:

Kinc
fm = ε

√
πkBT

mTi(OH)4

(
2dTi(OH)4

)2
, (11)

where mTi(OH)4
and dTi(OH)4

are the mass and diameter of a single Ti(OH)4 molecule re-
spectively. The collision diameter dTiOH4

= 0.5128 nm, is estimated from the geometrical
parameters calculated by Buerger et al. [7]. ε is the size-dependent collision enhancement
factor. Here it is assumed to be size-independent and taken as ε = 2.2 as in previous
studies on titania [2, 64, 65]. This value is the average size-independent enhancement
factor due to van der Waals forces calculated by Harris and Kennedy [24] for spherical
soot particles.

3.2.2 Coagulation

Pq

Pr

Random
impact

parameter

Random
direction

(a) Particles Pr and Pq before collision.

pi

pj

Ps

(b) New particle Ps following collision.
Point contact between primary pi from
Pr and p j from Pq.

Figure 2: Ballistic cluster-cluster aggregation with a random impact parameter.

An aggregate is formed when two particles stick together following a collision:

Pq(p1, ..., pnp(Pq),C(Pq))+Pr(p1, ..., pnp(Pr),C(Pr))→ Ps(p1, ..., pnp(Pq)+np(Pr),C(Ps)) (12)

The rate of coagulation is given by the transition kernel [45]

Ktr(Pq,Pr) =

(
1

Ksf(Pq,Pr)
+

1
Kfm(Pq,Pr)

)−1

, (13)

where the slip flow kernel is

Ksf(Pq,Pr) =
2kBT
3µ

(
1+1.257Kn(Pq)

dc(Pq)
+

1+1.257Kn(Pr)

dc(Pr)

)
(dc(Pq)+dc(Pr)) , (14)

and the free-molecular kernel is

Kfm(Pq,Pr) = ε

√
πkBT

2

(
1

m(Pq)
+

1
m(Pr)

)
(dc(Pq)+dc(Pr))

2 . (15)
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ε is the collision enhancement factor, dc is the particle collision diameter and m is the
particle mass. µ is the viscosity of the gas-phase and Kn is the Knudsen number

Kn(Pq) =
2λ

dc(Pq)
, (16)

where λ is the mean free path of the gas. The mean free path amd viscosity are approxi-
mated as those of air at pressure p and temperature T

λ = 2.371×10−5 T
p

m, (17)

µ = 1.458×10−6 T
√

T
T +110.4

kgm−1 s−1. (18)

Once two particles are selected for coagulation based on the rate given by Eq. (13), the
orientations and point of contact between the colliding particles are determined by ballistic
cluster-cluster aggregation (BCCA) with a random impact parameter [28]. This process
is illustrated in Fig. 2. To model a collision three random parameters are generated: the
particles are randomly rotated around their centres of mass using the method described
by Arvo [4]; a random direction is generated by uniformly picking a point on a sphere
centred on one of the particles; and, a random impact parameter is applied by placing the
second particle at a random point in the plane perpendicular to the collision direction. The
random impact parameter offsets the collision trajectory from the centres of mass. The
collision is intialised such that the particle bounding spheres, estimated using the method
described by Ritter [47], do not overlap. A detailed algorithm for performing BCCA is
given in Appendix B.2.

Following the collision, two primaries pi and p j (one from each colliding particle deter-
mined by the BCCA algorithm) are assumed to be in point contact and the connectivity is
updated as

C(Ps) =



...
C(Pq) · · · 0 · · ·

...
...

· · · Ci j · · · C(Pr)
...


, (19)

where Ci j = 1.

Collision diameter. The diameter of gyration dg is commonly used as the collision di-
ameter dc in both the free-molecular and continuum regimes. The diameter of gyration is
given by the standard fractal relationship

np = kf

(
dg

dp,avg

)Df

, (20)

where dp,avg is the average primary diameter, Df is the fractal dimension and kf is the
fractal pre-factor.
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A number of studies [32, 37, 60] employing bivariate models with monodisperse primaries
use the fractal relationship to define the collision diameter as

dc = dpn1/Df
p . (21)

Kruis et al. [32] note that the characteristics of this collision diameter are:

1. For np = 1: the collision diameter is equal to the primary particle diameter.

2. For np � 1: the collision diameter approaches the diameter of gyration of the ag-
gregate.

Lavvas et al. [34] propose a collision diameter, also based on the fractal relationship, for
a multivariate model with polydisperse primaries:

dc =

(
6V
A

)(
A3

36πV 2

)1/Df

, (22)

with
A =

Asph

savg(1−n1/3
p )+n−1/3

p

, (23)

where Asph is the spherical surface area of the particle and savg is the average sintering
level of the aggregate.

The drawback of these definitions is that the fractal dimension Df is a model parameter,
typically assumed to be Df ≈ 1.8, and does not evolve as particles grow and sinter. More-
over, the pre-factor is often assumed to be kf ≈ 1 or absorbed into the constant of pro-
portionality between the collision and gyration diameters. In our new model, the ability
to track individual primary coordinates permits the diameter of gyration of an individual
aggregate to be calculated without assuming a value for kf and Df. This can then be used
as the collision diameter.

The diameter of gyration is defined [33] as

d2
g =

4
∑i mi

∑
i

mi(|xi|2 + r2
gp,i), (24)

where rgp,i is the radius of gyration of primary pi and |xi| is the distance from the centre of
mass of the aggregate to the centre of the primary. For a sphere rgp,i =

√
5/3ri; however,

following Filippov et al. [18] we choose rgp,i = ri, the radius of the primary, so that in the
limit of np = 1 the collision diameter yields the primary diameter. The collision diameter
can then be defined as

d2
c =

4
∑i mi

∑
i

mi(|xi|2 + r2
i ). (25)

In the limit of large np this tends to the diameter of gyration. This definition shares the
same characteristics of the Eq. (21) as discussed by Kruis et al. [32]. Furthermore, in the
case of two primaries of the same size in point contact the collision diameter (dc = 2

√
2rp)

is close to that obtained by Zurita-Gotor and Rosner [69] (dc = 2.892rp).
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3.2.3 Condensation

Condensation is a collision limited process consuming Ti(OH)4 from the gas-phase and
adding TiO2 to surface of a particle. The rate of collision is based on the free molecular
kernel and assumes that the mass and diameter of the condensing species is much smaller
than that of the particle

Kcond
fm = ε

√
πkBT
2mTiO2

(dc(Pq))
2 . (26)

The mass of the condensing species is assumed to be similar to TiO2.

surface-growth-v3.xml https://www.draw.io/

1 of 1 05-Dec-17, 6:34 PM

Figure 3: A surface growth event. Mass is added to the free surface of primary pi (dark
shaded region). The new particle geometry is shown by the red dashed line.
Immediate neighbours of pi are labeled p j, and neighbours of neighbours are
labeled pk.

Fig. 3 shows a particle undergoing a condensation event. A primary, pi, is selected with
probability proportional to its relative free surface area, Ai/A(Pq). The condensing mass
is added to the free surface of pi (shaded region in Fig. 3) increasing the primary radius ri.
We assume that the primary positions xi, and all other primary radii r j remain unchanged
during the event. The change in radius given a change in the aggregate particle volume
V (Pq) is

dri

dt
=

1
Ai

dV (Pq)

dt
. (27)

Following a condensation event, the positions of the necks between pi and its neighbours
p j will have changed as illustrated by the red dashed lines in Fig. 3. This amounts to a
redistribution of mass between primaries and requires an adjustment to the compositions
of pi and its neighbours p j. The adjustment is performed in discrete units of TiO2, with
unit volume

vTiO2
=

MTiO2

ρTiO2
NA

. (28)

The change in volume of a neighbour p j is

dv j

dt
=

∂v j

∂ r j

dr j

dt
+∑

k

∂vk

∂x jk

dx jk

dt
, (29)
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where we sum over the neighbours pk of primary p j. Under the assumption that the radius
of p j remains constant and noting that the position of the neck between p j and some other
neighbour pk (k 6= i) does not change, this is reduced to

dv j

dt
= An, ji

dx ji

dt
, (30)

where we have used Eq. (8). Under the same assumptions, differentiating Eq. (6), allows
the change in volume of p j to be expressed in terms of the change in the radius of pi:

dv j

dt
=−An,i j

ri

di j

dri

dt
. (31)

from which the integer change in composition of p j can be determined:

∆ηTiO2,j =
∆v j

vTiO2

. (32)

The surface adjustment algorithm and a discussion of the consequence of limiting the
mass redistribution to discrete unit changes can be found in Appendix B.3.

3.2.4 Sintering

 

dij

 

rj

pk 

pj

 

pi

xji ri

vj

vi

 

Δri

Ai

Anij

Δrj

Δdij

dik

Δdik

Figure 4: Sintering of a single neck between primaries pi and p j. Neighbours not sin-
tering are labelled pk. The centre to centre separation decreases by ∆di j. To
conserve mass, the radii of the sintering primaries increase by ∆ri and ∆r j re-
spectively and the separation with neighbouring primary pk increases by ∆dik.

Sintering is performed on each neck individually. A single sintering event on primaries
pi and p j is shown in Fig. 4. The centres of primaries pi and p j approach each other,
increasing their overlap and neck radius. For titania particles the sintering rate is evaluated
using a grain boundary diffusion model [16]. Mass conservation requires that the primary
radii ri and r j increase. It is assumed that all other neighbours pk and their respective
necks remain unchanged during the event. This requires that the separation dik increases
in response to the change in ri.
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Grain Boundary Diffusion. Following Eggersdorfer et al. [16], the change in distance
from the centre of pi to the neck formed with p j is

dxi j

dt
=−

2πDvCv0δgbγΩ

kBTAn,i j

(
1

ri− xi j
− 1

Ri j

)
, (33)

where Ri j is the neck radius, An,i j is the neck area, and ri is the primary radius. The product
of the vacancy diffusion coefficient, Dv, the equilibrium vacancy concentration, Cv0, and
grain boundary thickness, δgb, is taken from Astier and Vergnon [5],

DvCv0δgb = 1.6×10−14 exp
(
−258 kJmol−1

RT

)
m3 s−1. (34)

The surface free energy, γ = 0.6 Jm−2, and vacancy volume, Ω = 1.57×10−29 m3, are
from Anderson [3].

The rate of change in centre to centre separation is

ddi j

dt
=

dxi j

dt
+

dx ji

dt
,

=
−6.859×10−20

TAn,i j

(
1

ri− xi j
+

1
r j− x ji

− 2
Ri j

)
· exp

(
−258 kJmol−1

RT

(
1−

dp,crit

min(dp,i,dp, j)

))
.

(35)

We have introduced a critical sintering diameter dp,crit into the exponential term to allow
effectively instantaneous coalescence of primaries with dp < dp,crit. Rapid coalescence of
very small particles is consistent with findings from molecular dynamics studies [9], and
has also been suggested in other works [50]. Buesser et al. [9] found that primaries with
dp < 4 nm sinter significantly faster than what would be predicted by the models of Kobata
et al. [31] and Seto et al. [50]. In this work we use dp,crit = 4 nm.

Conservation of mass. Assuming that the density does not change, mass conservation
implies that primary particle volume is conserved. The volume conservation of primary
pi is [15]

dvi

dt
=

∂vi

∂ ri

dri

dt
+∑

k

∂vi

∂xik

dxik

dt
= 0, (36)

where pk is some neighbour of pi. Rearranging and substituting Eqs (8) and (9):

dri

dt
=
−∑k An,ik

dxik

dt

Ai
. (37)

The time derivative of xik, the distance from the centre of pi to the neck with a neighbour
pk, is

dxik

dt
=

ri

dik

dri

dt
− rk

dik

drk

dt
+

(
1− xik

dik

)
ddik

dt
. (38)

14



For k 6= j (i.e. a neighbour not sintering)

drk

dt
= 0 and

dxki

dt
= 0. (39)

Eq. (38) can then be reduced to

dxik

dt
=

ri

dik

dri

dt
+

(
1− xik

dik

)
dxik

dt
,

=
ri

xik

dri

dt
for k 6= j, (40)

and Eq. (37) becomes

dri

dt
=
−An,i j

dxi j

dt −∑k 6= j An,ik
ri

xik

dri

dt

Ai
,

=
−An,i j

Bi j

dxi j

dt
,

=
−An,i j

di jBi j + riAn,i j

(
−r j

dr j

dt
+ x ji

ddi j

dt

)
, (41)

where

Bi j = Ai +∑
k 6= j

An,ik
ri

xik
, (42)

(43)

A similar expression can be derived for r j

dr j

dt
=

−An,i j

di jB ji + r jAn,i j

(
−ri

dri

dt
+ xi j

ddi j

dt

)
. (44)

Combining Eqs (41) and (44) gives the change in radius as a function of the change in
centre to centre separation:

dri

dt
=

−r jA2
n,i j− x jiB jiAn,i j

di jBi jB ji + r jAn,i jBi j + riAn,i jB ji

ddi j

dt
. (45)

The centre to centre separations of neighbours not sintering are adjusted according to
Eq. (40). The sintering algorithm is presented in Appendix B.4.

3.2.5 Coalescence

The sintering level for a neck is defined as the ratio of the neck radius to the radius of the
smaller primary

si j =
Ri j

r j
where r j ≤ ri. (46)
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Figure 5: Primary particle coalescence. Primary p j is merged into pi. Neighbours of p j

are added to pi preserving the neck radius.

Note that 0≤ si j ≤ 1. Both sintering and condensation increase the sintering level. Once
the sintering level exceeds 0.95, the two primaries are assumed to have coalesced into
a single primary. Two primaries, pi and p j, are shown coalescing in Fig. 5. During a
coalescence event the smaller primary, in this case p j, is merged into the larger primary
pi. The other neighbour of p j, labelled pl , is added to the new merged primary preserving
the neck radius such that Rik,new = R jl . The primary is translated along vector xl−xi to its
new position. The other neighbour of pi, labelled pk, also preserves its neck radius.

Following the merger, the radius of pi has changed to ri,new, which requires the neigh-
bour separations to be recalculated since we assume the neighbours are unchanged by the
merger. The volume of the new merged primary is

vi,new = vi + v j, (47)

and expressed in terms of the new radius, the volume (Eq. (5)) is

vi,new =
4
3

πr3
i,new +

π

3 ∑
m∈{k,l}

(
2r3

i,new +

(
r2

i,new−
An,im

π

)3/2

−3r2
i,new

(
r2

i,new−
An,im

π

))
,

(48)
where we sum over all the neighbours, pk and pl , of new merged primary pi,new. Equa-
tion (48) is solved for ri,new using the Newton-Raphson method and the new primary sep-
aration can be determined using Eq. (6). For more detail on the merger algorithm refer to
Appendix B.5

4 Numerical method

The detailed population balance equations are solved using a stochastic numerical method:
a direct simulation algorithm with various enhancements to improve efficiency. The
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method uses a majorant kernel and fictitious jumps [17, 21, 45] to improve the com-
putational speed of calculating the coagulation rate. A linear process deferment algorithm
[44] is used to provide an efficient treatment of sintering and condensation. The direct
simulation Monte-Carlo algorithm is presented in Appendix B.

Coupling of the particle population balance to the gas-phase chemistry, solved using an
ODE solver, is achieved by the operator splitting technique described by Celnik et al. [10].
The technique employs a refinement introduced by Strang [57], which staggers the two
operators by half a splitting time step, ∆ts/2.

The population balance solver uses a variable size particle ensemble with a predefined
maximum number of computational particles Nmax. The particle ensemble represents a
real population of particles contained in a sample volume

Vsmpl =
N
M0

. (49)

The sample volume is adjusted due to gas-phase expansion and contraction, and ensemble
contraction and doubling. Ensemble contractions occur when a new particle is incepted
into an already saturated ensemble. Since the maximum ensemble size Nmax cannot be
adjusted during simulation a random particle is discarded instead and the sample volume
is contracted proportionately to represent a smaller volume in the real system. Contrac-
tions, however, results in a loss of information and can significantly alter the particle size
distribution. Therefore, it is important to select an appropriate initial sample volume size
to minimise the number of contractions. This is done by estimating the maximum value
of the particle number density over the course of the simulation, Mmax

0 , such that

Vsmpl,0 =
Nmax

Mmax
0

. (50)

To maintain a statistically significant number of computational particles, the ensemble is
doubled if N(t)< Nmax/2. In this case, each computational particle is duplicated and the
sample volume is doubled. Therefore, during the simulation (except at early times) the
actual number of computational particles lies approximately in the range [Nmax/2,Nmax].

5 Numerical studies

The numerical behaviour of the model is investigated using a simple test case. A zero-
dimensional batch reactor was simulated with 500 ppm of titanium tetraisopropoxide
(TTIP) precursor in nitrogen gas. The temperature was kept constant at 1200 K and the
pressure at 1 atm. The reactor residence time was 0.5 s. These conditions were chosen
to yield a reasonable degree of aggregation and sintering to fully demonstrate the model.
Simulations were performed on 2.80 GHz Intel R© Xeon R© CPUs.

The numerical parameters that affect the numerical error are:

• Maximum number of computational particles (Nmax);

• Number of runs (L);
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• Splitting time step (∆ts).

First, we look at the convergence behaviour with respect to the splitting time step in order
to select an appropriate splitting time for the rest of the study. Then we investigate the
convergence of six macroscopic properties with respect to to the maximum number of
computational particles Nmax, while keeping Nmax × L constant. The functionals studied
are given in Table 1.

Table 1: Functionals studied

Functional Formula

Zeroth moment M0(t) =
N(t)

Vsmpl(t)

Volume fraction Fv(t) =
1

Vsmpl(t)

N(t)

∑
q=1

V (Pq(t))

V : aggregate volume

Average collision diameter
d̄c(t) =

1
N(t)

N(t)

∑
q=1

dc(Pq(t))

dc defined in Eq. (25).

Average number of primaries per particle
n̄p(t) =

1
N(t)

N(t)

∑
q=1

np(Pq(t))

np(Pq): number of primaries in Pq

Average primary diameter
d̄p(t) =

1
N(t)

N(t)

∑
q=1

dp,avg(Pq(t))

dp,avg(Pq): average primary diameter of Pq

Average sintering level
s̄(t) =

1
N(t)

N(t)

∑
q=1

savg(Pq(t))

savg(Pq): mean sintering level of Pq

5.1 Error calculations

The systematic and statistical errors can be assessed by generating L independent esti-
mates of the particle system and comparing the macroscopic quantities of the system ξl(t)
for a given set of parameters. The empirical mean at time t is

µ1(t) =
1
L

L

∑
l=1

ξl(t), (51)
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and the variance is

µ2(t) =
1
L

L

∑
l=1

[ξl(t)]
2− [µ1(t)]

2 . (52)

The half-width of the confidence interval for µ1(t) is calculated using the central limit
theorem:

cP(t) = aP

√
µ2(t)

L
. (53)

For a confidence level of P= 0.999, a critical value of aP = 3.29 is obtained from the stan-
dard normal distribution. The confidence interval IP within which there is a probability P
of finding the solution is then given by

IP(t) = [µ1(t)− cP(t),µ1(t)+ cP(t)] . (54)

The relative error at time t is

er(t) =
|µ1(t)−ζ (t)|

ζ (t)
(55)

where ζ (t) is an approximation for the true solution which is obtained from a high-
precision calculation with a very large number of particles. In this case, Nmax = 217 and
L = 10 is used. The total relative error, averaged over M time steps is

etot =
1

tres

M

∑
j=1

er(t j)∆t j, (56)

where

tres =
M

∑
j=1

∆t j. (57)

5.2 Numerical results

5.2.1 Convergence with respect to splitting time step

The length of the operator splitting time step size ∆ts affects the accurancy and stability of
the coupling between the gas-phase and particle population balance. If the time step is too
long, the operator splitting can cause unphysical oscillations to arise in the concentrations
of species that have source terms in the gas-phase and sink terms in the particle-phase
(or vice versa). For example, Ti(OH)4 is first formed in the gas-phase as a product of
the decomposition of TTIP and then consumed by the particle phase as the inception and
condensation species. On the other hand, taking unnecessarily small time steps when
species concentrations are varying slowly increases the computational time due to the
cost of initialising the ODE solver. Thus, an appropriate time step needs to be chosen to
maintain adequate coupling while keeping computational cost at a minimum.

The convergence behaviour with respect to the splitting time step of three key particle en-
semble properties (M0, Fv and d̄c) and the concentration of Ti(OH)4, the collision species,
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is investigated. Simulations were performed with a sufficiently large number of parti-
cles and number of runs for convergence: Nmax = 8192 and L = 4. The relative error is
measured against a high precision solution: Nmax = 131072, L = 10 and ∆ts given by the
variable splitting time scheme discussed below.
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(a) Mean Ti(OH)4 concentration.
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(b) Total relative error in Ti(OH)4 conc.

Figure 6: Mean Ti(OH)4 concentration as a function of time and the total relative error
for different splitting step sizes. The horizontal dashed line indicates the value
for the variable splitting scheme (Eq. (58)).

Figure 6 shows the time evolution and the total relative error of the concentration of
Ti(OH)4 for different splitting time step sizes. The solution converges rapidly with de-
creasing step size and appears converged with ∆ts = 10 µs. Figure 6a shows that the col-
lision species is consumed rapidly and its concentration becomes negligible by t = 0.1 s.
This suggests that a small splitting time step is only necessary during this initial phase of
the simulation where there is a strong coupling between the gas-phase and particle-phase.
Once the precursor and collision species have been consumed a longer time step can be
taken. The dashed horizontal line in Fig. 6b shows the total relative error for a variable
splitting time scheme in which the step size is increased after t = 0.1 s:

∆ts =

{
10 µ s, t ≤ 0.1 s;
100 µ s, t > 0.1 s.

(58)

The variable splitting scheme achieves the same total relative error as ∆ts = 10 µs.

The computational time for one run using each of the different step sizes is shown in
Fig. 7. There is a clear increase in computational cost with decreasing step size: almost
an order of magnitude increase in CPU time with an order magnitude decrease in step
size. The CPU time for the variable step size (Eq. (58)) is also shown, and demonstrates a
significant reduction in computational cost compared to the ∆ts = 10 µs case for approxi-
mately the same total error.

Figure 8 shows the convergence behaviour of M0, Fv and d̄c with respect to splitting step
size. Similar convergence behaviour is observed for these functionals as for the concen-
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Figure 7: Computational time as a function of simulation time for different splitting time
steps. Variable refers to the splitting scheme given in Eq. (58).

tration of Ti(OH)4, with all converging by ∆ts = 10 µs. The variable splitting scheme
(Eq. (58)) shows similar convergence properties to ∆ts = 10 µs. Due to the computational
time advantage, this splitting scheme was selected for the remaining numerical studies.

5.2.2 Convergence with respect to number of particles

The maximum number of computational particles should be chosen such that systematic
error is sufficiently small. In practice this means choosing the maxmimum number of
computational particles such that increasing Nmax is not statistically significant. The num-
ber of runs is selected such that the statistical error is acceptable. The convergence be-
haviour of the functionals given in Table 1 was investigated with respect to the maximum
number of computational particles Nmax. The product of the number of computational
particles and number of runs was kept constant: Nmax×L = 217.

The time evolution of each of the functionals within their confidence intervals IP(t) is
shown in Fig. 9 for three different values of Nmax and the high precision solution. The
evolution of M0 and Fv indicate the rapid conversion of gas-phase precursor to TiO2 in
the particle phase. There is an initial spike in M0 as many small single primary particles
are incepted, followed by a rapid decrease in M0 and corresponding increase in d̄p and
d̄c as particles grow via condensation and coalescence. Aggregate formation, shown by
the increase in n̄p, begins after Fv has plateaued i.e. the gas-phase precursor has been
consumed, and once the primary size exceeds the critical sintering diameter. At this point
primary diameter growth slows and further growth is due to sintering. The initial sintering
level is s̄ = 1: the value assigned to single primaries. Once aggregates begin to form the
average sintering level falls rapidly before plateauing at around s̄ = 0.886.

The functionals plotted in Fig. 9 display difference rates of convergence with respect to the
maximum number of computational particles and different statistical errors as evidenced
by the width of the confidence intervals. For example, M0 shows very rapid convergence
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Figure 8: Mean functional value as a function of time and the total relative error for
different splitting step sizes. The horizontal dashed line is the variable splitting
scheme (Eq. (58)). 22
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Figure 9: Time evolution of functionals given in Table 1 within their confidence intervals
IP(t) for different values of Nmax, and the high precision solution.
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to the high precision solution and small statistical error, while Fv also displays rapid con-
vergence but larger statistical error. On the other hand, the average sintering level s̄ and
average number of primaries n̄p both demonstrate a slower rate of convergence and larger
statistical error.

The rates of convergence with respect to the maximum number of computational particles
of the functionals are investigated further in Fig. 10: a plot of the total relative error etot

as a function of Nmax. A first order slope is also plotted as a guide. All the functionals
are observed to converge as Nmax is increased. The volume fraction displays the smallest
total error, likely due to the fact that the gas-phase precursor is consumed rapidly and Fv

reaches a steady value within the first 0.1 s as seen in Fig. 9b. The ensemble properties
M0 and Fv, and average collision diameter d̄c are the fastest to converge at Nmax = 2048.
The average number of primaries n̄p shows the slowest convergence at Nmax = 8192.

The computational times for a single run with different values of Nmax are plotted in Fig. 11
together with the total relative error for M0, n̄p and s̄. The total computational time and
computational time of the Monte-Carlo algorithm are shown. The CPU time of the Monte-
Carlo algorithm increases steadily as a function Nmax. The total CPU time, however, is
constant for small Nmax. At low Nmax, changing the number of particles does not affect the
total computational time very much because most of the CPU time is spent on the ODE
solver, which is independent of the number of computational particles. For large Nmax the
majority of the computational time is spent on the Monte-Carlo algorithm. M0 converges
the fastest with Nmax = 2048 in approximately 9 min, while n̄p is the slowest, converging
with approximately Nmax = 8192 in 27 min.

6 Hot wall reactor simulations

In this section we simulate the hot wall reactor experiment of Nakaso et al. [43]. The orig-
inal investigation produced TiO2 particles from TTIP precusor evaporated into nitrogen
carrier gas in a tubular hot wall flow reactor. In our simulation we impose the temper-
ature profile modelled by Nakaso et al. [43, Fig. 4] for maximum furnace temperature
Tf = 1200◦C. The temperature profile is expressed in terms of reactor residence time by
assuming constant mass flow and accounting for the thermal expansion of the gas-phase.
The initial TTIP mole fraction was calculated as 18.7 ppm for an initial concentration of
7.679× 10−7 mol/l in nitrogen gas at 24◦C and 1 atm. The total reactor residence time
was calculated to be tres = 3.60 s.

Figure 12 shows the simulated time evolution of key gas-phase species, the imposed tem-
perature profile and average particle properties. The simulation was performed using the
model parameters given Section 3. In Fig. 12a we see the rapid decomposition of TTIP as
the temperature increases, accompanied by a spike in Ti(OH)4, the collision species. The
Ti(OH)4 concentration has two peaks, a consequence of the different speeds of the two
reaction pathways in the chemical reaction model. The time evolution of average particle
size, plotted in Fig. 12b, follows a similar trajectory. An initial peak in particle size is ob-
served corresponding to the first Ti(OH)4 peak, which causes particle inception followed
by growth through condensation and coalescence. A subsequent decrease in average pri-
mary size is a consequence of the second peak in Ti(OH)4 resulting in the inception of
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Figure 10: Total relative error as a function of Nmax for the functionals given in Table 1.
Nmax×L = 217 is kept constant. A first order slope (dotted line) is plotted as a
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Figure 12: Time evolution of (a) key gas-phase species and imposed temperature profile,
and (b) particle properties.
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Figure 13: Aggregate and primary particle size distributions for the base case simulation
(tres) and for extended residence times (tres + 0.5,1,2 s). Experimental and
simulation data from Nakaso et al. [43, Fig. 9-2] are included for comparison.

new small particles. In the high temperature region, the particles remain spherical due to
their small size and the high sintering rate resulting in rapid coalescence of coagulating
particles. Only once the temperature begins to decrease at t ≈ 1.5 s we observe the begin-
ning of aggregate formation. After this point, primary particle growth stops and aggregate
growth proceeds via coagulation in the low temperature region of the reactor.

In Fig. 13 we compare our detailed particle model simulations against the experimental
and simulated aggregate and primary particle size distributions of Nakaso et al. [43, Fig. 9-
2]. Our base case simulation results, using the parameters given in Section 3, are shown
by the solid blue lines. Our simulation appears to slightly underpredict the peak of the
aggregate PSD (Fig. 13a) while overpredicting the number density of aggregates. It is
important to note that we are comparing a modelled aggregate size, the collision diameter,
against the mobility diameter measured by Nakaso et al. [43], which may explain some
of the differences in the position of the PSD. Better comparison can be made between
the simulated primary diameter and primary diameter obtained from TEM images. The
predicted position of the peak in the primary PSD (Fig. 13b) is in excellent agreement
with the experimental results of Nakaso et al. [43]. However, a narrower distribution and
smaller primary number density are predicted by our simulation.

Given the underprediction of aggregate size and overprediction of aggregate number den-
sty we consider extending the residence time to account for possible coagulation in the
sampling lines at the end of reactor. Results for tres +0.5 s,1 s,2 s are plotted in Fig. 13.
Extending the residence time has no effect on the primary PSD but does shift the ag-
gregate PSD to the right and reduce the number density towards the experimental data.
However, to achieve agreement with the experimental PSD would require more than 2 s
of extra residence time, suggesting other factors should be considered.

Simulated TEM-style images produced using the method described in Appendix B.6 are
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(a) t = tres. (b) t = tres +2 s.

Figure 14: Simulated TEM-style images.

presented in Fig.14 for two cases: t = tres and t = tres+2 s. Qualitatively, the images show
primary particles of similar size, but larger aggregates in the case with extended residence
time.

In Fig. 15 we briefly look at the sensitivity of the aggregate and primary PSDs to the
collision efficiency of coagulation and inception. The inception and coagulation rates
are varied by introducing a multiplicative prefactor Ainc and Acg to the respective kernels.
Increasing the coagulation collision efficiency shifts both the aggregate and primary PSDs
to the right and reduces the number density of aggregates and primary particles. The
behaviour of the primary PSD is due to increased coalescence of coagulating primaries
in the high temperature region of the reactor. While increasing the coagulation efficiency
does improve the agreement in the aggregate PSD, it results in larger discrepancy in the
primary PSD. Furthermore, a large increase in coagulation rate (Acg = 5) would be needed.
Both aggregate and primary PSDs are insensitive to an increase in the inception rate.

Lastly, we look at the effect of the critical sintering diameter. Figure 16 shows the effect
of varying dp,crit on the aggregate and primary PSDs. The aggregate PSD is not very
sensitive to the value of dp,crit, although a slight increase is observed with increasing dp,crit.
The primary particle size distribution shows much greater sensitivity. For dp,crit = 0 nm
we observe good agreement with the left hand tail of the experimental data while larger
values shift the distribution towards the right hand tail of the experimental data. The best
agreement in the position of the peak in the distribution is obtained for dp,crit = 4 nm. In
all cases the number density of primaries is underpredicted.

In summary, our base case model parameters produced excellent agreement in the posi-
tion of the primary PSD. However, the predicted width was slightly narrower and primary
number density was smaller. The position of the aggregate PSD was slightly underpre-
dicted, and the width of the distribution and number density overpredicted by the model.
Some of the difference may be attributed to the fact that the model collision diameter
was compared with the experimentally measured mobility diameter. The possibility of
aggregation in the sample line was considered, but given the additional residence time
required this is unlikely to be the only factor in explaining the differences. Sensitivity to
the collision efficiencies of coagulation and inception, and the critical sintering diameter
suggest that primary particle growth is driven by coagulation and coalescence in the high
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Figure 15: Sensitivity of simulated aggregate and primary particle size distributions to
coagulation collision efficiency Acg and inception collision efficiency Ainc. Ex-
perimental and simulation data from Nakaso et al. [43, Fig. 9-2] are included
for comparison.
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Figure 16: Sensitivity of simulated aggregate and primary particle size distributions to
the critical sintering diameter dp,crit. Experimental and simulation data from
Nakaso et al. [43, Fig. 9-2] are included for comparison.
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temperature region of the reactor with aggregate growth occurring in the low temperature
region. A recent study by Sharma et al. [51] showed the strong temperature dependence of
coagulation efficiency with significantly larger values observed at low temperature. If the
rate of coagulation was indeed higher in the low temperature region this would improve
the agreement in aggregate PSD while leaving the primary PSD unchanged.

7 Conclusions

We presented a new detailed particle model for titanium dioxide aggregates synthesied
from TTIP precursor with inception, coagulation, condensation, sintering and coales-
cence. The new particle description resolves the radius, composition and position of
each individual primary particle, representing an aggregate as a collection of overlap-
ping spheres. The detailed geometrical description permits the morphological evolution
of each aggregate to be simulated. The particle model developed in this work was pre-
sented in the context of titanium dioxide synthesised from TTIP precusor. However, the
model can be easily adapted to wider applications such as different precursor chemistry
(e.g. TiCl4) or even the study of different materials e.g. soot or silica.

The new model overcomes some of the limitations identified in previous models [48, 52]
by adding more geometrical detail to the particle description; thereby permitting more
physical detail to be incorporated into the process models. For example, a detailed de-
scription of the aggregate structure obtained by tracking individual primary coordinates
allowed a more physical ballistic collision model to be implemented and avoided the need
to assume fractal dimension in calculations. Most importantly, the detailed geometrical
description allows for better comparison with experimental data. For instance, through
visualisation of particles using TEM images that can be analysed in a similar manner to
experimental TEMs (e.g. projected area) or by considering the effect of particle morphol-
ogy on mobility measurements.

A numerical study was conducted using a simple batch reactor test case to investigate the
convergence behaviour of a number of average properties. The study demonstrated that
under conditions similar to the test case convergence can be achieved in key properties
for a feasible number of computational particles. Furthermore, the computational time for
a converged solution was shown to be reasonable given an informed choice of operator
splitting time step size.

Lastly, the hot wall reactor experiment of Nakaso et al. [43] was simulated. This was
not intended to be a comprehensive evaluation of the model, but to briefly examine the
model performance and make suggestions for future work. The base case model param-
eters produced reasonable agreement with the experimental PSDs of Nakaso et al. [43],
particularly in primary size. Agreement in the aggregate PSD was not as good, possibly
due to uncertainty in the measures of aggregate size being compared: modelled collision
diameter against measured mobility diameter. This highlights the importance of selecting
properties for comparison that are directly comparable: a point that should be carefully
considered in future work evaluating this model. Moreover, the choice of model param-
eters is also an important factor. The simulated PSDs were shown to be sensitive to the
coagulation efficiency and critical sintering diameter suggesting that future work should
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investigate these parameters in more detail. Next, it is important to further evaluate the
model against experimental data and perform a thorough parametric sensitivity study.
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Nomenclature

Upper-case Roman
A Surface area

Ainc/cg Inception/coagulation rate prefactor
An Neck area
C Aggregate particle connectivity matrix

Cv0 Equilibrium vacancy concentration
Ci j Connectivity matrix element
Df Fractal dimension
Dv Vacancy diffusion coefficient
Fv Volume fraction
IP Confidence interval
K Collision kernel

Kn Knudsen number
L Number of runs

M0 Zeroth moment/Aggregate particle number density
M Molar mass
M Total number of time steps
N Number of aggregate/computational particles

NA Avogadro constant
P Probability
Pq Aggregate particle
Q State of system
R Rotation matrix
R Radius
R Rate

Ri j Neck radius
T Temperature
U Uniformly distributed random variable
V Volume

Vsmpl Simulation sample volume
X Poisson distributed random variable

Lower-case Roman
aP Critical value of the standard normal distribution for confidence level P
cP Half-width of the confidence interval
d Diameter
d̄ Population average diameter

di j Centre to centre separation of primaries pi and p j

dp,crit Critical sintering diameter
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er Relative error
etot Total relative error
kf Fractal pre-factor
kB Boltzmann constant
m Mass
np Number of primaries
n̄p Population average number of primaries
p Pressure
pi Primary particle
r Radius
s Sintering level
s̄ Population average sintering level
t Time
v Volume

xi Position vector of the centre of primary pi

xi j Distance from the centre of primary pi to the neck with p j

Upper-case Greek
Ω Vacancy volume

Lower-case Greek
γ Surface free energy

δgb Grain boundary thickness
ε Collision enhancement factor
ζ High precision solution to general macroscopic quantity of system
η Primary composition: number of chemical units
θ Polar angle
λ Mean free path
µ Gas-phase viscosity

µ1 Mean
µ2 Variance
ξl General macroscopic quantity of system measured for run l
ρ Density
τ Exponentially distributed waiting time
φ Azimuthal angle

Subscripts and superscripts
0 Denotes an initial value

agg Denotes an aggregate property
avg Denotes the particle average value

b Denotes bounding sphere
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c Denotes collision diameter
cap Denotes a spherical cap
cg Denotes coagulation

cond Denotes condensation
const Denotes a constant kernel

sph Denotes a sphere
f Denotes final
f Denotes furnace

fm Denotes the free molecular regime
g Denotes a radius or diameter of gyration

gp Denotes the radius of gyration of a spherical primary particle
i/ j/k/l/m Primary particle index

inc Denotes inception
l Simulation run index

m Particle process index
maj Denotes the majorant rate/kernel
max Denotes a maximum

p Denotes primary particle
q/r/s Aggregate particle index

res Denotes the reactor residence time
s Denotes a splitting step

sint Denotes sintering
sf Denotes the slip flow regime
tr Denotes the transition regime

true Denotes the true rate/kernel

Abbreviations
BCCA Ballistic Cluster Cluster Aggregation

CPU Central Processing Unit
DEM Discrete Element Method
DSA Direct Simulation Algorithm

LPDA Linear Process Deferment Algorithm
ODE Ordinary Differential Equation
PSD Particle Size Distribution

TEM Transmission Electron Microscopy
TTIP Titanium Tetraisopropoxide

34



A Binary tree data structure
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Figure 17: Binary tree data structure.

The primaries comprising an aggregate particle are stored in a binary tree data structure
[48]. An example of a binary tree is shown in Fig. 17. The binary consists of a number of
nodes where each node connects to two (child) nodes below it and a (parent) node above
it – except for the top-most root node and bottom-most leaf nodes. These connections
are shown by the solid lines in Fig. 17. A leaf node, shown as circles, stores a single
primary particle: in this case primaries p1...p6. A non-leaf node, shown as squares and
labelled A...E, stores information pertaining to a single neck connecting two primaries.
At the very least, this information should identify the two primaries connected by the
neck. These connections are represented by the dashed lines in Fig. 17. An important
feature is that the two primaries must lie below their connecting node in the binary tree.
For example, node C represents the neck connecting primaries p3 and p6. Node C could
not, for instance, connect primary p2 to p3; this can only be achieved by a node above both
primaries in the tree i.e. node A. The connectivity matrix representation for the binary tree
structure is

C =



0 · · · 0
1 0

0 1 0
...

0 0 1 0
0 0 0 0 0
0 0 1 0 1 0

 . (A.1)

Figure 18 shows two possible particle structures represented by the binary tree in Fig. 17.
The primaries are labelled p1...p6 and the necks are indicated by a red dot and labelled
A...E. Since the binary tree only stores the connectivity and not the actual relative posi-
tions of primaries multiple particle structures are possible for a given binary tree. The
actual positional information for each primary is stored in leaf node (primary) itself. This
is fine for a branched structure such as that shown in Fig 18a but poses a problem for a
looped structure such as the one shown in Fig. 18b, where primary p5 is in contact with p3
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(b) Looped structure. Connectivity loop
formed between primaries p3, p5 and
p6.

Figure 18: Two different particle structures with the same binary tree connectivity –
shown in Fig.17.

but is not considered a neighbour. Such scenarios tend to occur when primaries, that were
not initially in contact, sinter and grow producing a more compact structure with multiple
overlaps such as shown in Fig. 19.

Region of
multiple
overlaps

Figure 19: Multiple overlapping primaries.

The consequence of a structure with multiple overlapping primaries is that the key model
assumption – that necks are circular in cross section – no longer holds. This introduces
inaccuracies into the the model equations e.g. calculation of the primary volume, free
surface and neck area. To reduce the likelihood of this occurring, primaries can be merged
sufficiently early to avoid large deviations from circular necks, but at point at which it is
reasonable to approximate the sintered primaries as a single primary. This is handled by
the coalescence process (Section 3.2.5). Another scenario in which looped structures arise
is if two branches overlap. This cannot be avoided through primary coalescence, but the
likelihood is reduced for less compact aggregates (small fractal dimensions).
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Figure 20: Interrogating the binary tree for neighbours of p3 by moving up the binary tree
from the leaf node to root node along the path in bold red. The neighbours of
p3 and connections to non-leaf nodes are highlighted.

An important detail of the model equations is that they require summation over neighbours
of a primary to calculate properties such as the primary volume, free surface and neck area
etc. The binary tree provides a very efficient way to do this. Since each neck must be a
non-leaf node located above the primary, it is only necessary to take a path from the
primary of interest to the root node to find the neighbours; the rest of tree does not need to
be explored. Figure 20 shows an example of interrogating the binary tree for neighbours
of p3. The path taken is shown by the solid red bold lines along the route: p3-D-C-A.

B Algorithms

B.1 Direct simulation Monte-Carlo

The Direct Simulation Algorithm (DSA) is presented in Algorithm 1. Condensation and
sintering are treated as deferred processes and performed using the Linear Process Defer-
ment Algorithm (LPDA) [44]. The majorant kernel for coagulation and method of select-
ing particles is discussed by Patterson et al. [45]. Ensemble contractions and doublings
are performed as discussed in Section 4.

B.2 Ballistic cluster-cluster aggregation

The implementation of ballistic cluster-cluster aggregation with a random impact param-
eter (BCCA) described by Jullien [28] is shown in Algorithm 2. Particle rotations are
performed using the method proposed by Arvo [4] and particle bounding spheres are cal-
culated using the method proposed by Ritter [47].
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Test case. A simple test case was created to determine the average fractal dimension
generated by algorithm. A zero-dimensional batch reactor was simulated with an initial
population of 2048 monodisperse spherical particles with diameter dp = 1.81 nm and
number density M0 = 1016 m−3 in Ar gas. The temperature was kept constant at 1000 K
and the pressure at 1 atm. The reactor residence time was set to 10 s. The particles were
allowed to coagulate under a constant coagulation kernel:

Kconst(Pq,Pr) = 1×10−14 m3s−1. (B.1)

No other particle processes were turned on. The simulation was repeated 10 times. A
total of 10518 particles with a mean of 499 primaries per particle were produced.

The fractal dimension Df and pre-factor kf were estimated by fitting the standard fractal
relationship (Eq. (20)) to the data, expressed in the following form:

ln(np) = Df ln
(

dagg

dp,avg

)
+ ln(kf), (B.2)

where dagg is the aggregate diameter. Two different measures of the aggregate diameter
are tested: the diameter of gyration dg, calculated in similar way to Jullien [28]

d2
g =

1
2np

∑
i, j
(xI−x j) , (B.3)

which assumes that the primary mass is concentrated at the primary centre; and, secondly,
the collision diameter dc defined in Eq. (25). The data and least squares fit (for np > 1)
are shown in Fig. 21.

We observe that the collision diameter is larger than the radius of gyration for small np, but
tends to the radius of gyration for large np, as intended (see discussion in Section 3.2.2).
The estimated fractal dimensions from the two diameters, dg and dc, are 1.82 and 1.86
respectively. These values are slightly lower than that found by Jullien [28], Df = 1.91,
but we should note that the method of selecting particles for collision and estimating the
fractal dimension are different.

B.3 Surface adjustment

A surface adjustment as a results of a condensation event is performed according to Al-
gorithm 3. Note that we assume a primary is composed solely of discrete units of TiO2.
Therefore, a redistribution of composition (mass) between primaries only takes place if
the volume change of the neighbour is sufficiently large. This can lead to some deviation
between the volume derived from the composition

vi =
ηTiO2,iMTiO2

ρTiO2
NA

, (B.4)

and the volume derived from the primary geometry

vi =
4
3

πr3
i −

1
3

π ∑
j
(2r3

i + x3
i j−3r2

i xi j). (B.5)
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Figure 21: Number of primaries np verses the ratio of aggregate diameter dagg to primary
diameter dp. Blue circles: dagg = dg, diameter of gyration ; Black pluses:
dagg = dc, collision diameter. Lines are a least squares fit of the standard
fractal relationship to the data.

The system, however, is to some extent self-correcting due to two processes. First, the
movement of a neck during a surface adjustment will to a certain degree be offset by an
opposing change during a possible future surface adjustment to the other primary. Second,
the need to redistribute mass is eliminated by the merger of the two primaries during a
coalescence event. Furthermore, the likelihood of the primaries coalescing is increased
with more surface growth of one primary at the expense of the other.

B.4 Sintering

Sintering is performed on a particle Pq using Algorithm 4. Where two primaries are in
point contact (i.e. their neck area is An,i j = 0 ) the sintering rate is undefined. In this case,
we assume a neck radius of 1% of the smaller primary radius, Ri j = min(ri,r j)/100.

B.5 Coalescence

Neighbouring primaries pi and p j in a particle Pq are merged according to Algorithm 5,
once the sintering level (Eq. (46)) exceeds si j ≥ 0.95. The sintering level is defined while
the neck remains between the primary particle centres and the primaries are merged as the
neck leaves this region.
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B.6 TEM images

A simulated TEM-style image is produced using Algorithm 6.
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Algorithm 1: Direct simulation Monte-Carlo.
Input: State of system Q0 at t0; Final time tf.
Output: State of system Qf at tf.
begin

Q← Q0;
t← t0;
while t < tf do

Calculate total rate of non-deferred processes:

Rtot(Q) = ∑
m

Rm(Q),

with m ∈ {inc,cg} and where Rcg = Rmaj
coag(Q);

Calculate an exponentially distributed waiting time:

τ =− lnU
Rtot

,

where U is a uniformly distributed random variable, U ∈ [0,1];
Select a process with probability:

P(m) =
Rm(Q)

Rtot(Q)
;

if m = inc then
/* This is an inception event */

Create a new particle PN and add it to the ensemble;
if N > Nmax then

Uniformly remove a particle;
Contract ensemble;

else
/* This is a coagulation event */

Select two particles Pq and Pr;
Calculate majorant for two particles: Kmaj

tr (Pq,Pr);
Perform deferred processes for Pq and Pr (condensation and sintering);
Calculate true kernel for the two particles: Ktrue

tr (Pq,Pr);
With probability

P =
Ktrue

tr (Pq,Pr)

Kmaj
tr (Pq,Pr)

,

perform BCCA coagulation: Pq +Pr→ Ps;
if N < Nmax/2 then

Double the ensemble;

t← t + τ;

Perform deferred processes (condensation and sintering) for all particles;
return Q
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Algorithm 2: Ballistic cluster-cluster algorithm with a random impact parameter.
Input: Particles Pq and Pr chosen for coagulation.
Output: Daughter particle Ps.
begin

Randomly rotate Pq and Pr around their centres of mass (using Ref. [4])
Calculate the bounding spheres rb(Pq) and rb(Pr) (using Ref. [47])
Centre the bounding spheres
repeat

/* Determine random trajectory */

Uniformly select a point H1(θ ,φ) on a unit sphere:

φ = 2πU and θ = arccos(2U−1),

where U is a uniformly distributed random variable;
Construct a rotation matrix R that rotates the vector (0,0,−1) to the point
H1;
/* Determine random impact parameter */

Uniformly select a point:

H2 = (R
√

r cosθ ,R
√

r sinθ ,−R),

on a disk of radius R = rb(Pq)+ rb(Pr) centred on (0,0,−R) in the z =−R
plane with r =U , and θ = 2πU , where U is a uniformly distributed random
variable;
/* Set initial positions */

Apply the rotation to H2 giving a new point G = RH2 ;
Place particle Pr at point G;
Place particle Pq at O = (0,0,0);
/* Perform the collision */

while No point of contact do
Translate Pr along a vector parallel to H1O by distance R/100;
Check for contact;
if Pr has passed through the bounding sphere of Pq then

/* This is an unsuccessful collision */

Break;

if Single point of contact then
/* This is a successful collision */

New particle Ps created by connecting the binary trees of Pq and Pr at a
new head node;
Contacting primaries pi and p j connected at the new head node;
return New particle Ps

until Successful collision
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Algorithm 3: Surface growth
Input: Particle Pq; Number of units of TiO2 added n
Output: Particle Pq

begin
Select a primary pi in particle Pq with probability

P(pi) =
Ai

∑
np(Pq)
j=1 A j

;

Save old volume and radius: vi,old← vi and ri,old← ri;
Update primary composition: ηi← ηi +n;
Calculate new volume, vi;
while vi,old < vi do

/* Primary radius increased in 1% increments */

∆r← ri/100;
∆v← Ai∆r;
if vi,old +∆v > vi then

∆r← (vi− vi,old)

∆v
∆r;

Increase radius: ri← ri +∆r;
Update free surface area, Ai;
vi,old← vi,old +∆v;

/* Redistribution of composition between neighbours */

foreach Neighbour p j of pi do
Estimate change in volume of p j:

∆v j←−An,i j
ri,old

di j
(ri− ri,old) ;

Calculate (integer) change in composition of p j:

∆η j←
∆v j

MTiO2
/
(
ρTiO2

NA
) ,

rounded down to the nearest integer;
if |∆η j|> 0 then

Update the composition of p j: η j← η j +∆η j;
Update the composition of pi: ηi← ηi−∆η j;

return Pq
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Algorithm 4: Sintering
Input: Particle Pq; Time to sinter particle tsint

Output: Particle Pq

begin
foreach Neck between two primaries pi and p j in particle Pq do

∆di j,max← di j/100;
t← 0;
while t < tsint do

Calculate sintering rate: ddi j

dt (Eq. (35));
Calculate time step:

∆t← ∆di j,max
ddi j

dt

;

if tsint > t +∆t then
µ ← 100;

else

µ ← 100
(tsint− t)
∆di j,max

ddi j

dt
;

Generate a Poisson random variate X with mean µ;
Calculate change in separation:

∆di j =−
X

100
∆di j,max;

∆di j =−∆di j
x j−xi

|x j−xi|
;

Adjust centre to centre separation: di j← di j +∆di j;
/* Only need to adjust the coordinates of primaries on

one side of the neck, in this case pi. */

Translate primary pi: xi← xi +∆di j;
Translate neighbours (pi; p j; ∆di j);
Compute change in radii using Eq. (45): ∆ri and ∆r j;
Adjust connectivity (pi; p j; ∆ri);
Adjust connectivity (p j; pi; ∆r j);
Update primary radii:

ri← ri +∆ri

r j← r j +∆r j

Update properties of primaries pi and p j;
t← t +∆t;
if Coalescence condition is met then

Merge primaries pi and p j;
Break;
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Algorithm 4: Sintering Cont.
/* Translates all the neighbours of a primary pi by ∆di j, except

for neighbour p j */

Function Translate neighbours (Primary pi; Neighbour p j; Translation ∆d)
foreach Neighbour pk of pi, except for primary p j do

Translate pk by ∆d;
xk← xk +∆d;

/* Recursively translate the neighbours of pk, except for

primary pi */

Translate neighbours (Primary pk; Neighbour pi; Translation ∆d);

/* Update centre to centre separations and coordinates of

neighbours pk of primary pi except for neighbour p j */

Function Adjust connectivity (Primary pi; Neighbour p j; ∆ri)
foreach Neck between primary pi and neighbour pk, except for primary p j do

Calculate change in separation (Eq. (40)):

∆dik =
ri

xik
∆ri;

∆dik = ∆dik
xk−xi

|xk−xi|
;

Translate neighbour to update centre to centre separation:

dik← dik +∆dik;
xk← xk +∆dik;

Translate neighbours (Primary pk; Neighbour pi; Translation ∆dik);
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Algorithm 5: Merger
Input: Particle Pq; Primaries pi and p j to merge
Output: Particle Pq with merged primary pi,new

/* We assume that pi is the larger primary: ri > r j */

begin
Solve Eq. (48) for the new merge primary radius of ri,new;
Update the composition of pi: ηi,new = ηi +η j;
foreach Neck between pi and neighbour pk except p j do

xki =
d2

ik− r2
i + r2

k

2dik
;

∆dik = max
(

xki±
√

x2
ki− r2

k + ri,new

)
−dik;

∆dik = ∆dik
xk−xi

|xk−xi|
;

Translate neighbour pk:

dik← dik +∆dik;
xk← xk +∆dik;

Translate neighbours (Primary pk; Neighbour pi; Translation ∆dik);
/* The function Translate neighbours is defined in

Algorithm 4 */

foreach Neck between p j and neighbour pl except pi do

xl j =
d2

jl− r2
j + r2

k

2d jl
;

∆dil = max
(

xl j±
√

x2
l j− r2

l + ri,new

)
−dil;

∆dil = ∆dil
xl−xi

|xl−xi|
;

Translate neighbour pl:

dil ← dil +∆dil;
xl ← xl +∆dil;

Translate neighbours (Primary pl; Neighbour p j; Translation ∆dil);

ri← ri,new;
Remove primary p j and restructure binary tree ;
Update particle properties;
return Pq
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Algorithm 6: TEM images
Input: Ensemble Q; Frame size 2a×2b; Particles per frame N; Number of images n
Output: n TEM images
begin

for n frames do
for N particles do

Uniformly select a particle Pq from ensemble Q;
Randomly rotate Pq around its centres of mass using the method descibed
by Arvo [4];
Generate (x,y) coordinates uniformly in the image plane with
−a≤ x≤ a and −b≤ y≤ b;
Position Pq in the image plane with its centre of mass at (x,y);
Project Pq into the image plane;
Remove Pq from the ensemble;
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