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Abstract

This work presents a hybrid particle-number and particle model to improve ef-
ficiency in solving population balance equations for type spaces spanning spherical
and aggregate particles. The particle-number model tracks simpler, spherical parti-
cles cheaply by storing only the number of particles with a given one-dimensional
internal coordinate, while the particle model allows resolution of the detailed ag-
gregate structure that occurs due to collision and coagulation between particles by
storing distinct computational entries for each particle. This approach is exact if pri-
mary particles are defined by their monomer count and the particle-number model
increments in single monomers. A stochastic method is used to solve the population
balance equations for the combined type space. The hybrid method works well for
large ensembles (> 212 particles) with a detailed particle model, where performing a
finite number of particle-number updates is demonstrated to be 40-50% cheaper than
updating an equivalent ensemble of discrete particles. These savings can be traded
for a larger sample volume to increase the resolution in the particle size distribution
or more repeat runs to reduce the total error. Run time improvements are curtailed
at very high surface growth and coagulation rates due to the fixed cost of growth
updates on the large aggregates formed; however, the hybrid method is still attractive
in this case as its primary purpose is to reduce error by preventing saturation of the
ensemble with simple particles at high inception rates.
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Highlights

• The hybrid type space (particle-number/particle) model allows efficient represen-
tation of small, spherical particles while preserving detailed structural information
for larger particles and aggregates.

• The population balance equations for both type spaces are advanced using a stochas-
tic method; the method is exact if primary particles are integer multiples of a
monomer size.

• Speed-up of 40-50% is obtained for large ensembles, with best performance for
systems with many small particles, especially if particle updates are expensive.

• With the proposed method, smaller ensembles are required to achieve a given level
of accuracy and the chance of contractions due to ensemble flooding is reduced.



Contents

1 Introduction 1

2 Particle systems 2

2.1 Space of small, spherical particles, M . . . . . . . . . . . . . . . . . . . 3

2.2 Space of large particles and aggregates, X . . . . . . . . . . . . . . . . . 4

2.3 Mass transfer between the particle systems . . . . . . . . . . . . . . . . . 5

3 Population balance equations 8

4 Stochastic numerical method 10

4.1 Selecting particles according to their properties . . . . . . . . . . . . . . 11

5 Numerical studies 12

5.1 Comparison with single particle type space model . . . . . . . . . . . . . 12

5.2 Performance of Pn/P model in different rate regimes . . . . . . . . . . . . 20

6 Conclusion 22

References 23

Nomenclature 28

A Transition regime coagulation kernel 31

B Algorithms 33

i



1 Introduction

The dynamics of particle formation and growth are of interest across a wide range of sys-
tems from flame synthesis of nanoparticles [28, 39] to crystallisation [33]. The evolution
of a particle system through time and space can be described by its population balance
equation (PBE), an integro-differential equation which describes changes in the internal
coordinates of the particles (e.g. mass, surface area, chemical composition and structure)
due to processes such as inception, collision, surface reaction or condensation, and frag-
mentation. The complexity of real systems precludes analytical solutions; thus numerical
methods have been developed. Numerical solutions require a model for the particle type
space and a method for solving the PBE.

The particle type space is typically high dimensional, with each particle described by up to
thousands of internal coordinates which correspond to the diversity of morphologies and
surface chemistries that can be formed [13]. The simplest type space model is a spherical
particle model, which represents particles as spheres of constant composition and density;
thus only a one dimensional type space is required. This assumes that lasting collision
(i.e. coagulation) events are followed by instantaneous coalescence to a larger spherical
particle [32]. More detail is incorporated into surface area and volume models [45], where
these properties are added for coagulating particles. This allows more structural informa-
tion to be tracked; however, these models require adaptations to deal with processes such
as surface reaction and sintering (e.g. a fractal dimension is assumed).

The most detailed particle models are primary particle models. These resolve the connec-
tivity of “primary particles” (particles formed by inception) following coagulation events
and describe particle structure e.g. shared surface area and centre-to-centre distance be-
tween particles [18]. Detailed particle models have been used to study synthesis of soot
[6, 35, 46], SiO2 [34, 36], silicon [25] and TiO2 [4, 18, 42]. Detailed particle models
have been shown to provide important additional information when the particle system is
polydisperse or the coagulation and sintering timescales are similar [24].

The numerical solution of the PBE becomes more challenging with increasing type space
complexity. Low dimensional type spaces allow direct integration of the ordinary differ-
ential equations (ODE) through transport of the moments of the particle size distribution
(PSD) or discretization.

The method of moments (MOM) approach solves finitely many moments of the particle
size distribution by multiplying the PBE by kth powers of a property and integrating over
the type space. This approach is computationally efficient, although closure problems
exist for coagulation kernels involving fractional or negative moments and processes re-
quiring the point-wise particle concentrations (shrinkage). Closure issues are treated by
interpolation e.g. MOMIC [2, 9, 10, 20] or quadrature e.g. QMOM [22, 23], DQMOM
[1, 21]. The moment projection method has been proposed to handle shrinkage problems
[44].

Sectional methods are a popular choice of ODE-based method. These discretize the PSD
into sections/bins within which the PSD is modelled either with step functions or polyno-
mials. A number of adaptations have been proposed to e.g. conserve mass and particle
number [11], handle discontinuities in the number distribution and numerical diffusion
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due to surface reaction [14–16], and treat sintering [38]. However, sectional methods
must approximate properties of the PSD within the discretized sections, are expensive
compared with MOM, and higher order variants can suffer from stability issues [13].

Stochastic (Monte Carlo) methods solve the PBE by performing events probabilistically
on a finite ensemble of computational particles which can have arbitrarily many internal
coordinates. Monte Carlo methods are the only viable method for using high dimensional
particle type spaces. The accuracy of these methods is controlled by the number of com-
putational particles used and the number of repeat runs with different random seeds. This
can be computationally taxing under high rate conditions, such as those used in our recent
study of industrial TiO2 synthesis [4] because a large particle ensemble is required to re-
solve the polydisperse PSD and the surface structure of the particles evolves rapidly. In
Monte Carlo methods, convergence to the exact solution is expected with increasing sam-
ple size. This can be demonstrated numerically [27, 36], and has been shown theoretically
in several studies [7, 29, 40].

The stochastic approach has been refined with several techniques to reduce variance e.g.
doubling [19] and mass flow algorithms [7] and weighted particle methods [12, 17, 31],
and improve efficiency e.g. fictitious jumps/majorant kernels [8], linear process deferment
algorithm [30]. Babovsky [3] proposes a scheme for studying gelation processes where, to
reduce the chance of stochastic effects producing metastable states, two solution methods
are used with: deterministic solution of the ODEs for particles of sizes smaller than N1,
stochastic solution for sizes between N1 and N2 and removal for larger particles (the gelled
mass).

The purpose of this paper is to introduce a hybrid particle-number/particle (PN/P) model
in which small particles are treated simply while large particles and aggregates are re-
solved with as much detail as possible. This split type space model is primarily intended
to accommodate a detailed particle model when solving population balance equations
with high rates of particle inception. Inception rates that produce a high number density
of primary particles make it computationally challenging to resolve less abundant, larger
particle aggregates, especially when particle surface processes such as heterogeneous re-
action are also significant.

This paper is structured as follows: Two particle type sub-systems are defined using
particle-number and detailed particle type space models respectively in Section 2. The
final part of the section outlines the processes that transfer mass between the sub-systems.
The population balance equations for formation and growth in both models are then de-
veloped in Section 3. The stochastic method used to advance the population balance
equations is outlined in Section 4, and Section 5 presents numerical studies of the conver-
gence and performance of the hybrid model compared to a standard particle model for a
simplified TiO2 test in various configurations.

2 Particle systems

Monte Carlo methods employ a finite ensemble of computational particles to model the
diverse assortment of particles in the physical system. A computational particle Pi has a
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distinct, possibly multivariate type, xi, relating to the properties of the physical particle it
represents. The particle type space describes all possible particles.

In this work, a hybrid particle-number/particle model is proposed wherein the particle
type space is split and spherical particles below a certain threshold size are represented
by a single internal coordinate (number of monomers) using a particle-number model.
Particles larger than the threshold size and non-spherical aggregate particles formed by
coagulation are modelled using a detailed particle model in order to resolve the complex
information about their morphology. Particles are transferred from the particle-number
type space to the particle type space when they grow larger than the threshold size or
following coagulation events (Fig. 1).

If the particle model assumes that primary particles are spherical and composed of a single
molecule type, and a large threshold size is feasible, the particle-number model does not
introduce any approximation. The threshold size can be chosen to minimize the existence
of spherical particles in the detailed particle system.

Gas phase model
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u
n
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Aggregate particles

Particle
model

TWO PARTICLE TYPE SPACESM X

Figure 1: Mass transfer from the gas phase to the particle systems by inception and sur-
face reaction, and mass transfer from the particle-number model to the particle
model by coagulation and surface growth beyond the threshold size (Nthresh).

2.1 Space of small, spherical particles, M

Let the particle type space consisting of small, spherical particles (primary particles) be
defined as M. Particles in this space have a single internal coordinate for number of
monomers, with different sizes i ∈ [1,Nthresh] where i = 1 is a single molecular unit and
Nthresh is the size of the largest particle that is tracked by the particle-number model before
transfer to the space of aggregate particles, X. The particle-number (PN) system is written:
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zM (t) = (x1, . . . ,xNthresh) ,

where

xi (t) ∈M, i = 1, . . . ,Nthresh, t ≥ 0

and Ni =N (xi) is the number of particles that have type xi. For continuous functions φ , the
following convergence property can be maintained as the sample volume, Vsmp, increases:

∫
M

φ (x)n(t,dx) = lim
Vsmp→∞

1
Vsmp

Nthresh

∑
i=1

Niφ (xi (t)) .

Here, n(t,x) is the number density of particles with type x at time t and the concentration
of particles with type xi ∈M is Ni ·V−1

smp. M represents the type space efficiently as it
requires only a vector in RNthresh to produce the PSD from the number of particles in each
size class.

2.2 Space of large particles and aggregates, X

Let X be the type space for spherical particles containing more than Nthresh monomers
and all possible aggregate particles containing more than one primary particle. Particles
in X need to be defined by both morphology and composition. A particle Pi is made up
of an unordered list of primary particles, p j, each of which is described by its chemical
composition. The specific connectivity and extent of sintering between each neighbouring
pair of primary particles is included in the particle description so that its morphology is
known. The particle system is comprised of N (t)≤ Nmax such particles (at time t):

zX (t) =
(
x1, . . . ,xN(t)

)
,

where

xi (t) ∈ X, i = 1, . . . ,N (t) , t ≥ 0.

For continuous functions φ , the following convergence property is maintained where par-
ticles of type xi ∈ X have concentration V−1

smp:

∫
X

φ (x)n(t,dx) = lim
Vsmp→∞

1
Vsmp

N(t)

∑
i=1

φ (xi (t)) .
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The description of multivariate particle types xi requires much more information for each
particle; thus, a more sophisticated data structure is required to store each distinct particle
separately [34].

2.3 Mass transfer between the particle systems

The concentration of particles of a given multivariate type x ∈ (M∪X) can be evolved
by the Smoluchowski coagulation equation [31], extended to include inception, surface
growth and flow. Here, we consider flow in an ideal, constant volume, continuously stirred
tank reactor (CSTR) (Eq. (1)).

dn(t,x)
dt

=I (x)+
1
2 ∑

y,z∈(M∪X):
y+z=x

K (y,z)n(t,y)n(t,z)− ∑
y∈(M∪X)

K (x,y)n(t,x)n(t,y)

+ ∑
y∈(M∪X):

gSG(y)=x

βSG (y)n(t,y)−βSG (x)n(t,x)+
1

τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]
in (t,x)−n(t,x)

)
(1)

I (x) is the rate of inception of particles of type x, K (x,y) is the rate at which particles of
type x coagulate with particles of type y, βSG (y) is the rate of surface growth of particles
of type y and gSG (y) is the particle type that is produced by this surface growth, and τCSTR

is the residence time in the CSTR. In the case of Nin inflow streams, f [ j] is the volumetric
feed fraction of the jth stream.

Interaction with a gas phase system

The systems of interest in this work (i.e. flame synthesis) typically involve a gas phase
precursor as well as several intermediate species, and formation and reaction processes
in the gas phase must be described by a chemical mechanism. Particle synthesis follows
from collision between gas phase species that results in a stable configuration of molecular
units (inception). Particle growth also occurs due to the reaction of gas phase species on
the particle surface (surface growth) and this creates a polydisperse primary particle size
distribution.

Inception

Particle inception from the gas phase intermediates occurs at a rate, I, that depends on
the gas phase concentrations and the temperature. The inception process only acts on the
space of spherical primaries, M, and not on the space of large particles, X. In formulat-
ing the PBEs in the following section, we assume that a single monomer unit is the only
incepting size; however, the description is transferable to any monomer index correspond-
ing to a stable particle composition. Primary particles of type x1 ∈M are created and this
is modelled by incrementing the count at index 1 in the particle-number model (Fig. 2).
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Figure 2: Interaction between the gas phase and the particle-number system by inception
of primary particles following gas phase collisions.

Surface growth

All particles in the two type spaces can experience surface growth, at a rate, βSG, that
is dependent on the gas phase reactant concentrations and temperature, and the particle
surface area. Surface growth results in a change in particle type according to the surface
growth function, gSG, with the following effects:

1. A particle described by the particle-number model with type xi ∈M is transformed
to type x j = gSG (xi), i < j. If the new size is still in M, i.e. j ≤ Nthresh, the indices i
and j are altered accordingly (Fig. 3, solid horizontal arrows).

2. If the new size exceeds the threshold size, i.e. j > Nthresh, the particle is transferred
to the detailed particle model, by creation of a new particle with type x j ∈X (Fig. 3,
curved horizontal arrow).

3. Particles of type x ∈ X, are transformed to larger type y = gSG (x), y ∈ X (Fig. 3,
dashed arrows).
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Figure 3: Interaction between the gas phase and both particle systems by surface reaction
(surface reaction beyond the threshold size Nthresh in the particle-number model
causes transfer of particles to the particle model).

Coagulation

Coagulation events can occur between any two particles across both type spaces (M∪X).
This transfers particles from the particle-number model (space M) to the detailed parti-
cle model (space X) (Fig. 4). Coagulation between two particle-number model particles
forms a new aggregate in the particle model (this process acts as a source term for the
particle model) and reduces the number of particle-number particles by two. Coagulation
between two particle model particles reduces by one the number of particles in the parti-
cle model system. Coagulation between one particle from each space reduces the number
of particles in the particle-number model by one. The PN particle can be attached to the
coagulating particle model particle, conserving the count in the particle model.

The coagulation operator K acts on (M∪X)2 and produces particles in X. The symmetric
coagulation kernel for each particle pair is K (x,y) where x,y ∈ (M∪X) and the total rate,
Rcoag, is:

Rcoag =
1

2Vsmp

x

(M∪X)2

K (x,y)n(dx)n(dy)

=
1

Vsmp

1
2

N(t)

∑
i=1

xi∈X

N(t)

∑
j=1; j 6=i

x j∈X

K (xi,x j)+
N(t)

∑
i=1

xi∈X

Nthresh

∑
j=1

x j∈M

K (xi,x j)N j +
1
2

Nthresh

∑
i=1

xi∈M

Nthresh

∑
j=1;(Ni<2⇐⇒ j 6=i)

x j∈M

K (xi,x j)NiN j

 .
(2)
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Figure 4: Interaction between the particle systems by coagulation.

Inflow

In a CSTR with particles in the inflow streams, particle inflow occurs with rate τ
−1
CSTR and

particles can be added to both spaces with the following effects:

1. If xin = xi ∈M, the number of particles at the ith index of the particle-number model
is incremented: Ni← Ni +1, i ∈ [1,Nthresh].

2. If xin ∈ X, a new particle with type xin is added to the detailed particle system i.e.
zX (t)←{zX (t) ,P(xin)}.

Outflow

In a CSTR, particle outflow occurs with rate τ
−1
CSTR and particles can be removed from

either particle system.

1. If xout = xi ∈M, the number of particles at the ith index of the particle-number model
is decremented: Ni← Ni−1, i ∈ [1,Nthresh].

2. If xout ∈ X, the particle P(xout) is removed from the detailed particle system i.e.
zX (t)←{zX (t)\P(xout)}.

3 Population balance equations

Population balance equations can be formed for the number density n(x) of particles of
each type, x ∈M and x ∈ X. Let I, K, S, Fin and Fout in Eqs. (3)-(5) be the inception, co-
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agulation, surface growth, inflow and outflow operators respectively and let the subscript
on the operator denote the relevant type space(s) involved in each case.

For x1 ∈M:

dn1

dt
=Ix1∈M− (Kx1∈M↔X+Kx1∈M↔M)−Sx1∈M+

(
Fin

x1∈M−Fout
x1∈M

)
dn(x1)

dt
=I (x1)−

N(t)

∑
j=1

x j∈X

K (x1,x j)n(x1)n(x j)−
Nthresh

∑
j=1;(N1<2⇐⇒ j 6=1)

x j∈M

K (x1,x j)n(x1)n(x j)

−βSG (x1)n(x1)+
1

τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]
in (x1)−n(x1)

)
.

(3)

For xi ∈M, i = {2,3, . . . ,Nthresh}:

dni

dt
=− (Kxi∈M↔X+Kxi∈M↔M)+(SM−Sxi∈M∪X)+

(
Fin

xi∈M−Fout
xi∈M

)
dn(xi)

dt
=−

N(t)

∑
j=1

x j∈X

K (xi,x j)n(xi)n(x j)−
Nthresh

∑
j=1;(Ni<2⇐⇒ j 6=i)

x j∈M

K (xi,x j)n(xi)n(x j)

−βSG (xi)n(xi)+
i−1

∑
j=1

x j∈M

βSG (x j)n(x j)1gSG(x j)=xi
+

1
τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]
in (xi)−n(xi)

)
.

(4)

For xi ∈ X, i = {1,2, . . . ,N (t)}:

dni

dt
=(KM↔M+KX↔M+KX↔X−Kxi∈X↔M−Kxi∈X↔X)+(SM∪X−Sxi∈X)+

(
Fin

xi∈X−Fout
xi∈X
)

dn(xi)

dt
=βSG (xthresh)n(xthresh)1gSG(xthresh)=xi

−
N(t)

∑
j=1; j 6=i

x j∈X

K (xi,x j)n(xi)n(x j)−
Nthresh

∑
j=1

x j∈M

K (xi,x j)n(xi)n(x j)

+
1
2

N(t)

∑
j=1

x j∈X

N(t)

∑
k=1;k 6= j

xk∈X

K (x j,xk)n(x j)n(xk)1x j+xk=xi
+

Nthresh

∑
j=1

x j∈M

N(t)

∑
k=1

xk∈X

K (x j,xk)n(x j)n(xk)1x j+xk=xi

+
1
2

Nthresh

∑
j=1

x j∈M

Nthresh

∑
k=1;(Nj<2⇐⇒ k 6= j)

xk∈M

K (x j,xk)n(x j)n(xk)1x j+xk=xi
+

i−1

∑
j=1

x j∈X

βSG (x j)n(x j)1gSG(x j)=xi

−βSG (xi)n(xi)+
1

τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]
in (xi)−n(xi)

)
.

(5)
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4 Stochastic numerical method

Strang operator splitting is used to couple the solution of the gas phase chemistry using an
ODE solver and the solution of the particle population balance equations using a stochas-
tic method in which the different events are performed probabilistically. This approach
has been described elsewhere [5, 36] but is adapted here to handle the interaction between
the two type space models (Alg. B.1).

In M, the properties (mass, diameter etc.) corresponding to each size index in the particle-
number space are stored at the simulation outset and just the total particle numbers at each
index i.e.

Ni, i = 1, . . . ,Nthresh

and the property sums i.e.

ξ (zM) =
Nthresh

∑
i=1

Niξi

are updated at runtime.

The gas phase chemistry is first updated for half a time step, after which a direct simulation
algorithm (DSA) is used to advance the particle population balance equations (Eqs. (3)-
(5)) for a full time step, over a number of smaller splitting steps. Each splitting step
involves repeatedly sampling a waiting time from an exponential distribution defined by
the total process rate, choosing a stochastic formation or growth event according to their
relative rates and updating the relevant particle system to reflect this event (Alg. B.2).

If the selected process is inception, the particle-number model is adjusted by increment-
ing the count of particles at the index corresponding to the number of monomers in the
incepting particle i.e.

N1← N1 +1,

and the cached property sums for the particle-number system are updated i.e.

ξ (zM (t))← ξ (zM (t))+ξ1.

If the selected process is coagulation, a particle pair (Pi,Pj) is selected using kernel-
specific selection criteria. If a particle is selected from the particle-number class (Pi ∈M),
the index corresponding to its monomer count is decremented i.e.

Ni← Ni−1,
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and the cached property sums are updated i.e.

ξ (zM (t))← ξ (zM (t))−ξi.

A new particle is created by cloning the ith particle from the pre-initialised particle-number
list. If both particles are selected from the particle-number system, the first is added to the
ensemble at this stage:

zX (t)←{zX (t) ,Pi}

and the second coagulates with it.

Particle outflow and surface updates are performed after each splitting step. The number
of particles expected to leave the system over this time is sample from a Poisson distribu-
tion with rate parameter 1/τCSTR and particles are removed by uniform selection followed
by decreasing the particle-number count (xout ∈M) or deletion (xout ∈ X).

The surface growth and sintering of adjacent primary particles is performed using a linear
process deferment algorithm (LPDA). This defers the particle processes that occur in-
dependently for each particle and performs them either at the end of the splitting step, or
during the step if the particle is selected for coagulation. This algorithm was introduced by
Patterson et al. [30] to improve computational efficiency by reducing the number of times
per step the algorithm halts to perform stochastic events. The particle-number counts are
updated for surface growth in a second LPDA-type sub-scheme (Alg. B.3). This loops
over all particle indices and computes the surface area dependent growth rate, samples
the number of monomers to add from a Poisson distribution using this rate parameter, and
uses this to determine a new index, which is incremented accordingly.

nadd,index ∼ Poi(βSG (Aindex))

newIndex← (index+nadd,index) .

If the new index is larger than the threshold size, new particles are created and transferred
to the detailed particle system.

4.1 Selecting particles according to their properties

Two particle selection processes are of interest. Uniform selection is used to choose par-
ticles to remove in outflow events, and a pair of particles to collide with a constant coagu-
lation kernel. For more realistic coagulation kernels, selection of a pair of particles might
depend on properties of the respective particles for example in the majorant proposed for
the transition regime coagulation kernel (Table A.1), coagulation between small particles
and large particles is often favoured. The selection algorithm is outlined in more detail in
Algorithm B.4.
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Random uniform selection

For the particle-number model with xi ∈M, the index i of the selected particle is selected
such that:

P(index = i) =
Ni

∑
Nthresh
i=1 Ni

. ∀i ∈ {1, . . . ,Nthresh} (6)

For the detailed particle model with xi ∈ X, particles P(xi) are selected such that:

P(Pi) =
1

N (t)
. ∀i ∈ {1, . . . ,N (t)} (7)

Selection according to particle properties

Let ξ be a property of the particles that is defined for both type spaces e.g. mass or
diameter. For the particle-number model with xi ∈M, the index i of the selected particle
is determined using the property ξ as a weighting such that:

P(index = i) =
Niξi

∑
Nthresh
j=1 N jξ j

. ∀i ∈ {1, . . . ,Nthresh} (8)

For the detailed particle model with xi ∈X, particles P(xi) are selected using the property
ξ as a weighting such that:

P(Pi) =
ξ (Pi)

∑
N(t)
j=1 ξ (Pj)

. ∀i ∈ {1, . . . ,N (t)} (9)

5 Numerical studies

5.1 Comparison with single particle type space model

The performance of the hybrid approach is compared with a single particle type space
model in which the discrete ensemble describes the full type space, and primary parti-
cles are represented by stochastic entities in the ensemble alongside aggregate particles.
The latter has been the standard approach for detailed population balance models to date
[4, 25, 37]. Titanium dioxide (TiO2) is taken as the particulate species and the gas phase
mechanism of West et al. [41, 43] is used, although simplified artificial rates are used for
easier analysis of the model behaviour. The TiO2 system is of industrial interest; how-
ever modelling efforts are hindered by the computational cost of high process rates under
industrially relevant conditions. The performance is assessed by comparative conver-
gence behaviour (the double type space should not affect the solution since the particle-
number indices fully encode the particle space at the level of primary particles defined by
monomer count), solver time savings, and reduction in required ensemble size.
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Test cases

Two test cases are considered, a batch reactor and a continuously stirred tank reactor
(CSTR). A spherical particle model is used in the first case and a detailed model is used in
the second case. Both reactors are constant volume, at 1200 K and 4 bar (absolute). Their
residence times are 6 ms and 10 ms respectively. Time steps of 0.01 ms and 0.1 ms are
used respectively, with 10 splitting steps per step (convergence with decreasing splitting
step was studied by Shekar et al. [36]).

A constant inception rate is used, with the inception particle size taken to be 0.49 nm (2
TiO2 units). Thus the particle-number model will always have zero particles at index 1. In
the first case, the coagulation rate is constant K = K̃, and in the second case, a transition
regime coagulation kernel K = Ktr is used (Appendix A). The surface growth reaction
adds TiO2 units to the particle surface and the rate depends on surface area only,

βSG (Pi) =
β̃

NA
·A(Pi) , ∀(Pi) ∈M∪X.

Convergence tests

For given property ξ , a simulation with M timesteps, L repeat runs and a maximum en-
semble size of Nmax has mean value µ

(Nmax,L)
ξ

(tk) at time tk, k ∈ [1,M](10)

µ
(Nmax,L)
ξ

(tk) =
1
L

L

∑
l=1

ξ
(Nmax,l) (tk) , (10)

and standard deviation σ
(Nmax,L)
ξ

(tk) at time tk, k ∈ [1,M] (11)

σ
(Nmax,L)
ξ

(tk) =

√
1
L

L

∑
l=1

(ξ (Nmax,l) (tk))
2−
(

µ
(Nmax,L)
ξ

(tk)
)2
. (11)

The statistical error can be used to assess the random error in repeat simulations. The
average relative statistical error at a given confidence level (here 99.9%, thus α0.999 = 3.29)
can be computed across all time steps (12)

ε
(Nmax,L)
stat,ξ =

1
M

M

∑
k=1

α0.999√
L
·

σ
(Nmax,L)
ξ

(tk)

µ
(Nmax,L)
ξ

(tk)
. (12)

The average relative total error can be used to assess the relative difference compared to a
true solution ξ ∗. Here, the ‘true’ solution is approximated by the solution with Nmax = 218

(13) and the convergence study is performed for Nmax ∈ {26,27, . . . ,217}.
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ε
(Nmax,L)
total,ξ =

1
M

M

∑
k=1

∣∣∣µ (Nmax,L)
ξ

(tk)−ξ ∗ (tk)
∣∣∣

ξ ∗ (tk)
(13)

The properties used to illustrate convergence behaviour in this work include particle num-
ber concentration, M0 (t), (14); the particle mass concentration and higher order moments
of the particle mass concentration, Mk (t), k ∈ {1,2,3}, (15); and the average particle col-
lision diameter, dc, (16) which is a measure of average particle size and is an example of
a property that is of importance in applications.

M0 =
N (zM (t))+N (zX (t))

Vsmp
(14)

Mk =
∑

Nthresh
i=1 mk

i Ni +∑
N(zX(t))
i=1 (m(Pi))

k

Vsmp
(15)

dc (Pi) =
6Vi

Ai
(Npri,i)

1
1.8 (16)

Solver time

All tests were run on one Intel Xeon E5-2640 CPU (2.40 GHz) of a 40 processor node
with 200 GB RAM, running Red Hat Enterprise Linux version 7.2.

Case 1: constant rates batch reactor with spherical particle model

The constant rates case with spherical particle model is used to demonstrate proof of con-
cept – under trivial constant rate conditions, the particle-number/particle model matches
the convergence behaviour of the particle model (Figs. 5 and 6). The average relative
error is compared with a single run of the particle model with Nmax = 218. The con-
vergence tests were performed with I = 1016 cm−3 · s−1, β̃ = 1024 cm−5 · s−1 and K̃ =
1.5×10−15 cm−3 · s−1.

The spherical particle model assumes each coagulation event is followed by instant coales-
cence to form a larger, spherical particle, so both type spaces hold the same information;
however it should be possible to store/update this information more efficiently in a vector
than a discrete ensemble. Surface growth events are performed once per particle since
particles are not comprised of distinct primaries and choice of particles for coagulation
and outflow is done by random selection. Thus the opportunities for improving run time
with the PN/P model are limited; however, as expected it is more economical, especially
for large ensembles (Fig. 7).
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Figure 5: Convergence study maintaining Nmax × L = 218 – the solid black line is the
high fidelity solution and one standard deviation above and below the mean
are shown as dotted lines for odd (particle model) and dashed lines for even
(particle-number/particle model with Nthresh = 102) powers of 2 (case 1).

(a) Number density (total) (b) Particle diameter (total)

Figure 6: Convergence study maintaining Nmax×L = 218 – average relative total error of
the particle model and particle-number/particle model (Nthresh = 102) compared
to the high fidelity solution (case 1 conditions).
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Figure 7: Solver time comparison maintaining Nmax×L = 217 for the pure particle model
and the particle-number/particle model with Nthresh = 102 (case 1 conditions).

Case 2: transition kernel CSTR with detailed particle model

The transition coagulation kernel is chosen because it is relevant to real synthesis condi-
tions and depends on the properties of each particle which makes its evaluation more
costly. Particles are chosen for coagulation events according to individual property-
dependent rates (Table A.1). The transition kernel has the form

Ktr (Pi,Pj) =
Ksf (Pi,Pj)Kfm (Pi,Pj)

Ksf (Pi,Pj)+Kfm (Pi,Pj)
, ∀(Pi,Pj) ∈M∪X. (17)

Ksf and Kfm are defined in Appendix A. Surface growth is performed on every primary par-
ticle in each aggregate. The average relative error is compared with ten runs of the particle
model with Nmax = 218. The convergence tests were performed with I = 1012 cm−3 · s−1

and β̃ = 1024 cm−5 · s−1.

Here, the rates are more complicated, yet the simulation with the two type space models
converges on the same properties as the single type space approach (Figs. 8 and 9); slight
discrepancies between the PN/P model and the ‘true’ solution with the particle model
exist due to differences in the ordering of particles (i.e. a list in increasing size order
vs. an unordered list of particles as formed could influence which particle is selected in
Alg. B.4).
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Figure 8: Convergence study maintaining Nmax × L = 218 – the solid black line is the
high fidelity solution and one standard deviation above and below the mean
are shown as dotted lines for odd (particle model) and dashed lines for even
(particle-number/particle model with Nthresh = 104) powers of 2 (case 2 condi-
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Figure 9: Convergence study maintaining Nmax× L = 218 – average relative total error
of the particle model, particle-number/particle model (Nthresh = 104), and PN/P
model with time equivalent runs (TER) compared to the high fidelity solution
(case 2 conditions).

Differences in run time (Fig. 10) are more significant than in the study with the spherical
particle model. This is especially noticeable for large ensembles where updates to the
particle-number list are much more efficient than updates to distinct particles and a speed
up of approximately 50% is observed for the ensembles with greater than 105 particles
(Fig. 10(b)). For small ensembles, the PN/P model is more efficient in a narrower range
of threshold values. In general, a threshold of Nthresh = 104 was found to work well for the
current conditions.
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The reduced solver time is advantageous if CPU time is constrained; however the main
benefit is that this allows an increase in the sample volume in the PN/P model, i.e. use of a
time equivalent sample volume (TESV, Table 1 column 3), or an increase in the number of
repeat runs in the PN/P model, i.e. use of time equivalent runs (TER, Table 1 column 4),
to gain additional accuracy for comparable CPU cost (Fig. 8, solid vertical lines illustrate
reduced error with additional repeats for same computational cost).
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Figure 10: Solver times and relative time difference maintaining Nmax×L = 218 for pure
particle model and particle-number(PN)/particle model with inset showing
effect of threshold value Nthresh (case 2 conditions).

Table 1: Sample volume increase or additional repeats that can be achieved with solver
time savings gained from PN/P model with Nthresh = 104 (case 2 conditions).

Ensemble size, Nmax Repeats, L Sample volume increase Time equivalent repeats

27 2048 1.67 2196
28 1024 1.67 1209
29 512 1.70 672
210 256 1.74 375
211 128 1.81 207
212 64 1.88 107
213 32 1.90 58
214 16 1.95 30
215 8 1.97 15
216 4 2.00 8
217 2 2.00 4
218 1 2.03 2

The PN/P model removes most of the solo primary particles from the discrete particle en-
semble, which allows the discrete ensemble to be used almost exclusively to resolve more
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complicated aggregate particles for the same computational cost and ensemble memory
overhead by using a larger sample volume, as shown in the simulated imaging pictures in
Fig. 11. This ensures that maximum utility is obtained from the detailed particle model
without ‘wasting’ ensemble space and time on structurally simple particles.

An alternative approach is to maintain a more economical memory foot-print by initial-
ising a smaller ensemble for tracking fewer distinct particles. This could be useful for
systems that have an initial burst of particle inception due to high concentration of the
gas phase precursor yielding a high initial number density. In such a system, doubling
and contraction algorithms are often necessary with a discrete ensemble since demand for
capacity varies with time. The particle-number list can store arbitrarily many incepting
particles so the ensemble can be customized to the size required to store aggregates only.
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Figure 11: Particle counts in the ensemble and particle-number list for particle model (P)
and particle-number/particle model (PN/P), with inset simulated SEMs of 200
tracked ensemble particles at 20 ms and 100 ms (scale bar shows 20 nm) for
Nmax = 211 and Nthresh = 104 (PN/P with runtime equivalent sample volume).

The effect of exceeding the ensemble capacity is illustrated further in Fig. 12. With a
single discrete particle model, increasing the sample volume by a factor of three from
the previous conditions results in contractions in the interval t ∈ [4.8,20] ms (shown in
Fig. 12(a) with a horizontal arrow) because there is no space for new particles in the
discrete ensemble so inceptions are accommodated by randomly removing an existing
particle from the ensemble and scaling the sample volume to preserve the particle number
density. With the hybrid type space model, particle inceptions contribute to the particle-
number space, M, instead of being added to the ensemble space, X. This list storage
(shown in Fig. 12(a) with a vertical arrow) prevents the ensemble from flooding; thus no
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particles are removed.

Particle removal randomizes the system when the particles are polydisperse. This can be
seen in Fig. 12(b): tripling the sample volume significantly increases the total error for
the particle model (cf. packed circle pattern labelled “P: Vsmp” and checkerboard pattern
labelled “P: 3Vsmp”) whereas it reduces the total error for the hybrid model (cf. wave pat-
tern labelled “PN/P: Vsmp” and stripe pattern labelled “PN/P: 3Vsmp”) due to the increased
statistical significance of events in the larger sample volume.
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Figure 12: Effect of exceeding ensemble capacity with Nmax = 217 – normalised total rel-
ative error in: particle model; PN/P model (Nthresh = 104); particle model
with triple sample volume; and PN/P model with triple sample volume (case
2 conditions).

5.2 Performance of Pn/P model in different rate regimes

Performance of the PN/P model is assessed in different rate regimes using the conditions
in Table 2, for the CSTR from case 2 with a transition regime coagulation kernel and a
detailed particle model for the aggregate type space.

Table 2: Inception and surface reaction rate constants used in rate study.

Process Units Rate constants

Inception [cm−3 · s−1] 1×106 1×109 1×1012 1×1013

Surface reaction [cm−5 · s−1] 1×1018 1×1021 1×1024

The process rates are coupled since the coagulation rate increases quadratically with num-
ber density and depends on properties of the particles such as diameter. To simplify the
analysis, the average ratio of the rates is used in Figs. 13 and 14:
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Mean rate ratio (inception:coagulation) =
1
M

M

∑
m=1

Rinception (tm)

Rcoagulation (tm)

Mean rate ratio (surface reaction:coagulation) =
1
M

M

∑
m=1

Rsurface reaction (tm)

Rcoagulation (tm)
.

The mean count ratio is used to assess the utility of the particle-number list for storing
particles and refers to the average particle-number count divided by the average ensemble
count:

Mean count ratio =
1
M

M

∑
m=1

N (zM (tm))

N (zX (tm))
.

The combined particle-number/(detailed)particle model offers considerable performance
advantages over the use of a single detailed particle model for conditions that result in a
large number of solo primary particles (when inception dominates coagulation). In these
cases, most of the particles in the system can be stored in the particle-number list, signifi-
cantly reducing the ensemble size requirements (Fig. 13(a)). Conditions with high surface
growth and similar coagulation and inception rates do not see significant solver time ad-
vantage with the PN/P model (Fig. 13(b)) because the coagulation processes produce large
aggregates and the surface updates for these complex structures dominate the solver time;
however, the there are still significantly many primary particles in the particle-number list
under these conditions and the option to use a smaller particle ensemble could still be
attractive due to improved memory efficiency. Future work should consider methods for
mitigating the aggregate update cost.

100 105 1010

Mean rate ratio: inception / coagulation (-)

0.7

0.8

0.9

1

M
ea

n 
co

un
t r

at
io

: l
is

t /
 e

ns
em

bl
e 

(-
)

mol cm s
mol cm s
mol cm s

Only solo
primaries

Mostly solo primaries, 
some large particles

Transfer to ensemble by coagulation

Transfer to ensemble
by surface growth
beyond threshold

(a) Ratio of particles

100 105 1010

Mean rate ratio: inception / coagulation (-)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
tim

e 
di

ffe
re

nc
e 

(-
)

mol cm s
mol cm s
mol cm s

(b) Solver time difference

Figure 13: Ratio of particles in the particle-number list to particles in the ensemble in
the PN/P model and corresponding solver time difference for different ratios
of inception rate to coagulation rate (using threshold Nthresh = 217).
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When the surface growth rate is very high, primary particles grow rapidly and are pulled
out of the particle-number system into the particle system unless a large threshold value is
used to store the primaries in the particle-number system for as long as possible (Fig. 14(a)).
The number density of very large primaries becomes lower with increasing index (Fig. 14(b)),
so use of a high threshold (e.g. Nthresh = 104) achieves limited additional particle storage;
however, since the updates to the particle-number model are comparatively cheap even
for large thresholds, it is reasonable to use a large threshold to avoid wasting ensemble
space on single primary particles.
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Figure 14: Largest occupied particle-number (PN) size and PN size distributions at t f for
different ratios of surface reaction rate to coagulation rate (using threshold
Nthresh = 217).

6 Conclusion

A hybrid particle-number/particle model was presented for reducing the computational
requirements of population balance simulations under certain high rate conditions. When
the inception rate is at least an order of magnitude higher than the coagulation rate, single
primary particles are formed significantly faster than they collide with other particles,
leading to a system dominated by single primaries. The particle-number type space model
is introduced here to track the distribution of these primaries up to a given threshold.
Primaries that coagulate or grow to sizes above the threshold are transferred to a detailed
particle type space model in order to resolve their morphology.

Under low surface growth conditions, the required threshold to store all primaries is small
because the range of primary sizes is narrow; however, under high surface growth con-
ditions, it is advantageous to use a larger threshold in order to accommodate the wider
range of primary sizes and benefit from the more efficient update structure of the particle-
number list. The proposed hybrid model is less effective when the coagulation rate is very
high, because the computational complexity associated with very large aggregate particles
dominates the solver time. The hybrid scheme offers two main benefits.
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1. It can be up to 50% faster than a single detailed particle type space model when
the surface growth rate is high and the surface updates to ensemble particles are
expensive. This speed-up can be traded for a larger sample volume to achieve a
greater statistical accuracy for comparable cost and memory. One possible applica-
tion where this would make a really significant improvement is if particle-particle
heat transfer effects were included and the surface updates for each particle were
even more costly.

2. When the inception/coagulation ratio is large, most particles can be stored in the
particle-number list, reducing the size of particle ensemble required to resolve the
aggregate particles. This smaller ensemble has a lower memory footprint. One pos-
sible application would be in coupling to computational fluid dynamics simulations
where the memory and computational cost associated with large ensembles would
be prohibitive. This also assists tailoring the ensemble to the size needed to store
aggregate particles, by avoiding initial periods of high inception when the precursor
concentration is high, without resorting to contraction and doubling algorithms.

A number of adaptations are possible for different systems.

1. If the internal co-ordinate is not ‘quantized’ (multiples of a monomer subunit), the
indexing can be converted to sections of larger width at the cost of introducing some
approximation error within the sections.

2. For more efficiency, it might be assumed that collisions between small particles re-
sult in instant coalescence, allowing these collisions to be performed in the particle-
number model. This could be controlled using the sintering rate to determine where
this assumption is near to the actual behaviour.

3. Weighted particle methods such as described by Patterson et al. [31] could be em-
ployed to reduce the number of particles injected to the ensemble by surface growth
beyond the threshold.
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Nomenclature

Upper-case Roman
A Surface area [m2]
C Concentration [mol ·m−3]
I Inception rate [mol ·m−3 · s−1]

K General coagulation kernel [m−3 · s−1]
K̃ Coagulation constant
K̂ Majorant coagulation kernel

Kn Knudsen number
L Number of repeat runs

M Number of time steps
M0 0th number moment [m−3]
N Number

NA Avogadro’s constant [mol−1]
P Pressure [Pa]
P Particle

Poi Poisson distribution
R Rate [process specific]
T Temperature [K]
U Uniform distribution
V Volume [m3]

Lower-case Roman
c Constant
d Diameter [nm]
f Volumetric feed fraction
g Surface growth type-change function

kB Boltzmann constant [J ·K−1]
m Mass [kg]
n Particle number concentration [m−3]
p Primary particle
t Time [s]
x Particle type variable
y Particle type variable
z Particle system

Lower-case Greek
α Random variable
β Surface growth rate [m2 ·m−3 · s−1]
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β̃ Surface growth constant
γ Weighted random variable
ε̄ Average relative error
µ Viscosity [Pa · s]

µξ Mean value of property ξ

ξ Property
ρ Mass density [kg ·m−3]

σξ Standard deviation of property ξ

τ Residence time [s]
φ Arbitrary continuous function

Superscripts
fm Free molecular
in inflow

out Outflow
sf Slip flow
tr Transition
∗ Denotes reference solution

Subscripts
c Collision

coag Coagulation
i Index variable

in inflow
inc inception

j Index variable
k Index variable

max Maximum
out Outflow
pri Primary particle
SG Surface growth

smp Sample
split Splitting time
stat Statistical

thresh Threshold
tmp Template

1 Denotes monomer size (first) index

Symbols
F Flow operator
K Coagulation operator
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I Inception operator
M Small particle type space
P Mathematical probability
S Surface growth operator
X Large particle type space
1 Indicator function
∀ For all

Abbreviations
CFD Computational fluid dynamics

CSTR Continuous stirred tank reactor
DSA Direct simulation algorithm

DQMOM Direct quadrature method of moments
LPDA Linear process deferment algorithm

MOMIC Method of moments with interpolative closure
ODE Ordinary differential equation
PBE Population balance equation

PN/P Particle-number/particle
PSD Particle size distribution

DQMOM Direct quadrature method of moments
QMOM Quadrature method of moments

SWA Stochastic weighted algorithm
SEM Scanning electron microscopy
TER Time-equivalent repeats

TESV Time-equivalent sample volume
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A Transition regime coagulation kernel

The transition kernel has the form

Ktr (Pi,Pj) =
Ksf (Pi,Pj)Kfm (Pi,Pj)

Ksf (Pi,Pj)+Kfm (Pi,Pj)
, ∀(Pi,Pj) ∈M∪X, (A.1)

where Ksf and Kfm are the slip-flow and free-molecular kernels defined below in which in
which m is the particle mass, kB is the Boltzmann constant, P is the pressure, and Kn is
the Knudsen number [36].

Ksf (Pi,Pj) =
2kBT
3µ

(
1+1.257Kn(Pi)

dc (Pi)
+

1+1.257Kn(Pj)

dc (Pj)

)
(dc (Pi)+dc (Pj))

Kfm (Pi,Pj) = 2.2

√
πkBT

2

(
1

m(Pi)
+

1
m(Pj)

)
(dc (Pi)+dc (Pj))

2

Kn(Pi) = 4.74×10−8 T
Pdc (Pi)

Majorant kernel techniques are used to reduce the computational complexity of evaluating
the double summation over the particle space for the non-linear coagulation kernel. The
technique used here is described by Patterson et al. [31] and Menz et al. [26]. The kernel
K is bounded by a larger kernel K̂ which is easier to evaluate. In order to achieve the
correct coagulation behaviour, the majorant rate is used to compute the total coagulation
rate Rcoag (2); however individual coagulation events between particles Pi and Pj are only
performed with probability Ki j · K̂−1

i j .

The majorant used for the free-molecular kernel is

K̂fm (Pi,Pj) = 4.4

√
πkBT

2

(
1√

m(Pi)
+

1√
m(Pj)

)(
dc (Pi)

2 +dc (Pj)
2
)
. (A.2)

Define

β1 = 4.4

√
πkBT

2
.

Then

K̂fm (Pi,Pj) = β1

(
dc (Pi)

2√
m(Pi)

+
dc (Pi)

2√
m(Pj)

+
dc (Pj)

2√
m(Pi)

+
dc (Pj)

2√
m(Pj)

)
. (A.3)
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The slip-flow kernel does not require a majorant. Define

β2 =
2kBT
3µ

β3 = 1.257×4.74×10−8 T
P
.

Then

Ksf (Pi,Pj) = β2

(
2+

dc (Pi)

dc (Pj)
+

dc (Pj)

dc (Pi)
+β3

(
1

dc (Pi)
+

dc (Pi)

dc (Pj)
2 +

dc (Pj)

dc (Pi)
2 +

1
dc (Pj)

))
.

(A.4)

By the techniques described in Patterson et al. [31], this yields the selection properties
given in Table A.1 for particle pairs for coagulation.

Table A.1: Particle properties used to choose coagulation pair (Pi,Pj) based on transition
regime majorant kernel terms.

Term Pi Pj

Free-molecular 1 Uniform dc (Pj)
2 ·m(Pj)

−0.5

Free-molecular 2 dc (Pi)
2 m(Pj)

−0.5

Slip-flow 1 Uniform Uniform
Slip-flow 2 dc (Pi) dc (Pj)

−1

Slip-flow 3 Uniform dc (Pj)
−1

Slip-flow 4 dc (Pi) dc (Pj)
−2
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B Algorithms

Algorithm B.1: Operator-splitting algorithm with particle-number/particle model
Input: C(t0), T (t0), zX (t0), zM (t0), dinc, Nthresh, t f .
Output: C(t f ), T (t f ), zX (t f ), zM (t f ), N (zM (t f )).
Set t← t0, C←C (t0), T ← T (t0), zX← zX (t0), zM← zM (t0),NM← N (zM (t0))
∆t = t f − t0.

Solve gas phase ODEs for
[
t, t + ∆t

2

]
: C←C

(
t + ∆t

2

)
, T ← T

(
t + ∆t

2

)
.

while t < t f do
Calculate overall rates of non-deferred processes:

Rinception = I (C,T ) ; Rcoagulation =K
(
(X∪M)2

)
; Rtotal = Rinception +Rcoagulation.

Adjust the maximum splitting time tsplit given Rtotal and set tflow← t.
while t < tsplit do

Select a process and perform it using waiting time algorithm (Alg. B.2).
Select number, n, of particles for outflow:

n∼ Poi

(
t− tflow

τ

(
Nthresh

∑
i=1

Ni +N (t)

))
.

while n > 0 do
Uniformly select a particle Pi (Alg. B.4) and set n← (n−1).
if Pi ∈M then

Ni← (Ni−1) .

else

zX← zX \Pi.

end
end

end
for i = 1, . . . ,N (t) do

Do surface growth update on Pi, sinter its primaries, update gas phase C, T .
end
Adjust particle-number list zM for surface growth (Alg. B.3).

end
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Algorithm B.2: Waiting time algorithm with particle-number/particle model
Input: C(t0), T (t0), zX (t0), zM (t0), dinc, Nthresh, tsplit.
Output: C(t f ), T (t f ), zX (t f ), zM (t f ).
Set t← t0, C←C (t0), T ← T (t0), zX← zX (t0), zM← zM (t0).
Calculate overall rates of non-deferred processes:

Rinception = I (C,T ) ; Rcoagulation =K
(
(X∪M)2

)
; Rtotal = Rinception +Rcoagulation.

Select a waiting time τ ∼ exp(Rtotal).
if t + τ < tsplit then

Choose process ∈ {inception, coagulation} using:

P(process) = Rprocess ·Rtotal
−1.

if process = inception then
Update property sums for change in number of particles at index 1.

N1← (N1 +1) ; N (zM)← (N (zM)+1) .

Update gas phase C, T .
else if process = coagulation then

if (N (zM)+N (zX))> 1 then
Pick (Pi,Pj) ∈ (X∪M) (Alg. B.4) and allow coagulation with probability:

Pi, j = Ktr (Pi,Pj) · K̂tr (Pi,Pj)
−1
.

if Coagulation allowed then
if (Pk ∈M,k = {i, j}) then

Update property sums for change in number of particles at index k.

Nk← (Nk−1) ; N (zM)← N (zM)−1.

end
if (Pi ∈M,Pj ∈M) then

Add Pi to ensemble:

zX←{zX,Pi}; N (zX)← (N (zX)+1) .

end
Perform coagulation Pi← (Pi +Pj).

end
end

end
Set t← (t + τ).

else
Set t← (t + tsplit).

end
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Algorithm B.3: Update particle-number lists

Input: C(t), T (t), zX (t), zM (t), Nthresh, t f , template particle of size dthresh: Ptmp
thresh.

Output: C(t f ), T (t f ), zM (t f ).
Set nadd,total← 0.
Compute expected surface growth factor:

β̃ ← β̃ (C,T )(t f − t0) .

for index = Nthresh, . . . ,1 do
if Nindex > 0 then

Choose number of units to add from:

nadd,index ∼ Poi
(

β̃A(Pindex)
)
.

Set newIndex← (index+nadd,index).
if newIndex > index then

Update nadd,total← (nadd,total +nadd,index).
if newIndex≤ Nthresh then

Update property sums for change in number at index, newIndex.
Set NnewIndex← (NnewIndex +Nindex).
Set Nindex← 0.

else
Update property sums for change in number at index.
Update total particle number:

N (zM)← (N (zM)−Nindex) .

Set Nindex← 0.
Copy template particle:

Pnew← Ptmp
thresh.

Add (newIndex−Nthresh) monomers to Pnew.
for j = 1, . . . ,Nindex do

Add particle to ensemble:

zX←{zX,Pnew}.

end
end

end
end

end
Update gas phase C, T for nadd,total surface growth events.
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Algorithm B.4: Particle selection algorithm with particle-number/particle model
Input: zX (t), zM (t), selection criterion ‘choose according to property ξ ’.
Output: Selected particle Pi.
Define the sums of properties in each space (note these properties are cached):

ΣM←
Nthresh

∑
i=1

Niξi; ΣX←
N(t)

∑
i=1

ξ (Pi) ; Σtotal← ΣM+ΣX.

Choose a uniform random number: α ∼ U(0,1).
Set γ ← αΣtotal.
if γ ≤ ΣM then

/* Select index i from particle-number list zM */
j← 1.
while j ≤ Nthresh do

if γ ≤ (N jξ j) then
i← j.

end
else

γ ← (γ−N jξ j).
j← ( j+1).

end
end
Create the new particle Pi

a.
else

/* Select particle Pi from particle ensemble zX */
γ ← αΣtotal−ΣM.
j← 1.
while j ≤ N (t) do

if γ ≤ ξ (Pj) then
i← j.

end
else

γ ← (γ−ξ (Pj)).
j← ( j+1).

end
end
Use the ensemble particle Pi.

end

aClone the particle with index i from reference particle list

36


	Introduction
	Particle systems
	Space of small, spherical particles, M
	Space of large particles and aggregates, X
	Mass transfer between the particle systems

	Population balance equations
	Stochastic numerical method
	Selecting particles according to their properties

	Numerical studies
	Comparison with single particle type space model
	Performance of Pn/P model in different rate regimes

	Conclusion
	References
	Nomenclature
	Upper-case Roman
	Lower-case Roman
	Lower-case Greek
	Superscripts
	Subscripts
	Symbols
	Abbreviations

	Transition regime coagulation kernel
	Algorithms

