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Abstract

A method for the reduction of the number of particles in the weighted

Monte Carlo method for kinetic equations is described. The method randomly

redistribute statistical weights over the particles ensemble in such a way that

the weight of some particles become 0, i.e., the particles are cancelled, while

all physically relevant macroscopic moments (e.g., mass, energy, momentum)

of the ensemble do not change. The method has been applied for the spatially

uniform relaxation of the gas of hard spheres.
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1 Introduction

The Monte Carlo simulation method (DSMC) is a statistical method for the com-
putation of particulate flows, either rarefied gas flows or aerosol flows [1, 2, 3]. The
method can be formulated as follows. The flow volume is divided into cells. The
particles ensemble is represented by computational particles such that a group of W
identical molecules or particles in the physical system is substituted by one compu-
tational particle. The parameter Wi is the statistical weight of the ith computational
particle. In the particular case when Wi = W for all i, the method is called the
direct simulation Monte Carlo (DSMC) method, while the more general case is the
stochastic weighted particle method (SWPM) [4, 5]. Provided that the particles’
sizes, positions and other necessary parameters are known at a time t, the particles’
distribution at time t + ∆t is calculated by an operator-splitting technique which
comprises free flow and a spatially homogeneous relaxation step. In the free flow
phase the particles move, without any collisions occurring, during the time interval
∆t. Their positions, velocities, sizes, temperatures, etc., are determined from the
equations of motion, and heat and mass transfer. In the second splitting step bi-
nary collisions between particles in each cell are sampled randomly. At this step, a
particle can collide only with those particles that are in the same cell irrespective of
the relative positions of the particles within the cell.

The accuracy of the method depends both on the size of the cells and on the number
of particles in a computational cell. Since the number of physical particles in a cell is
proportional to the volume of the cell, reduction of the cell size does not necessarily
increase the precision of the calculations. For an accurate resolution of the collision
physics one needs a minimum number of computational particles in each spatial cell.
If the number of computational particles in a cell is small, both averaged physical
properties of the ensemble, such as mass and momentum, and the collision rate of the
particles are subjected to large spurious fluctuations. A comprehensive discussion of
the dependence of the number of particles on the particles density and the geometry
of the flows is given in [6].

The direct way to control the optimal number of computational particle in each cell
is the use of statistical weights [1, 4]. If a particle weight decreases as it passes
from one cell to another, the particle is cloned, i.e., several copies of the mother
particle with smaller weights are created. This procedure leads to an increase in
the number of particles in the system. Note, that in the case of the Boltzmann
equation a collision of two particles with different statistical weights forms at least
three particles. Thus, a procedure for reduction of the number of particles in SWPM
is necessary in order to keep the system computationally tractable.

The simplest method for reducing of number of particles is proposed in [1]. The
trajectory of a particle is either terminated with probability p, or the statistical
weight of the particle is multiplied by 1/(1−p). While this method is algorithmically
simple, it satisfies the law of mass, momentum and energy conservation only in a
statistical sense. Thus, random creation/dissapearence of the particles leads to large
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spurious oscillations of the macroscopic parameters of the ensemble and impairs the
accuracy of the calculations [6]. A method that preserves the number (or mass) of the
particles in the Monte Carlo simulation of Smoluchowski’s equation is presented in
[7, 8]. If a randomly chosen particle is removed, its statistical weight is redistributed
among the other particles of the ensemble. If this method is conservative with
respect to the total mass, it is not conservative with respect to the number of
particles and vice versa. When applied to a multidimensional problem, this method
does not preserve the momentum of the particles (for gas flow simulations) or the
mass of the components (for multicomponent population balance). In order to avoid
these difficulties an alternative method based on the clustering of particles has been
proposed in [4, 5]. According to this approach, the particles are divided into groups
(clusters) such that the distance between the particles in the phase space (diameter
of the cluster) is small. Then the cluster can be replaced by a few particles which
have the same physically important first statistical moments (mass, momentum,
energy, etc.) as the original cluster. Thus, the method creates some new “synthetic”
particles that approximate the ensemble in a mean-square sense, i.e., the solution
of the Boltzmann equation is smoothed as the algorithm proceeds further. The
efficiency of the method depends on the efficiency of the clustering algorithm, and
the method introduces some systematic errors that decrease with the diameter of
the clusters.

In the present study we propose a method that does not require a time-consuming
clustering procedure and does not smooth the solution of the equation. The method
redistributes statistical weights of the particles in such a way that all physically
relevant moments of the ensemble remain unchanged. We test this method on
spatially homogeneous relaxation of a gas of hard spheres, but this method has a
more general area of applicability and can be used for any other population balance
problem.

2 Description of the SWPM

Consider the spatially homogeneous Boltzmann equation for gas of hard spheres

∂f(t, ~u)

∂t
=

∫
B(~u,~v,~e){f(t, ~u′)f(t, ~v′)− f(t, ~u)f(t, ~v)}d~vd~e, (1)

where
~u′ = ~u− ~e{(~u− ~v) · ~e}, ~v′ = ~v − ~e{(~v − ~u) · ~e}, (2)

~e is a uniformly distributed unit vector, and ~u, ~v and ~u′, ~v′ are the velocities of
the particles before and after the collision respectively. The formula for the collision
kernel B(~u,~v,~e) is given by

B(~u,~v,~e) =
1

23/2π Kn
|(~v − ~u) · ~e|, (3)

where Kn is the Knudsen number.
The main idea of the weighted particles method [4] is the representation of the
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solution of Eq. (1) as

f(~u) ≈
N∑

i=1

Wiδ(~u− ~ui). (4)

As the ith and jth particles collide, four new particles appear. Two of them with
weights and velocities Wi − w, Wj − w and ~ui, ~uj, respectively. While the others

have weight w and velocities ~u′i and ~u′j that are calculated according to Eq. (2).
The parameter w, (w 6 Wi, w 6 Wj) is the weight transfer function [4]. In the
partial case Wi = Wj = w the method is equivalent to DSMC and the number of
particles does not increase.
Integration of Eq. (3) over the unit sphere yields the formula for the collision rate
between two particles:

B̂(~u,~v) =

√
2

Kn
|~v − ~u|.

The total collision rate is given by

ρ =
∑

16i<j6N

B̂(~ui, ~vj)
WiWj

w
.

The Monte Carlo algorithm [4] reads:

1. Generate an exponentially distributed time increment with parameter ρ.

2. Choose the pair for collision with probability

B̂(~ui, ~vj)WiWj

ρw
.

3. Generate a uniformly distributed unit vector ~e and create the new particles
with parameters

(Wi − w, ~ui), (Wj − w, ~uj), (w, ~u′i), (w, ~u′j).

3 Reduction of the number of particles

As the number of particles in the system becomes too large, some of them have
to be removed and their statistical weights to be redistributed over the remaining
particles. Our purpose is to construct an algorithm that keeps the distribution
function (4) statistically intact and also conserves physically important statistical
moments. These moments for gas flow are mass, momentum and energy. Thus, no
transformation of the statistical weights can change the following moments:

m1 =
∑

i

Wi, m2 =
∑

i

Wiuxi, m3 =
∑

i

Wiuyi, m4 =
∑

i

Wiuzi, m5 =
∑

i

Wi|~u|2i .
(5)
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Let us divide the particles into 6 groups Ij, i ∈ Ij. The kth moment of the jth group
is mkj, these moments form a 5× 6 matrix M . Consider a vector ~g = (g1, ...g6) and
multiply all the statistical weights of the kth group by 1 + αgk, where α is a scalar
parameter. In order to keep the moments (5) unchanged one need that

mkjgk = 0, (6)

i.e, the vector ~g has to be orthogonal to the subspace formed by the rows of the
matrix M . Thus, the algorithm for reduction of number of the particles reads:

1. Generate a vector ~g.

2. In order to satisfy Eq. (6) recalculate ~g as

~g := ~g −MT (MMT )−1M~g.

3. Find

α1 = min
gk60

{− 1

gk

}.

4. Find

α2 = min
gk>0

{ 1

gk

}.

5. With probability α2/(α1 + α2) multiply all the statistical weights of the kth

group by 1 + α1gk.

6. Otherwise multiply all the statistical weights of the kth group by 1− α2gk.

In order to demonstrate that the above described procedure keeps the solution of
Eq. (1) statistically intact, consider an arbitrary functional H(f(~u)) :

H(f(~u)) =

∫
f(~u)h(~u)d~u ≈

∑
i

Wih(~ui) =
6∑

k=1

∑
i∈Ik

Wih(~ui). (7)

After the reduction of the number of particles, Eq. (7) becomes:

H1(f(~u)) ≈
6∑

k=1

∑
i∈Ik

(1 + α1gk)Wih(~ui),

with probability α2/(α1 + α2), while it reads

H2(f(~u)) ≈
6∑

k=1

∑
i∈Ik

(1− α2gk)Wih(~ui)

with probability α1/(α1 + α2). Direct calculation shows that

〈H(f(~u))〉 =
α2

α1 + α2

H1(f(~u)) +
α1

α1 + α2

H2(f(~u)) = H(f(~u))

and the estimation (7) remains statistically intact for arbitrary h(~u), while the
statistical weights of one of the groups of particles is 0.
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Figure 1: Time evolution of σn (upper lines) and σt (low lines), DSMC method
(dashed lines), Conservative method (solid lines) and constant-number
MC (dotted lines)

4 Numerical experiment

We calculated spatially uniform relaxation of a gas of hard spheres with Knudsen
number Kn = 1/(22/3π). Two groups of particles with equal momentums and
velocities ~u1 = (1, 0, 0) and ~u2 = (−9, 0, 0) respectively collide and the process
evolves toward thermodynamic equilibrium. The initial distribution reads:

f0(ux, uy, uz) =
9

10
δ(ux − 1)δ(uy)δ(uz) +

1

10
δ(ux + 9)δ(uy)δ(uz).

Three variants of the Monte Carlo particle method have been used in the simulations.
Since the standard DSMC method [1] has been well studied in the past, we refer
to the results obtained by this method as “exact”. The SWPM has been run with
two strategies for the reduction of the number of particles, namely, the constant-
number Monte Carlo [7] and and the conservative method proposed in the present
work. Initially the two colliding fractions has the same number of particles, while
the fast particles have statistical weights which are nine times smaller. The weight
transfer function w during a collision of two particles with weights Wi and Wj is
w = min(Wi,Wj) and three new particles appear after the collision. As the number
of particles reaches maximum allowed value, the reduction procedure is applied that
terminates one sixth of the particles.

We calculated the second moments, the longitudinal moment σn =
∫

f(~u)u2
xd~u and

the transversal moment σt = 1/2
∫

f(~u)(u2
y + u2

z)d~u. We also controlled momen-
tum and mass conservation in DSMC and the conservative method (which are not
conserved in constant-number MC). As the collision process proceeds further, the
moments relax from their initial values σn = 9 and σt = 0, respectively, toward the
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equilibrium value σn = σt = 3. The results are presented in Fig. 1. In order to
obtain reliable results we run the DSMC method 100 times with N = 1000 particles
in each run. Then the results of a single run of constant-number and conservative
methods for different values of N are plotted in Fig. 1. As one can see, the solution
obtained by the conservative method is close to the “exact” one and is free from the
large spurious fluctuations, unlike the solution calculated by the constant-number
method.

5 Conclusion

We have proposed a conservative method for the reduction of the number of par-
ticles in the particle Monte Carlo method. Although the method was tested on
monoatomic gas relaxation, it can be applied to arbitrary population balance prob-
lem such as fragmentation and coagulation. The method is based on the redistri-
bution of statistical weights in such a manner that it does not affect the physically
relevant statistical moments. The key idea of the proposed method is the division
of the particles into groups and the multiplication of the statistical weights of the
kth group by a factor 1 − gk. If our purpose is to conserve the α moments and the
particles are divided into β groups, the moments conservation condition means that
the vector ~g is orthogonal to the rows of the α × β matrix of moments M . The
condition M~g = 0 together with the requirement that gk 6 1 (the moments are
non-negative) implies that the vector ~g belongs to a (β − α)-dimensional convex
polygon. Thus, (β − α) particles groups can be cancelled by choosing randomly a
corner point of the polygon. Additional research is necessary in order to find the
optimal way for the distribution of the particles into the groups and the optimal
proportion between the number of the groups and the number of the moments to
be conserved by the transformation.
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