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Abstract

A stochastic particle model has been developed to describe the idealised

free radical polymerisation of methyl methacrylate (MMA) in imperfectly

mixed batch and plug flow reactors. Using the method of moments, the

model allows efficient computation of the number and weight average de-

grees of polymerisation, higher moments, monomer conversion and (based on

the Schulz-Flory distribution) the degree of polymerisation distributions, as a

function of time and mixing. The model was validated against PREDICITM

for the homogeneous case. For non-homogeneous cases it was shown that, for

some typical initial conditions, the rate of mixing has several effects at low

monomer conversions, corresponding to low residence times. At large resi-

dence times, the influence of mixing disappears and the reactions converge to

the homogeneous case.
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1 Introduction

Acrylate polymerisation reactions are the basis for the formation of many large scale

industrial products (e.g. adhesive dispersions or acrylic glasses). The characteristic

feature of acrylate polymerisations is that the rate of reaction may be of the same

order of magnitude as mixing times within polymerisation reactors. Thus, the mix-

ing times within an acrylate polymerisation reactor may have a profound influence

on the temporal evolution of the product quality, characterised by the degree of

polymerisation distribution [14].

In 1989 the U.S. production of acrylic monomers was ca 450, 000t, split between

Rohm and Hass, Hoechst Celanese, BASF and Union Carbide, representing about

45% of worldwide production. Most of the remainder was produced in Western

Europe (ca 35%) and Japan (ca 15%). Essentially all of this was converted to

acrylic polymers and copolymers [8].

The main limiting factor in the production of acrylic polymers is the large quantity

of heat released during reaction and the increase in viscosity with monomer conver-

sion. Thus for safety reasons, it is desired that the content of unconverted monomer

in the reactor is minimised at any given time. Most industrial acrylic polymerisa-

tions are therefore performed in stirred semi-batch reactors, where cold monomer

is dropped into a hot mixture of initiator and polymer. Occasionally some acrylic

polymerisations are performed in CSTRs. Again, the main problem and safety issue

is that of heat transfer out of the reactor to avoid thermal runaway.

Typically, new polymer products, characterised by their degree of polymerisation

distribution, are identified on a laboratory scale. A modern protocol to optimise the

production of new products would be to build a kinetic model of the system in CiT’s

PREDICITM or AspenTech’s POLYMERS PLUSTM. The model would then be used

to simulate the polymerisation and optimise the production process with respect to

variables such as the reactor temperature and the rate of addition of monomer.

Such models normally assume that the reaction mixture is homogeneous however,

and the degree of micro-mixing is not considered at all. Thus scale-up problems

may be encountered and the new conditions may not work as expected, producing

the wrong product (i.e. the wrong degree of polymerisation distribution), since the

extent of mixing in a process is strongly coupled to the scale of the process. This

is highly unsatisfactory. What is required is a model that can combine the above

effects with a mixing model, which in turn can be coupled to the physical size and
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configuration of the reactor and stirring mechanism.

Various approaches for modelling different polymerisation reactions have been de-

veloped. Early models in the literature to describe the kinetic behaviour of free

radical polymerisations and the resulting degree of polymerisation distributions are

based on the complicated kinetic scheme of free radical polymerisation, involving

different numbers of basic kinetic steps. The volume contraction effect was often

ignored and non-conventional kinetic phenomena like the gel effect were included in

very different ways. These models were mostly used to calculate the conversion-time

history only.

More recent models have used a variety of numerical techniques to predict the degree

of polymerisation distributions based on simplified kinetic mechanisms. Budde and

Wulkow [4] demonstrated the use of the discrete Galerkin method to solve homo-

geneous systems for an approximation of the degree of polymerisation distribution,

based on the shape of the Schulz-Flory distribution, for a methyl methacrylate

(MMA) polymerisation reaction, including volume contraction and the gel effect.

Wulkow [18] eventually developed the software package PREDICITM based on this

method. Hutchinson [6] presented a simplified model for the polymerisation ki-

netics with cross linking for a MMA and ethylene glycol dimethacrylate system.

The kinetic model was solved deterministically as a homogeneous system, using the

method of moments to describe the degree of polymerisation distribution at dif-

ferent temperatures. Kim and Laurence [7] investigated the influence of mixing on

MMA solution polymerisation using a model based on two CSTRs in parallel, where

the model was specified in terms of an exchange ratio and a volume ratio. They

were able to trace steady solution branches of monomer conversion and temperature

against residence time. They showed the existence of multiple steady state solutions,

but could not predict the dynamics of the system. Tosun [14] derived a mathemat-

ical model of mixing in a semi-batch polymerisation reactor using the segregated

mixing model developed by Villermaux [17]. Villermaux [16] also introduced the

interaction-by-exchange-with-the-mean (IEM) model which is often used to model

non-ideal mixing.

These heuristic models can be derived (see Kraft [9]) from the more general con-

cept of the composition probability density function (PDF) transport equation as

described by Pope [12]. Tsai and Fox [15] used the joint composition PDF cou-

pled to a CFD (Computational Fluid Dynamics) simulation to model the effect of

turbulent mixing on a tubular low-density polyethylene reactor. This approach is
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computationally very expensive. If statistical homogeneity is assumed, the PDF

transport equation reduces to the stochastic reactor model: partially stirred plug

flow reactor (PaSPFR). The stochastic model is much faster to solve numerically,

but still retains the description of mixing and chemical reaction.

The purpose of this paper is to use the PaSPFR model as a polymerisation

reactor model to study the principal interaction between the polymerisation kinetics

and the influence of local mixing on the polymerisation process. We focus on the

polymerisation of methyl methacrylate (MMA). The reaction is suitably fast to

allow the study of the effect of mixing. Thus the MMA system may be regarded as

a model for all acrylate polymerisations. Further, it has been the subject of much

previous investigation and is well documented in the literature [6, 7, 13, 4]. The

PaSPFR model is solved by constructing a stochastic particle model to describe the

polymerisation of MMA under different mixing conditions, characterised using the

IEM model. A simplified kinetic mechanism, consistent with those in the literature

[6, 13, 4], is used to describe the polymerisation, with isothermal kinetic data being

taken from Budde [3]. Temperature gradients, volume contraction, the gel effect

and the influence of viscosity on mixing time are noted as being important, but

are disregarded so far in order to keep the model as simple as possible for this first

theoretical study. The direct solution of the large stiff system of ordinary differential

equations (ODEs) generated by the models of free radical polymerisation is not

possible, since every molecular species (and there are an infinite number of possible

polymer species) has to be treated by one ODE. Thus the method of moments is

used to reduce the system to a small finite set of ODEs that is incorporated into the

PaSPFR model. The model is validated against the predictions of PREDICITM for

the homogeneous case, and used to show the effect of mixing on the idealised MMA

system.

The paper is organised as follows. In Section 2 the reaction system and method

of moments are reviewed. Section 3 contains a description of the reactor model,

the algorithm used to compute the numerical simulation of the reactor and a brief

validation of the algorithm. The validation of the homogenous simulation is given

in Section 4 and, finally, in Section 5, the numerical results are presented.
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2 Free radical polymerisation mechanism

The following is an idealised mechanism for free radical polymerisation

Initiation [
I −→ 2R·

R· + M −→ P1·

]

I
kd−→ 2P1· (1)

Propagation

Pn · +M kp−→ Pn+1· (2)

Termination

by combination Pn · + Pm· ktc−→ Dn+m (3)

by disproportionation Pn · + Pm· ktd−→ Dn + Dm (4)

Chain transfer

to monomer Pn · +M ktrm−→ Dn + P1· (5)

n,m = 1, 2, 3 . . .

where I is initiator, M is monomer, Pn· is a live polymer radical of length n and Dn

is a dead polymer chain of length n.

2.1 Material balance equations

The material balances model the formation of live and bulk polymer as described

by the kinetic mechanism. They form an infinite set of coupled ODEs.

Live polymer radicals of length 1

d

dt
[P1·] = 2fdkd[I] + ktrm[M ]

∞∑
n=1

[Pn·]

−[P1·]
[
(kp + ktrm)[M ] + (ktc + ktd)

∞∑
n=1

[Pn·]
]
. (6)
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Live polymer radicals of length m

d

dt
[Pm·] = kp[M ][Pm−1·]

−[Pm·]
[
(kp + ktrm)[M ] + (ktc + ktd)

∞∑
n=1

[Pn·]
]

(7)

m = 2, 3, . . .

Bulk polymer (dead and living) of length 1

d

dt
([D1] + [P1·]) = 2fdkd[I] + ktrm[M ]

∞∑
n=1

[Pn·]

−[P1·]
[
kp[M ] + ktc

∞∑
n=1

[Pn·]
]
. (8)

Bulk polymer (dead and living) of length m

d

dt
([Dm] + [Pm·]) = kp[M ][Pm−1·] + 1

2
ktc

m−1∑
n=1

[Pn·][Pm−n·]

−[Pm·]
[
kp[M ] + ktc

∞∑
n=1

[Pn·]
]

(9)

m = 2, 3, . . .

Initiator

d

dt
[I] = −kd[I]. (10)

Monomer

d

dt
[M ] = −kp[M ]

∞∑
n=1

[Pn·]− ktrm[M ]
∞∑

n=1

[Pn·]− 2fdkd[I]

= −µ0[M ](kp + ktrm)− 2fdkd[I]. (11)

where µ0 is defined in (12) with k = 0.
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2.2 Moments of the degree of polymerisation

The degree of polymerisation distribution can be approximately described by the

first few statistical moments of the set of material balance equations. The method of

moments can therefore be used to reduce the infinite set of material balance ODEs

to a finite set of coupled moment ODEs.

The moments of the polymer distribution are defined, for the live polymer radicals

µj =
∞∑

n=1

nj[Pn·] (12)

and for the bulk polymer radicals

λj =
∞∑

n=1

nj ([Dn] + [Pn·]) . (13)

Thus, using the material balance equations, we obtain a finite set of coupled ODEs

to describe the evolution of the polymer distribution in terms of the live and the

bulk moments.
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Live moments

d

dt
µ0 = 2fdkd[I]− µ0

2(ktc + ktd) (14)

d

dt
µ1 = 2fdkd[I]− (µ1 − µ0)ktrm[M ]− µ1µ0(ktc + ktd)

+µ0kp[M ] (15)

d

dt
µ2 = 2fdkd[I]− (µ2 − µ0)ktrm[M ]− µ2µ0(ktc + ktd)

+(2µ1 + µ0)kp[M ] (16)

d

dt
µ3 = 2fdkd[I]− (µ3 − µ0)ktrm[M ]− µ3µ0(ktc + ktd)

+(3µ2 + 3µ1 + µ0)kp[M ] (17)

d

dt
µ4 = 2fdkd[I]− (µ4 − µ0)ktrm[M ]− µ4µ0(ktc + ktd)

+(4µ3 + 6µ2 + 4µ1 + µ0)kp[M ] (18)

d

dt
µ5 = 2fdkd[I]− (µ5 − µ0)ktrm[M ]− µ5µ0(ktc + ktd)

+(5µ4 + 10µ3 + 10µ2 + 5µ1 + µ0)kp[M ] (19)

d

dt
µj = 2fdkd[I]− (µj − µ0)ktrm[M ]− µjµ0(ktc + ktd)

+

j−1∑
i=0

(
j

i

)
µi kP [M ] (20)
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Bulk moments

d

dt
λ0 = 2fdkd[I] + µ0ktrm[M ]− 1

2
µ0

2ktc (21)

d

dt
λ1 = 2fdkd[I] + µ0(kp + ktrm)[M ] (22)

d

dt
λ2 = 2fdkd[I] + µ0(kp + ktrm)[M ]

+2µ1kp[M ] + µ1
2ktc (23)

d

dt
λ3 = 2fdkd[I] + µ0(kp + ktrm)[M ]

+(3µ2 + 3µ1)kp[M ] + 3µ1µ2ktc (24)

d

dt
λ4 = 2fdkd[I] + µ0(kp + ktrm)[M ]

+(4µ3 + 6µ2 + 4µ1)kp[M ] + (4µ1µ3 + 3µ2
2)ktc (25)

d

dt
λ5 = 2fdkd[I] + µ0(kp + ktrm)[M ]

+(5µ4 + 10µ3 + 10µ2 + 5µ1)kp[M ] + (5µ1µ4 + 10µ2µ3)ktc (26)

2.3 MMA kinetics and initial conditions

The kinetic parameters and initial conditions are taken from Budde [3].

Table 1: Parameters (T = 65oC) for MMA polymerisation.

Parameter Value Unit Parameter Value Unit

fd 0·3 - kd 1·5 ×10−5 s−1

〈[M ]0〉 4·32 kmol m−3 kp 7·594 ×102 m3 kmol−1 s−1

〈[I]0〉 0·01508 kmol m−3 ktc 24·15 ×106 m3 kmol−1 s−1

MM 100·0 kg kmol−1 ktd 10·35 ×106 m3 kmol−1 s−1

MI 100·0 kg kmol−1 ktrm 1·78 ×10−2 m3 kmol−1 s−1

where [M ]0 = [M ](t = 0) and [I]0 = [I](t = 0).
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3 Stochastic reactor model

The degree of polymerisation distribution could be obtained by direct numerical

simulation of the governing set of ODEs if perfect mixing were to be assumed [13].

If the assumption of perfect mixing is relaxed however, spatial inhomogeneities must

now be considered and this approach becomes computationally infeasible.

An alternative to direct numerical simulation is the use of statistical methods. As-

suming statistical homogeneity, a single PDF may be used to model the spatial

inhomogeneities. Thus in the case of the PDF being a delta function, for example,

all points in space have the same composition and we relax back to the perfectly

mixed case studied by Seeßelberg [13].

The unknown quantities are represented as random variables. The time evolution

of these random variables are given by a transport equation for their joint PDF.

Here we combine the idealised polymerisation model, based on the moments of the

degree of polymerisation distribution function, with the joint scalar PDF transport

equation for a partially stirred reactor. The unknown scalar quantities are the first

five live and bulk moments of the degree of polymerisation, and the monomer and

initiator concentrations. These can be written in the joint scalar random vector

φ = (µ0, µ1, µ2, µ3, µ4, λ0, λ1, λ2, λ3, λ4, [M ], [I])T . (27)

This vector has a corresponding joint scalar PDF, fφ(ψ, t), at time t.

The temporal evolution of the PDF of a batch or plug flow reactor is given by the

partially stirred plug flow reactor (PaSPFR) model, as described by Kraft [9]

∂fφ(ψ, t)

∂t
+

∂

∂ψk

((
Sk(ψ) + Ak(ψ)

)
fφ(ψ, t)

)
= 0 (28)

where reaction is described by the Sk(ψ) term (discussed in Section 3.2), mixing is

described by the IEM model

Ak(ψ) = − 1

τmix

(ψk − 〈φk〉)

in which 〈·〉 denotes the mean, and the initial condition is

fφ(ψ, 0) = fφ
0(ψ).
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The mixing time parameter, τmix, is assumed to be constant during the course of

the reaction.

The interaction by exchange with the mean (IEM) has been shown to be consistent

for the use of moments of the degree of polymerisation in Balthasar et al. [1]. The

model implies that the property of a stochastic particle moves towards the average

of all stochastic particles.

3.1 Definition of functionals

The functionals of interest in the description of polymerisation reactions may be de-

fined in terms of the scalars in the joint scalar random vector (27) for each stochastic

particle in the model:

Number average degree of polymerisation

X̄N =
λ1 − µ1

λ0 − µ0

(29)

and weight average degree of polymerisation

X̄W =
λ2 − µ2

λ1 − µ1

. (30)

Justification of the form of the degrees of polymerisation is given in Appendix A.1.

Since conversion is a descriptor of the total extent of reaction, the only definition of

monomer conversion that makes sense in a non-homogeneous system is

xM = 1− 〈[M ]〉
〈[M ]0〉 (31)

where [M ]0 = [M ](t = 0).

3.2 Numerical treatment of PaSPFR-LMSE model

The particle model uses an ensemble of stochastic particles, each with a joint scalar

random vector of properties (27), to approximate the distributions of the scalars

within the reactor.

The algorithm consists of generating trajectories of the reactor model (28) for each

particle, and averaging over the appropriate functionals. This is done at a sequence
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of points in time, separated by the time interval ∆t. A flow diagram for the main

algorithm is given in Figure 1.

Initialise ensemble

Set time counter t = 0

IEM mixing model

Reaction model

Increment counter tn = tn−1 +∆t

t < tfinish?

❄

❄

❄

❄

❄❍❍❍❍❍

✟✟✟✟✟

✟✟✟✟✟

❍❍❍❍❍

✲

❄

Yes

No

Finish

Sub-algorithms
update ensemble

over incremental
time interval ∆t

Figure 1: Main algorithm.

The number and mass fraction distributions were estimated using the Schulz-Flory

distribution with the empirical mean (over all particles in the ensemble) number

average degree of polymerisation as a parameter.

A discussion of the applicability of the Schulz-Flory distribution to the MMA mech-

anism is given in Appendix A.2.

3.2.1 Initialisation of model

The ensemble is initialised to approximate a segregated mixture of monomer and

initiator. The number of stochastic particles is specified

N = m(r + 1) (32)
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where N , m and r are required to be integers, and r is the initial mass ratio of

monomer to initiator

r =
MM〈[M ]0〉
MI〈[I]0〉 . (33)

Particles are specified as containing monomer or initiator, in the ratio of the mass

of monomer to the mass of initiator:

[M ]0
i = 〈[M ]0〉 (r + 1)/r

[I]0
i = 0

}
i ∈ {1, . . . ,m r} (34)

[I]0
i = 〈[I]0〉 (r + 1)

[M ]0
i = 0

}
i ∈ {m r + 1, . . . , N} (35)

where i is the particle index. A worked example is given in Appendix B.1.

3.2.2 IEM mixing algorithm

At each time step, the ensemble is updated according to the IEM mixing model over

the incremental time interval ∆t.

The empirical mean of each scalar 〈φk〉 was calculated over the ensemble at time

tn−1. The IEM model

dψk
i

dt
= Ak

i

=
−1
τmix

(
ψk

i − 〈φk〉
)
. (36)

was solved analytically for each particle in the ensemble

ψk
i
n = 〈φk〉+ (ψk

i
n−1 − 〈φk〉) exp

(−∆t
τmix

)
(37)

where i is the particle index,

ψk(tn) = ψk n

and

∆t = tn − tn−1.
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3.2.3 Reaction algorithm

At each time step, the ensemble is updated according to the reaction model over

the incremental time interval ∆t.

For each particle in the ensemble, the simultaneous system of equations

dψ

dt
= S (38)

was solved using a fourth-order Runge-Kutta integration routine where

S = (S1, . . . , Sk)
T

=

(
dµ0

dt
, . . . ,

d[I]0
dt

)T

. (39)

The elements of S are given by (14) through (18), (21) through (25), (11) and (10).

3.3 Validation of the particle algorithm

The use of the particle method to approximate the evolution of the scalars in the

reactor was validated by comparing the results of the model to those obtained for

analytic solutions for the simple cases of a partially stirred plug flow reactor with

mixing described by the linear mean square estimator model (PaSPFR-LMSE) and

a PaSPFR-LMSE with first order reaction [2, 10], where the LMSE and IEM models

are equivalent.

The particle algorithm was in very good agreement with the analytic solutions.
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4 Validation of the homogeneous case

The model was validated for the homogeneous case by comparing the results of

the model to those obtained from PREDICITM for the mechanism, parameters and

initial conditions presented in Section 2.

Figures 2 and 3 show that the time evolution of the degree of polymerisation and

the monomer and initiator concentrations calculated by the model almost exactly

match those obtained using PREDICITM.
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Figure 2: Degree of polymerisation against time, t.
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Figure 3: Monomer and initiator concentration against time, t.
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Figures 4 and 5 present a comparison between the approximate number and mass

fraction distributions calculated by the model, using the Schulz-Flory distribution,

and the distributions calculated by PREDICITM. The general agreement between

the model and PREDICITM is again very good. It is noted that there is some

discrepancy, but we accept the use of Schulz-Flory as a first approximation.
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Figure 5: Mass fraction distributions.
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5 Results

The model was used to demonstrate the effect of the rate of mixing on the poly-

merisation of the idealised MMA system.

Figure 6 shows the time evolution of the mean number and weight average degrees

of polymerisation, 〈X̄N〉 and 〈X̄W 〉, and the monomer conversion, xM , against time

t, as a function of the mixing time parameter, τmix. Figure 7 shows the same data,

now plotted against τmix, as a function of the time t.
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Figure 6: Monomer conversion, mean number and weight average degree of poly-
merisation against time t, as a function of the mixing parameter τmix (in seconds).
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The time evolution of the mean number average degree of polymerisation and the

monomer and initiator concentrations for the homogeneous and τmix = 100s cases

are shown in Figure 8.

In the homogeneous case, 〈X̄N〉 increases rapidly over the first 10 seconds. As the

reaction proceeds, 〈X̄N〉 gradually decreases due to the differential consumption of

monomer and initiator, such that the proportion of initiation reactions (1) increases

with respect to propagation (2). Thus an increasing proportion of P1· polymers are
born and 〈X̄N〉 and 〈X̄W 〉 decrease, as observed. The time evolution of the mean

number average degree of polymerisation and the monomer and initiator concentra-

tions are shown for the homogeneous case in Figures 8(a) and 8(c).

Figures 8(b) and 8(d) show the time evolution of the mean number average degree

of polymerisation and the monomer and initiator concentrations for the case τmix =

100s. It is evident that the slower mixing (i.e. larger τmix) has a strong influence on

the temporal evolution of 〈X̄N〉.
At low t, 〈X̄N〉 is lower than for the homogeneous case, but increases much more

quickly, and peaks well above the homogeneous curve. The value of 〈X̄N〉 then

decreases rapidly, falling below the homogeneous curve again, before steadying out

and rising to join homogeneous curve, but not crossing above it.

These effects are caused by the initial segregation of the monomer and initiator.

At low t, the segregation is such that little reaction occurs, since in the initiator

dominated regions there will be insufficient monomer for significant propagation of

any P1· polymers that are born, and in the monomer dominated regions there will

be insufficient initiator to cause a significant birth rate of P1· polymers. This can

be seen in Figures 8(b) and 8(d) for t ∈ [0, 2)s.

As mixing begins to occur, small concentrations of initiator will be introduced into

pockets of monomer. Thus, initiation reactions gradually produce small concentra-

tions of P1· radicals surrounded by monomer molecules. The low polymer concen-

tration suppresses the termination reactions (3) and (4), such that once formed, the

polymer radicals, surrounded by monomer molecules, simply propagate with little

chain termination, causing a rapid increase in 〈X̄N〉, soon passing above the homo-

geneous curve, as can be seen in Figures 8(b) and 8(d) in the interval t ∈ [2, 10)s.

Further mixing introduces increasing concentrations of initiator into the monomer

pockets. Thus the birth rate of P1· radicals increases, and the proportion of shorter

chain polymers begins to grow. Consequently, the rate of increase of 〈X̄N〉 begins to
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fall, and eventually, as the initiator concentration continues to increase, 〈X̄N〉 starts
to fall rapidly, eventually passing below the homogeneous curve. See Figures 8(b)

and 8(d) for t ∈ [10, 230)s.1

Ultimately complete mixing is achieved, and the contents of the reactor reach a

homogeneous state. The initiator curve in Figure 8(d) is observed to rejoin the

homogeneous initiator curve, shown in Figure 8(c), at about t = 650s. At this

point, initiation reactions cease to dominate, and 〈X̄N〉 rises to join the homogeneous

curve at about t = 2×104s, due to propagation and termination by combination (3).

As the reaction proceeds, 〈X̄N〉 now follows the homogeneous curve, and gradually

decreases by the mechanism described above for the homogeneous case.

The same reasoning may be applied to the effect of mixing on the evolution of 〈X̄W 〉.
The effect of mixing on the number and mass distributions, as estimated from 〈X̄N〉
using the Schulz-Flory distribution, is shown in Figures 9 and 10. It can be seen

that the effect of mixing diminishes as t→ 1000s, and can be deduced from Figures

6(a) and 7(a) that the distributions will have all collapsed to the homogeneous

curves by t = 104s. It can also be seen that faster mixing cases (i.e. lower τmix)

collapse to the homogeneous curves at lower times than slower mixing cases, as

common sense would suggest.

1Note, it can be deduced that it is the initiation reaction (1) that is responsible for the decrease
in 〈X̄N 〉, as opposed to chain transfer to monomer (5) (which is the only other reaction that can
produce P1· radicals, and therefore lower 〈X̄N 〉), since the rate of chain transfer is directly coupled
to the rate of propagation due to both reactions having the same kinetic form, and where the
propagation rate constant, kp is four orders of magnitude greater than the chain transfer rate
constant, ktrm.
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Figure 9: Number fraction distributions, as a function of the mixing parameter τmix

(in seconds).

25



0

0.001

0.002

0.003

0.004

0.005

0.006

0 2000 4000 6000 8000 1 104

M
as

s
fr

ac
tio

n,
w

Degree of polymerization, n

(a) Time, t = 1 s.

0

5 10-5

0.0001

0.00015

0.0002

0.00025

0.0003

0 2000 4000 6000 8000 1 104

M
as

s
fr

ac
tio

n,
w

Degree of polymerization, n

(b) Time, t = 5 s.

0

5 10-5

0.0001

0.00015

0.0002

0.00025

0 2000 4000 6000 8000 1 104

M
as

s
fr

ac
tio

n,
w

Degree of polymerization, n

(c) Time, t = 10 s.

0

5 10-5

0.0001

0.00015

0.0002

0.00025

0 2000 4000 6000 8000 1 104

M
as

s
fr

ac
tio

n,
w

Degree of polymerization, n

(d) Time, t = 50 s.

0

5 10-5

0.0001

0.00015

0.0002

0.00025

0 2000 4000 6000 8000 1 104

M
as

s
fr

ac
tio

n,
w

Degree of polymerization, n

(e) Time, t = 100 s.

0

5 10-5

0.0001

0.00015

0.0002

0.00025

0 2000 4000 6000 8000 1 104

τ = 0
τ = 1
τ = 5
τ = 10
τ = 50
τ = 100
τ = 500
τ = 1000

M
as

s
fr

ac
tio

n,
w

Degree of polymerization, n

(f) Time, t = 1000 s.

Figure 10: Mass fraction distributions, as a function of the mixing parameter τmix

(in seconds).
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6 Conclusions

A stochastic particle model has been developed to describe the idealised free radical

polymerisation of methyl methacrylate (MMA) in imperfectly mixed batch and plug

flow reactors. Using the method of moments, the model allows efficient computation

of the empirical moments of the number and weight average degrees of polymerisa-

tion, monomer conversion and (based on the Schulz-Flory distribution) the number

and mass fraction distributions, as a function of time and mixing. The model can

serve as a simplified reactor model for a subset of the cases covered by Tsai and Fox

[15] and can be used to analyse the influence of the chemistry and micro-mixing on

the full PDF transport equation.

The model was validated against PREDICITM for the homogeneous case. For non-

homogeneous cases it was shown that the rate of mixing has several effects at low

monomer conversions, corresponding to low residence times. At large residence

times, the influence of mixing disappears and the reactions converge to the homo-

geneous case.

We can conclude that, for a typical set of initial conditions, the influence of mixing in

our model is dependent on the relationship between the reaction time, characterised

by the chemical kinetics, the mixing time, τmix and the reactor residence time, t.

The next step in developing the model will be to add volume contraction and gel ef-

fects to the reaction kinetics (see Budde and Wulkow [4]), to investigate the effect of

the increasing viscosity on the mixing behaviour, and to include non-isothermal ki-

netics and reactor cooling effects in the particle model and algorithm. At this point,

the model should be validated against experimental data for real, non-perfectly

mixed, reactors.

Further enhancements to the model would be to extend the algorithm to semi-batch

reactors and CSTRs, and to extend the mechanism to co-polymerisations.
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A Descriptors of polymerisation reactions

A.1 Number and weight average degrees of polymerisation

Elias [5] defines the number and weight average degrees of polymerisation as

X̄N =

∑∞
i=1XiNi∑∞

i=1Ni

(40)

X̄W =

∑∞
i=1XiMi∑∞

i=1Mi

(41)

where

Xi = degree of polymerisation.

X̄N = number average degree of polymerisation

X̄W = weight average degree of polymerisation

Ni = number of polymers with degree of polymerisation Xi

Mi = molecular weight of polymers with degree of polymerisation Xi

In our notation, the degree of polymerisation is given by n, and the number of dead

(product) polymers of degree of polymerisation n is a linear function of the molar

concentration [Dn]. The dimensions of the concentration terms cancel, and in our

notation (40) may therefore be written as

X̄N =

∑∞
n=1 n[Dn]∑∞
n=1[Dn]

=

∑∞
n=1 n ([Dn] + [Pn·])−

∑∞
n=1 n[Pn·]∑∞

n=1 ([Dn] + [Pn·])−
∑∞

n=1[Pn·] (42)

=
λ1 − µ1

λ0 − µ0

as asserted in equation (29), and where µj and λj are defined in (12) and (13).

Noting that the mass concentration of polymer of length n, ˆ[Dn] is still a linear

function of the molar concentration, where

ˆ[Pn·] = Mn[Pn·]
= nM1[Pn·]
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and

ˆ[Dn] = Mn[Dn]

= nM1[Dn]

then

λ̂j =
∞∑

n=1

nj
(

ˆ[Dn] + ˆ[Pn·]
)

= M1

∞∑
n=1

nj+1 ([Dn] + [Pn·])

= M1λj+1. (43)

Thus following the argument leading to (42), the weight average degree of polymeri-

sation may be written

X̄W =
λ̂1 − µ̂1

λ̂0 − µ̂0

=
λ2 − µ2

λ1 − µ1

as asserted in equation (30).

A.2 Schulz-Flory distribution

The number and mass fraction distributions, given by the Schulz-Zimm (SZ) distri-

bution, are given by Elias [5] and cross-referenced with IUPAC [11]2:

x =
(ζ/X̄n)

ζ+1 Xζ−1 X̄n exp(−ζX/X̄n)

Γ(ζ + 1)
(44)

w =
(ζ/X̄n)

ζ+1 Xζ exp(−ζX/X̄n)

Γ(ζ + 1)
(45)

2Note, there appears to be a typographical error in Elias’ definition of w, such that the number
fraction distribution is no longer normalised, hence the cross-reference with the IUPAC definition.
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where Γ(ζ + 1) is the gamma-function of (ζ + 1), and the degree of coupling, ζ,

denotes the number of independently grown chains that have coupled to a dead

chain. X is the degree of polymerisation and X̄N is the number average degree of

polymerisation as before.

The Schulz-Zimm distribution tends to the Schulz-Flory (SF) distribution for ζ = 1

and X → ∞. Thus in our notation, the distributions become:

x = (1/X̄n)
2 X̄n exp(−n/X̄n) (46)

w = (1/X̄n)
2 n exp(−n/X̄n) (47)

where n is the degree of polymerisation.

Elias [5] asserts that free radical polymerisations lead to the SF distribution because

the addition of monomers occurs at random. The derivation given assumes:

1. Chain termination by disproportionation.

2. Ideal polymerisation kinetics.

a Only initiator decomposition and start, propagation and termination have

to be considered (no kinetic chain transfer).

b All reactions are irreversible.

c The effective concentration of initiator radicals is stationary.

d The concentration of polymer radicals is stationary.

e The principle of equal chemical reactivity applies to propagation and

termination reactions (no dependence on molar mass).

f Termination occurs only by mutual deactivation of two polymer radicals

(combination or disproportionation).

g Constant initiator concentration [I] = [I](t = 0).

A termination by disproportionation generates one dead polymer from one polymer

radical (the degree of coupling ζ = 1). A termination by combination couples two

polymer radicals to one dead chain (ζ = 2). Clearly, the inclusion of a termination

by combination step in our MMA mechanism (ktc �= 0 in Table 1) places us in

violation of condition 1.
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In terms of the ideal polymerisation kinetics, we have a chain transfer to monomer

step, and we simulate reaction to high monomer conversion. We are therefore also in

violation of conditions 2a and likely to be in violation of 2c, 2d and 2g. However, all

reactions in the mechanism are specified as being irreversible with constant kinetic

parameters, and termination occurs only by combination and disproportionation.

Thus we are still in compliance with conditions 2b, 2e and 2f.

It seems unlikely that our mechanism will lead exactly to SF distributions of the

number and mass fractions of polymers, as the differences to the distributions ob-

tained with PREDICITM show (see Figures 4 and 5). Nevertheless, in the absence

of other information, SF is accepted as a first approximation.
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B Supplementary algorithm information

B.1 Example initialisation of model

The ensemble is initialised according to the initial conditions specified in Table 1:

〈[M ]0〉 = 4.32 kmol m−3

〈[I]0〉 = 0.01508 kmol m−3

MM = 100.0 kg kmol−1

MI = 100.0 kg kmol−1.

Thus from (33):

r =
MM〈[M ]0〉
MI〈[I]0〉

= 286.47214854111405

= 286 truncating to form an integer.

Set the number of stochastic particles using (32):

N = m(r + 1)

= 287

where m = 1, noting that fewer particles will result in a faster calculation3. Specify

the segregated distribution of monomer and initiator in the ensemble using (34) and

(35):

[M ]0
i = 4.32× (287/286)

≈ 4.33510

[I]0
i = 0


 i ∈ {1, . . . , 286}

[I]0
i = 0.01508× (287)

≈ 4.32796

[M ]0
i = 0


 i ∈ {287}.

3It is therefore apparent that there is a minimum number of particle required in the model to
correctly represent the specified initial conditions.
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List of symbols

Ak Coefficient of first order differential mixing operator

of the kth scalar.

Dn Dead polymer of degree of polymerisation n.

f Probability density function (PDF). [−]
fd Efficiency parameter in initiation reaction. [−]
i Particle index in the stochastic particle ensemble. [−]
I Initiator.

kd Initiation rate constant. [s−1]

kp Propagation rate constant. [m3 kmol−1 s−1]

ktc Termination by combination rate constant. [m3 kmol−1 s−1]

ktd Termination by disproportionation rate constant. [m3 kmol−1 s−1]

ktrm Chain transfer to monomer rate constant. [m3 kmol−1 s−1]

M Monomer.

MI Molecular weight of initiator. [kg kmol−1]

MM Molecular weight of monomer. [kg kmol−1]

Mn Molecular weight of polymer of length n. [kg kmol−1]

n Degree of polymerisation. [−]
N Number of stochastic particles in ensemble. [−]
Pn· Live polymer of degree of polymerisation n.

r Initial mass ratio of monomer to initiator. [−]
Sk Coefficient of first order differential reaction operator

of the kth scalar.

t Time variable. [s]

w Mass fraction of polymer. [−]
x Number fraction of polymer. [−]

xM Monomer conversion. [−]
X̄N Number average degree of polymerisation. [−]
X̄W Weight average degree of polymerisation. [−]
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Greek symbols

λj jth moment of the bulk polymer concentration. [kmol m−3]

λ̂j jth moment of the bulk polymer mass concentration. [kg m−3]

µj jth moment of the live polymer concentration. [kmol m−3]

ψk Scalar variable.

ψ Scalar vector.

τmix Mixing time parameter. [s]

φk Scalar random variable.

φ Scalar random vector.
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