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Abstract

We propose a learning-based paradigm (LEAPS2) to recommend the best sur-
rogate/s with minimal computational effort using the input-output data of a complex
physico-numerical system. Emulating the knowledge pyramid, LEAPS2 uses several
attributes to extract system information from the data, correlates them with surrogate
performances, stores this attribute-surrogate knowledge in a regression tree ensem-
ble, and uses the ensemble to recommend surrogates for unknown systems. We im-
plement LEAPS2 using data from 66 diverse analytical functions, 18 attributes, and
25 surrogates. By progressively adding data, we demonstrate that LEAPS2 learns
to improve computational efficiency and functional accuracy. Besides, the architec-
ture of LEAPS2 enables its evolution via more attributes and surrogates. We employ
LEAPS2 to recommend surrogates for estimating the bubble and dew point tempera-
tures of LNG. Interestingly, our assistive tool suggests a different surrogate for each
temperature, and hints that DPT may be harder to approximate than BPT.

Highlights:

• A learning-based data-driven paradigm (LEAPS2) is proposed for selecting the best
surrogate/s to approximate complex systems.

• The paradigm can evolve along three dimensions viz. data sets, system attributes,
and surrogates.

• The evolution of LEAPS2 over data sets is demonstrated via five step progressive
learning approach.

• The practicality of LEAPS2 is shown by employing it to estimate the VLE proper-
ties of LNG.
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1 Introduction

Complex systems are typically studied via physical experiments, computer experiments
or their combinations. Physical experiments involve conducting laboratory trials, making
field observations, etc., and usually require time and cost. Besides, some experiments may
not even be feasible in practice. In such cases, computer experiments may be preferred
over physical experiments. These involve experimenting on a rigorous first-principles or
physics-based model instead of a real system [12]. Revolutionary advances in algorithmic
and computing technologies over the last two decades have empowered researchers to
incorporate greater details and accuracy into such models. However, this comes at the
expense of larger model size and greater computational burden. Repetitive evaluations
of such high-fidelity models for tasks such as sensitivity analysis and optimization often
prove uneconomical. Commercial simulators, which are essentially black-box in nature,
are often used for developing and simulating these high-fidelity models. Additionally, the
development and implementation of such models demand deep domain expertise, which
makes them inaccessible to users from other disciplines. Therefore, it is beneficial to
replace high-fidelity models (in case of computer experiments) or real physical systems
(in case of physical experiments) by computationally cheaper surrogate models that offer
a simpler overall picture of the underlying system.

A surrogate model, also known as a meta-model or a response surface, is an empirical ex-
pression (analytical or numerical) quantifying the relationships among the most important
or relevant inputs and outputs of a system. It is computationally much cheaper alterna-
tive to a physical system or its high-fidelity model, and is easily comprehensible to users
with little domain knowledge. Its construction requires one to obtain the system/model
response at several sample points via experiments or simulations. Then, one needs to
choose a form and technique for the surrogate model development. The form is a math-
ematical relationship between the inputs and outputs, while the technique is a procedure
to derive the best parameters of that form for the sampled input-output data. These two
steps together yield a final model that we call the surrogate model. Henceforth, we will
use “modelling technique” to mean the surrogate modelling technique, and “surrogate” to
mean the final surrogate model.

The literature offers a variety of modelling techniques such as polynomial response sur-
face models (PRSM) [15], support vector regression (SVR) [9], kriging [34], radial basis
functions (RBF) [37], multivariate adaptive regression splines (MARS) [11], and artificial
neural networks (ANN) [19]. Many techniques (e.g. kriging and RBF) offer a variety of
functional forms, hence can yield several surrogates. Therefore, selecting the best mod-
elling technique and the final surrogate are non-trivial tasks that have largely been done
based on trial and error or intuition. Clearly, both modelling technique and sample data
for building a surrogate are vital in achieving a good approximation to the real system.
The task of obtaining sample data is well studied and discussed in our previous works
[12–14] that present a smart sampling algorithm. In this work, we focus on the choice of
the modelling technique, corresponding functional form, and the factors that impact these
decisions. To this end, our work addresses the following two key questions that a typical
user may ask while developing a surrogate from a given set of input-output data.

• Which is the best surrogate for approximating my system/data set?
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• Is there a systematic, automated, user-friendly, efficient, and/or reliable procedure
for selecting a few surrogates that are likely to be the best?

Although several previous works have attempted to answer the above questions, most are
straightforward and enumerative benchmarking studies [3, 48]. They numerically com-
pare and rank the surrogates for some well-known test functions [23, 32]. Inferences from
such studies are obviously limited and their extrapolation to unknown systems may not
be reliable. Naturally, this has inspired many researchers to explore alternate approaches
[7, 31, 44, 49, 50]. Their key idea is to use a set of simple basis functions (e.g. sin, cos,
exp, etc.), and then iteratively evolve their best mix by solving a series regression prob-
lems. In other words, this approach is more adaptive and more system-targeted than the
earlier benchmarking studies. It is further enhanced by some researchers by employing a
variety of more complex surrogates in place of simple analytical functions. For example,
Goel et al. [16] and Sanchez et al. [42] propose a framework that generates an optimal en-
semble of surrogates by solving an optimization problem. Recently, Gorissen et al. [17]
presented an evolutionary approach for automatically selecting one or more surrogates.
Their approach also solves a generalized optimization problem using genetic algorithm to
select suitable surrogates. Despite their generalized appeal, all these approaches consider
surrogate selection as a stand-alone task. For every system, a user needs to solve an op-
timization problem that guides surrogate selection. Solving such optimization problems
is not only arduous but also compute-intensive; and defeats the underlying incentive for
using surrogates.

Cui et al. [8] attempted to change this conventional framework by employing a features-
based meta-learning approach to select the best modelling technique. Their scheme guides
modelling technique selection by capturing system (data set) characteristics in terms of
several quantitative meta-features. While their work presents some interesting and novel
ideas, it has some limitations. First, their numerical evaluation was limited to 10-dimensional
functions only. Second, their algorithm neither incorporates nor addresses the effects
of dimensionality and sample size, which are the key factors in surrogate construction.
Third, they trained their recommendation scheme on 98% of the test functions (observa-
tions) and tested/validated it on the remaining 2%. Thus, the effects of training set size
on the schemes performance remain unclear. Finally, their scheme recommends only the
best modelling technique but fails to address the choice of associated functional form.

In this work, we develop an evolving knowledge-based framework that defines and com-
putes prior information from sampled data of several systems to aid surrogate selection for

Table 1: Qualitative comparison between LEAPS2 and CRS recommendation scheme
based on various features.

Recommendation scheme features LEAPS2 CRS
Surrogate modelling technique 3 3

Surrogate model form 3 7

Effect of dimensionality 3 7

Effect of sample size 3 7

Prediction error based selection 3 3
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other systems. We call this Learning based Evolutionary Assistive Paradigm for Surrogate
Selection (LEAPS2). Table 1 shows its novelty over the scheme of Cui et al. [8] (CRS)
and the key features of LEAPS2 are as follows:

1. It relies on the most commonly employed modelling techniques and their corre-
sponding functional forms.

2. It defines several system attributes and performance metrics to characterize and
quantify information about surrogate selections for various systems.

3. It utilizes this prior information to derive knowledge that drives our surrogate selec-
tion paradigm with minimal surrogate construction efforts.

4. It can perform surrogate selections over wide ranges of dimensions and sample
sizes; thus making it practically useful.

5. It enables users to add new modelling techniques as well as system attributes with-
out disturbing the existing architecture of the framework.

This article is structured as follows. Section 2 presents the necessary background for
LEAPS2 that includes key definitions, notation, and a brief discussion of various sampling
and modelling techniques. The problem statement is provided in section 3, and section 4
discusses the proposed guidance scheme and its algorithmic framework. In section 5, we
present our detailed numerical evaluation of LEAPS2 followed by its application to a case
study in section 6.

2 Background

2.1 Definitions and notation

The system features that are varied during physical or computer experiments to study a
system response/s are called design/input variables or factors (commonly used by statisti-
cians). Let x = {xn |n = 1, 2, · · · , N, xLn ≤ xn ≤ xUn } ∈ RN denote an N -dimensional
vector of design variables. The space defined by the bounds xL ≤ x ≤ xU is called
the domain D which is typically scaled as [−1, 1]N or [0, 1]N to avoid numerical ill-
conditioning. Therefore, with no loss of generality, we take D = [−1, 1]N . A sample or a
sample point is a specific instance of x ∈ D. Let the collection of sample points, X (K) ={
x(k) | k = 1, 2, · · · , K

}
denote a sample set of size K. The method used to generate

X (K) is called the sampling technique. Let the system response at x be described by M
output variables in y = {ym |m = 1, 2, · · · ,M} ∈ RM . The collection of the responses
for a sample set X (K) is a response set, Y(K) =

{
y(k) = f

(
x(k)
)
| k = 1, 2, · · · , K

}
.

Then, the surrogate approximation constructed using X (K) and Y(K) is given by S(x) ≈
f(x), S : D → RM .

5



2.2 Sampling and surrogate modelling techniques

In a recent review, Garud et al. [12] discuss and evaluate several commonly employed
sampling techniques like random or Monte Carlo sampling, Latin hypercube sampling,
orthogonal arrays, Hammersley points, Halton sampling, Sobol sampling (QS). Their nu-
merical evaluation shows that QS performs consistently better than the other techniques
over a wide range of dimensions. Hence, we employ QS for generating input-output data
sets from underlying systems which are then used for surrogate construction as discussed
later in Section 4.

The literature is replete with the works [3, 48] on various modelling techniques, their ap-
plications, benefits and challenges. Here, we present the basics of six surrogate modelling
techniques relevant to this work.

2.2.1 PRSM

Polynomial response surface model (PRSM) is one of the simplest modelling techniques.
It uses a polynomial function of some known order ρPRSM as a surrogate model form. Most
works employ the second order polynomial model shown in Eq. (1), which can easily be
generalized to any order [43].

y ≈ SPRSM = β0 +
N∑
n=1

βnxn +
N∑
n=1

βnnx
2
n +

N∑
n=1

N∑
p=n+1

βnpxnxp (1)

One major disadvantage of PRSM is that the number of its coefficients or parameters
increases combinatorially with ρPRSM and N , thus demanding more and more sample data
for model fitting. Hence, the higher order PRSMs (ρPRSM ≥ 3) are typically avoided,
especially for large N .

2.2.2 SVR

Support vector machine (SVM) is a well known technique for classifying categorical data
sets [4]. It aims to locate a separating hyperplane such that the distance between the
separated data sets is maximized. Drucker et al. [9] extended SVM to its regression
version, known as support vector regression (SVR). Its simplest case is the linear SVR
shown in Eq. (2).

y ≈ SSVR = β0 +
N∑
n=1

βnxn (2)

where β = {βn |n = 1, 2, · · · , N} is a vector normal to the separating hyperplane. Here,
the aim is to find a hyperplane that separates the closest data points as far as possible. This
can be done by solving the following optimization problem:

min
1

2
βᵀβ (3)
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s.t.

∣∣∣∣∣y(k) −
(
β0 +

N∑
n=1

βnx
(k)
n

)∣∣∣∣∣ ≤ ε ∀ k = 1, 2, · · · , K

where ε is a boundary parameter. The above problem is solved by employing the duality
principle and the final SVR is expressed as follows:

y ≈ SSVR = β0 +
K∑
k=1

(α∗k − αk)xᵀx(k) (4)

where α∗k and αk are the dual variables. With this understanding, the non-linear form of
SVR is obtained by simply replacing xᵀx(k) in Eq. (4) by a kernel function fk as shown
below:

y ≈ SSVR = β0 +
K∑
k=1

(α∗k − αk) fk
(
x(k), x

)
(5)

where fk can be linear, Gaussian, or polynomial as in Table 2. Note that this is a simplified
explanation of SVR and interested readers may refer to the rich dedicated literature for
further details [6, 9, 46].

Table 2: Kernel functions for SVR.

Kernel type Function form

Linear
N∑
n=1

x
(j)
n x

(k)
n

Polynomial
(
1 +

N∑
n=1

x
(j)
n x

(k)
n

)ρSVR

ρSVR ∈ {2, 3, 4}

Gaussian exp

(
−

N∑
n=1

(
x
(j)
n − x(k)n

)2)

2.2.3 Kriging

Kriging is an interpolating technique that describes a single scalar output to multiple in-
puts using a global model (fb(x)) and its departure from responses. Eq. (6) shows the
general form of kriging where Z(x) is a random process with E(Z(x)) = 0, variance
σ2

KRG, and non-zero covariance.

y ≈ SKRG = fb(x) + Z(x) (6)

Table 3: Global polynomial functions for kriging.

Global function type Function form (fb(x))

Zero order polynomial 1

First order polynomial 1 +
N∑
n=1

xn

Second order polynomial 1 +
N∑
n=1

xn +
N∑
n=1

x2n +
N∑
n=1

N∑
p=n+1

xnxp
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Table 4: Correlation functions for kriging.

Correlation type Function form (R(θ, x))

Exponential exp

(
−

N∑
n=1

θn

∣∣∣x(j)n − x(k)n ∣∣∣)
Gaussian exp

(
−

N∑
n=1

θn

(
x
(j)
n − x(k)n

)2)
Linear max

{
0, 1− θn

∣∣∣x(j)n − x(k)n ∣∣∣}
Spherical 1− 1.5

(
min

{
1, θn

∣∣∣x(j)n − x(k)n ∣∣∣})+ 0.5
(
min

{
1, θn

∣∣∣x(j)n − x(k)n ∣∣∣})3
Cubic spline 1− 3

(
min

{
1, θn

∣∣∣x(j)n − x(k)n ∣∣∣})2 + 2
(
min

{
1, θn

∣∣∣x(j)n − x(k)n ∣∣∣})3
The covariance matrix of Z(x) is given as follows:

COV
(
Z
(
x(j)
)
, Z
(
x(k)
))

= σ2
KRGR

(
R
(
x(j), x(k)

))
j, k = 1, 2, · · · , K (7)

whereR is aK×K symmetric correlation matrix with the diagonal of ones andR
(
x(j), x(k)

)
is a correlation function between any two sample points x(j) and x(k). The correlation
function is typically specified by the user (Table 4) and several options exist in the lit-
erature [27]. The most commonly used correlation function for kriging is the Gaussian
shown below:

R
(
x(j), x(k)

)
= exp

(
−

N∑
n=1

θn
(
x(j)n − x(k)n

)2)
(8)

where θn, n = 1, 2, · · · , N are unknown correlation parameters. Further details regarding
theory behind kriging can be found in the article by Kleijnen [26]

2.2.4 RBF

Radial basis functions (RBF) were proposed by Hardy [18] for interpolating high dimen-
sional input-output data. They are the linear combination of radially symmetric functions
based on the Euclidean distance from each sample point. The general form of RBF is as
follows [37].

y ≈ SRBF =
K∑
k=1

λkψ
(∣∣∣∣x− x(k)∣∣∣∣)+ tp(x) (9)

where λk are the coefficients, ψ is a radially symmetric basis function, ||·|| is the Euclidean
distance or L2 norm, and tp is a tail function also known as polynomial tail (Table 5).
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Table 5: Types of radial basis functions and associated tail functions.

Type Basis function
(
ψ
(∣∣∣∣x− x(k)∣∣∣∣)) Tail function (tp(x))

Linear/Biharmonic
∣∣∣∣x− x(k)∣∣∣∣ β0 +

N∑
n=1

βnxn

Multiquadratic
(∣∣∣∣x− x(k)∣∣∣∣2 + η2m

)0.5
and ηm > 0 β0 +

N∑
n=1

βnxn

Inverse multiquadratic 1(
||x−x(k)||2+η2m

)0.5 and ηm > 0 β0 +
N∑
n=1

βnxn

Polyharmonic/Thin plate
∣∣∣∣x− x(k)∣∣∣∣2 log (∣∣∣∣x− x(k)∣∣∣∣) β0 +

N∑
n=1

βnxn

Gaussian exp
(
−ηg

∣∣∣∣x− x(k)∣∣∣∣2) and ηg > 0 0

2.2.5 MARS

In 1991, Friedman [11] proposed multivariate adaptive regression splines (MARS) that
approximate multidimensional data by adaptively selecting the basis functions via forward
or backward iterations. The general expression of a MARS model is as follows:

y ≈ SMARS = β0 +
B∑
b=1

βbhb(x) (10)

where β0 and βb are coefficients and the basis function is given as follows:

hb(x) =

Db∏
d=1

[
sd,b
(
xn(d,b) − νn(d,b)

)]ρMARS

+
(11)

where Db is the number of splits, sd,b = ±1 denotes the right or left sense of the step
function, xn(d,b) is the n-th variable (1 ≤ n ≤ N ), and νn(d,b) is the location of a knot for
the corresponding n-th variable. The subscript + denotes that hb(x) is a truncated power
function and the superscript ρMARS is the maximum order of the function as given in Eq.
(12).

[
sd,b
(
xn(d,b) − νn(d,b)

)]ρMARS

+
=

{[
sd,b
(
xn(d,b) − νn(d,b)

)]ρMARS , sd,b
(
xn(d,b) − νn(d,b)

)
< 0

0, otherwise
(12)

The major advantage of MARS is its lower computational cost compared to techniques
like kriging [23].

2.2.6 ANN

Artificial neural network (ANN) is a modelling technique inspired by the human nervous
system. It consists of neurons which are basically regression models composed of non-
linear transfer functions. A typical ANN has an input layer, an output layer, and at least
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Figure 1: Schematic of ANN with 2 neurons in the input layer, 1 output neuron, and 20
neurons in the hidden layer.

one hidden layer. In this work, we limit ourselves to ANN with a single hidden layer,
however, this can easily be generalized to an ANN with multiple hidden layers. A general
architecture of ANN consists of LI neurons in the input layer, LH neurons in the hid-
den layer, a transfer function δ(·) (typically a sigmoid function), and M = 1 neuron in
the output layer corresponding to the response. Then, the network response is given as
follows:

y ≈ SANN =

(
LH∑
j=1

ωjδj

(
LI∑
i=1

wijδi(x) + ζj

))
+ ζ0 + ε (13)

where, wij is the weight factor for the connection between the ith input neuron and jth
hidden neuron, ωj is the weight factor for the connection between the jth hidden neuron
and output neuron, ζj is the bias in the jth hidden neuron, ζ0 is the bias in the output
neuron, and ε is a random error with zero mean. Figure 1 shows the illustrative network
for LI = 2, LH = 20, andM = 1. Note that the performance of ANN depends heavily on
its parameters, hence parameter tuning is highly recommended [1, 36]. Interested readers
may refer to a book by Haykin [19] for further discussion on ANN.

3 Problem statement

As discussed in the previous section, the literature offers a range of surrogates for various
numerical paradigms like system approximation, prediction, optimization, visualization
etc. Since these surrogates and their corresponding modelling techniques have different
mathematical bases, it is not a trivial task to determine the best modelling technique and
associated functional form for a given system. Although the “exhaustive” approach can
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yield the best surrogate for a given system, it is not efficient and can become compu-
tationally expensive for higher dimensions, larger samples, more surrogate parameters,
more complex systems, etc. Therefore, we wish to develop a computationally inexpen-
sive automated surrogate selection scheme viz. LEAPS2 that would solve the following
problem:

Given:

• A computationally expensive system f with N input variables and M output re-
sponses.

• An input data set (sample set) X (K) =
{
x(k)|k = 1, 2, · · · , K

}
and the correspond-

ing response set Y(K) =
{
y(k)|k = 1, 2, · · · , K

}
.

• A complete list of surrogates for the system approximation.

Obtain:

• Surrogate recommendation that may be the best for approximating f with minimal
computational efforts.

Note that we would like to design LEAPS2 in such a way that it can be evolved dynami-
cally as and when new system-surrogate data become available.

4 LEAPS2

LEAPS2 relies on the concept of knowledge pyramid (see Figure 2) to select surrogates
based on the input-output data alone and with minimal surrogate fitting efforts. The
knowledge pyramid involves three phases: (1) Data collection, (2) Information extraction,
and (3) Knowledge derivation. The evolution of LEAPS2 begins with the data collection
phase involving the following steps:

(D1) Select 66 test functions as representative systems (see Appendix A).

(D2) Select 25 surrogates resulting from six modelling techniques discussed earlier (see
Table 6).

(D3) Use Sobol sampling (QS) to generate four input-output data sets for each test func-
tion.

(D4) Construct 25 surrogates for each input-output data set.

This yields a rich set of system-surrogate data which can be updated dynamically as and
when more data become available. We then process these data to extract information.

(I1) Compute system attributes defined in Section 4.2.1.

11



(I2) Compute performance metrics defined in Section 4.2.2.

From the information computed in steps (I1) and (I2), we quantify and embed knowledge
into LEAPS2 using regression tree ensemble.

(K1) Discard correlated attributes via the attribute selection algorithm outlined in Section
4.3.1.

(K2) Correlate the selected system attributes with surrogate performance metrics using
regression tree ensemble. This serves as the brain of LEAPS2 for future surrogate
selections.

Figure 2: The core philosophy of LEAPS2 based on the knowledge pyramid.

12



Figure 3 shows the flowchart of the above discussed steps and their hierarchical interlink-
ing. We call this the learning protocol of LEAPS2. Now, we discuss each phase of the
learning protocol in detail.

Figure 3: A flowchart describing the learning protocol of LEAPS2.

4.1 Data collection

The ability of LEAPS2 to recommend surrogates obviously depends on the extent of its
learning. Thus, we need data sets from many diverse systems. Hence, our initial system
directory consists of 66 analytical functions with wide ranges of dimensions (2 ≤ N ≤
20), domain sizes, and key characteristics given in Appendix A (Tables A-I-A-IV). We
evaluate each function for four sample sets generated using QS: K = {25N, 50N, 100N,
200N} where N is the number of input/design variables. We use QS since it is a ro-
bust sampling technique that generates samples using a quasi-random, low discrepancy
sequence and and assures uniform space-filling over a range of dimensions [12]. Overall,
this amounts to 66 × 4 = 264 input-output data sets. The Sobol sampling [24] within
MoDS toolkit [35] is used for the data generation. We then propose the following 25
different surrogates based on the six modelling techniques discussed earlier.

T = {P1,P2,K0e,K1e,K2e,K0g,K1g,K2g,K0l,K1l,K2l,K0s,
K1s,K2s,K0c,K1c,K2c,Rb,Rm,Ri,Rt,Rg,M,A,S}

Table 6 lists the surrogates associated with each label in T . Finally, we construct 25
surrogates in T for each data set resulting in total 264× 25 = 6600 surrogates.
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4.2 Information extraction

At the end of the data collection phase, we get 264 input-output data sets of different sizes
(N and K) and 25 surrogates for each. Each data set reflects an image of the underlying
system and we abstract that image in terms of several system attributes that are defined
next. Furthermore, to quantify the quality of each surrogate, we define some performance
metrics.

4.2.1 System attributes

Any insight into a black-box system can only be achieved based on its input-output data.
In other words, these data characterize the underlying system in the absence of its phys-
ical/analytical form. System characteristics (e.g. non-linearity) may be simpler to grasp
and visualize for low dimensional data (N ≤ 3). However, the same becomes difficult
for large N and K. We circumvent this difficulty by defining several numerical attributes
of a data set, which capture its system features. In simple words, these attributes distil
the essence of the underlying system irrespective of its size, dimensions, etc. Subse-
quently, these attributes can be used in an inference-making process (in our case deriving
knowledge) instead of the entire data set. Since our inferences i.e. selected surrogates are
tailored for paradigms like system prediction, optimization, and sensitivity analysis, our
attributes are based on the following system aspects viz. (a) response, (b) gradient, and
(c) extrema.

Response-based attributes:
We define seven attributes to characterize the magnitude and variations of a system re-
sponse.

A1 Empirical mean: This measures the average magnitude of a response.

y =
1

K

K∑
k=1

y(k) (14)

A2 Geometric mean: This measures the geometric mean of a response.

yg =

{
K∏
k=1

y(k)

} 1
K

(15)

A3 Harmonic mean: This measures the harmonic mean (Pythagorean mean) of a re-
sponse.

yh =
K

K∑
k=1

(
1
y(k)

) (16)

A4 Empirical standard deviation: This gives a measure of variation in a response.

sy = s
(
y(k)
)
=

√√√√ 1

K − 1

K∑
k=1

(y(k) − y)2 (17)
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A5 Empirical coefficient of variation: This is nothing but the ratio of standard devia-
tion to mean.

Cv =
sy
y

(18)

A6 Fisher-Pearson coefficient of skewness: This measures the lack of symmetry in a
response.

γ1(y) =

∑K
k=1

(
y(k) − y

)3
K × (sy)

3 (19)

A7 Kurtosis: This measures the flatness of a response with respect to the normal dis-
tribution for which the Kurtosis is 3.

γ2(y) =

∑K
k=1

(
y(k) − y

)4
K × (sy)

4 − 3 (20)

Gradient-based attributes:
For any x(k), let x(j) be its nearest neighbour based on the Euclidean distance. Then, we
can approximate the gradient of the response at x(k) as follows:

g(k) =

g(k)n =

(
y(k) − y(j)

)
sgn
(
x
(k)
n − x(j)n

)
max

[
e,
∣∣∣x(k)n − x(j)n ∣∣∣]

∣∣∣∣∣∣n = 1, 2, · · · , N


∀j, k = 1, 2, · · · , K, k 6= j (21)

Using this, we can then estimate the Hessian at x(k) as follows:

H(k) =


H

(k)
11 H

(k)
12 · · · H

(k)
1N

H
(k)
21 H

(k)
22 · · · H

(k)
2N

...
... . . . ...

H
(k)
N1 H

(k)
N2 · · · H

(k)
NN

 (22)

and

H(k)
np =

(
g
(k)
n − g(j)p

)
sgn
(
x
(k)
n − x(j)p

)
max

[
e,
∣∣∣x(k)n − x(j)p ∣∣∣] ∀ n, p = 1, 2, · · ·N (23)

where e is a user specified small positive number that depends on the number of significant
digits in the design variables. Let the eigenvalues ofH(k) are υ(k)1 , υ

(k)
2 , · · · , υ(k)N . By using

the characteristic polynomial of a matrix, the determinant ofH(k) is given by det
(
H(k)

)
=

N∏
n=1

υ
(k)
n [29]. With this, we propose the following six attributes that quantify the gradient

and curvature information of the system.

A8 Empirical mean of gradient estimates: This measures the average steepness of
the underlying system across its dimensions.

gn =
1

K

K∑
k=1

∣∣g(k)n

∣∣ n = 1, 2, · · · , N (24)
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g =
1

N

N∑
n=1

gn (25)

A9 Empirical standard deviation in gradient estimates: This measures the variation
in the gradient estimates across all dimensions. This can be viewed as a measure of
relative non-linearity among the dimensions i.e. the larger its value the greater the
relative non-linearity.

sg = s(gn) =

√√√√ 1

N − 1

N∑
n=1

(gn − g)2 (26)

A10 Empirical mean of the standard deviations in gradient estimates: This measures
the average variation in the gradient estimates across all dimensions.

sgn = s
(
g(k)n

)
=

√√√√ 1

K − 1

K∑
k=1

(
g
(k)
n − gn

)2
n = 1, 2, · · · , N (27)

sg =
1

N

N∑
n=1

sgn (28)

A11 Empirical standard deviation in the standard deviations in gradient estimates:
This measures the standard deviation in the variations of the gradient estimate in
every dimension.

ssg = s(sgn) =

√√√√ 1

N − 1

N∑
n=1

(sgn − sg)
2 (29)

A12 Empirical mean of curvature: This quantifies the mean curvature of the system
using the eigenvalues of the Hessian matrices computed at the sample points.

κ =
1

K

K∑
k=1

det
(
H(k)

)
(30)

where,

det
(
H(k)

)
=

N∏
n=1

υ(k)n k = 1, 2, · · · , K (31)

A13 Empirical standard deviation in the curvature: This measures the variation in
the curvatures computed across the sample points.

sκ = s
(
det
(
H(k)

))
=

√√√√ 1

K − 1

K∑
k=1

(det (H(k))− κ)2 (32)
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Extrema-based attributes:
Let c(r), r = 1, 2, · · · , Rs be some sample points inD generated using the Latin hypercube
sampling. Define

d = min
1≤r,t≤Rs, r 6=t

∣∣∣∣c(r) − c(t)∣∣∣∣ (33)

Construct a hyper-sphere (Dr) of diameter d around each sample point c(r) to get Rs

mutually exclusive subsets of D. Then, we define three attributes as follows.

A14 Fluctuation over D: This measures the maximum fluctuation in the response over
D.

Rmin/max,D = ymax,D − ymin,D (34)

where, ymin,D = min
1≤k≤K

y(k), and ymax,D = max
1≤k≤K

y(k).

A15 Empirical mean of fractional local fluctuations: This gives the mean response
fluctuation over Rs hyper-spheres as a fraction of the maximum fluctuation over
D. It measures the average bumpiness in the response that arises from the systems
non-linearity.

Rmin/max =
1

Rs

Rs∑
r=1

Rmin/max,r r = 1, 2, · · · , Rs (35)

Rmin/max,r =
ymax,r − ymin,r

Rmin/max,D
r = 1, 2, · · · , Rs (36)

where, ymin,r = min
y(k)∈Dr

y(k), ymax,r = max
y(k)∈Dr

y(k).

A16 Empirical standard deviation in fractional local fluctuations: This measures the
variations in local fluctuations i.e. variations in local non-linearity.

s(Rmin/max) =

√√√√ 1

Rs − 1

Rs∑
r=1

(
Rmin/max,r −Rmin/max

)2
(37)

So far, we defined 16 attributes. In addition, N and K are also crucial in surrogate selec-
tion. Thus, we have 18 attributes that extract system features.

4.2.2 Performance metrics

Typically, the quality of a surrogate is measured using error-based metrics. Two com-
monly used metrics are average absolute error (AAE), and root mean squared error (RMSE)
given in Eqs. (38) and (39) respectively. AAE measures the average magnitude of the er-
ror while RMSE quantifies its distribution.

AAE =

∑Q
q=1

∣∣y(q) − S (x(q))∣∣
Q

(38)
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RMSE =

√∑Q
q=1 (y

(q) − S(x(q)))2

Q
(39)

Garud et al. [13] combined these two metrics into a single performance metric called
pooled error (PE). The lower the PE, the better the quality of the surrogate.

PE =
√

AAE× RMSE (40)

For assessing any surrogate, we evaluate these metrics using a uniformly distributed test
set Q =

{(
x(q), y(q)

)
| q = 1, 2, · · · , Q = 0.25K

}
.

With this, each of the 264 data sets gives us 18 attributes, and the 25 surrogates associated
with that data set gives us 25 PEs. We address this entire set of 264 pairs of 18 system
attributes and 25 PEs as system-surrogate information.

4.3 Knowledge derivation

We now process the system-surrogate information to derive the knowledge for recom-
mending the best surrogate for any given data set. We employ regression tree ensemble
to store and later extract the derived knowledge. Before this, we eliminate attributes that
may be correlated using RReliefF or regressional ReliefF [28, 41].

4.3.1 Attribute elimination

RReliefF can detect linear as well as non-linear dependencies among the attributes and
eliminate any redundant ones. For this, it assigns a weight between −1 to 1 to each
attribute. The large positive weight is assigned to the more important attribute. We use
“relieff ” function from MATLAB and Table 7 shows the weights for our 18 attributes.
Based on these weights, we reject A2, A5, A6, and A7 as redundant, thus we use 14
attributes in our regression tree ensemble.

Table 7: Importance weights for all the attributes computed using RReliefF.

Attribute Weight Attribute Weight Attribute Weight
N 0.046 A5 −0.001 A11 0.180
K 0.040 A6 −0.032 A12 0.037

A1 0.270 A7 −0.020 A13 0.062
A2 −0.001 A8 0.230 A14 0.253
A3 0.043 A9 0.244 A15 0.017
A4 0.266 A10 0.176 A16 0.012

4.3.2 Regression tree ensemble

A regression tree [2, 30, 38] employs recursive partitioning of the input domain to make
a decision/prediction for a given set of input values. It is a connected graph denoting the
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recursive partitions, where each node represents a partition cell with its decision. A re-
gression tree is preferred over other machine learning approaches (e.g. nearest neighbour)
since it offers following advantages:

• Its hierarchical architecture reveals the relative importance of various input vari-
ables.

• Predictions require a simple query of the tree without any elaborate computations.

• In the absence of full data, the decisions can still be based on a partial tree.

The performance of a regression tree can be further improved via a variety of modifi-
cations such as boosting, bagging, random forest etc. [5]. They typically formulate an
ensemble of regression trees to arrive at the improved decisions. We employ regression
tree ensemble in the knowledge derivation step of LEAPS2 to ascertain excellent perfor-
mance. In our case, the attributes are the inputs, and the PEs are the outputs/decisions.
Finally, we use the refined system-surrogate information (pairs of 14 attributes and 25 PEs
for each of 264 data sets) to grow the regression tree ensemble which basically stores the
derived knowledge.

We implement LEAPS2 using MATLAB 2016b and grow regression tree ensemble using
“fitrensemble” in MATLAB. Since the performance of a tree ensemble can be improved by
optimizing its hyper-parameters, we consider the following hyper-parameters: ensemble-
aggregation method (e.g. bagging/random forest, least-squares boosting), number of en-
semble learning cycles, minimum number of leaf node observations, maximum number
of decision splits, and number of predictors for a split. Table 8 lists the settings used for
this optimization and further details can be found in the MATLAB documentation [47].

Table 8: Settings for optimizing hyper-parameters of regression tree ensemble.

Legend Optimization option Value
Optimizer Bayesian optimizer -

Objective Function Expected improvement plus -
Termination criterion Maximum evaluation 30

Cross-validation K-fold cross validation 20

The fully grown ensemble then can be used to select the best possible surrogate for any
given data set as discussed next.

4.4 Surrogate recommendation

For any given input-output data set, LEAPS2 selects the best surrogate based on the rec-
ommendation protocol comprising the following steps:

(R1) Normalize the input data as [−1, 1]N and compute the 14 system attributes.
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(R2) Feed the attributes to the regression tree ensemble to predict the PEs of the 25
surrogates.

(R3) Arrange the surrogates in the ascending order based on their predicted PEs.

(R4) Select the top P ∗ surrogates where P ∗ is determined by striking a balance between
the computational effort and recommendation performance as discussed next.

(R5) Construct and evaluate the P ∗ surrogates to recommend the best of them.

The goal of LEAPS2 is to identify the best surrogate for a given data set with minimal
computational expenditure. Let us assume that we evaluate the top P surrogates from the
regression tree ensemble to pick the best. This computational effort will be maximum
for P = Pmax = 25 while it will be zero for P = 1. On the other hand, the likelihood
of identifying the best surrogate is 100% for P = Pmax = 25 and it reduces with the P .
Therefore, we extend the analogy of information function from Shannon entropy [40] to
quantify the total computational savings achieved by LEAPS2 as follows.

Coefficient of Computational Savings (CoCS) = 1− ln(P )

ln(Pmax = 25)
(41)

If the recommendation from LEAPS2 based on the P surrogates matches the true best
(obtained via exhaustive enumeration), then we consider LEAPS2 to be successful. To
this end, we define a coefficient of success for LEAPS2 as the fraction of data sets for
which LEAPS2 succeeds in identifying the true best surrogate.

Coefficient of Success (CoS) =
Number of successful data sets

Total number of data sets

∣∣∣∣
P

(42)

Naturally, a higher P would increase CoS and decrease CoCS. For P = Pmax, LEAPS2
behaves like exhaustive enumeration. Therefore, an optimal P would be the one that
trades-off between CoS and CoCS. To obtain this optimal P , we combine CoS and CoCS
into a single objective called coefficient of reward (CoR) = CoS × CoCS and solve the
following optimization problem.

max
1<P<Pmax

CoR (43)

The optimum P for the above problem gives us P ∗ which is used within the recommen-
dation protocol (Step (R4)).

Although CoS is a good performance measure for LEAPS2, often the difference between
the top few surrogates is marginal. Therefore, it is useful to assess the performance of
LEAPS2 in terms of its degree of success (DoS) i.e. success in identifying either the first,
second, or third best surrogate correctly. To this end, let DoS1 denote the fraction of data
sets for which the recommendation from LEAPS2 matches the first true best surrogate.
Similarly, DoS2 and DoS3 denote the fractions for which LEAPS2 correctly identifies
the second and third true best surrogates. This distribution of DoS (DoS1, DoS2, and
DoS3) quantifies the overall performance of LEAPS2 for an evaluation paradigm. Next,
we present an extensive numerical evaluation of LEAPS2.
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5 Training and evaluation

We use a progressive approach to train and evaluate LEAPS2 using the following steps:

(S1) Select 70% of the 264 data sets randomly and train LEAPS2. Evaluate its perfor-
mance on the same sets.

(S2) Assess the performance of LEAPS2 from S1 on the remaining 30% data sets.

(S3) Train LEAPS2 on all 264 data sets and then evaluate its performance on the same
data sets.

(S4) Generate 10 data sets each from test functions F1, F6, F11, F16, F36, F46, F51,
F66 using Sobol sampling with different seeds. This results in total 80 data sets.
Evaluate the performance of LEAPS2 from S3 on these data sets.

(S5) Expand the data set directory by adding the 80 data sets from S4 to the initial 264
sets and retrain LEAPS2. Evaluate its performance on all 344 data sets.

Note that we optimize P at each step to determine P ∗ for which LEAPS2 exhibits the best
performance.

After training LEAPS2 in S1, the first task is to determine P ∗ for the recommendation
protocol. For this, we graphically solve the optimization problem in Eq. (43) to get P ∗ =
5. Figure 4 illustrates the selection of P ∗ for S1 and we use the same approach for all the
subsequent steps. We then evaluate the recommendation performance of LEAPS2 on the
185 data sets using P ∗ = 5 and it attains DoS1 = 0.70, DoS2 = 0.20, and DoS3 = 0.04.
In other words, LEAPS2 is unable to recommend one of the top three true best surrogates
for only 6% of the data sets. We now proceed to S2 where we test the performance of
LEAPS2 on the remaining 79 unlearned data sets. We get P ∗ = 6 for the recommendation
protocol and the distribution of DoS for S2 is: DoS1 = 0.73, DoS2 = 0.15, DoS3 = 0.04.
Clearly, LEAPS2 performs very well on both the training and testing data sets separately.

2 3 4 5 6 7
0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

C
oe

ffi
ci

en
t o

f R
ew

ar
d

P

(a) CoR vs. P

2 3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

0.8

C
oe

ffi
ci

en
t o

f S
uc

ce
ss

P

(b) CoS vs. P

Figure 4: Optimization of P for the recommendation protocol of LEAPS2 in S1.
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Figure 5: Distribution of degree of success for the evaluation of LEAPS2 across various
functions.

In S3, we retrain LEAPS2 using all 264 data sets and evaluate its performance for P ∗ = 5.
It shows an excellent performance with the total DoS (DoS1 + DoS2 + DoS3) of 0.96. We
now evaluate the resilience of this fully trained LEAPS2 by evaluating its performance
across multiple data sets from the same system as stated earlier in S4. Figure 5 shows its
distribution of DoS for all the eight functions. It achieves an average DoS1 = 0.65, DoS2
= 0.10, and DoS3 = 0.04. In other words, LEAPS2 can successfully identify the first true
best surrogate for 7 out of 10 data sets while the second true best surrogate for 1 out of
10 data sets from the same system. This highlights the resilient performance of LEAPS2
across the 8 test functions.

Our goal is to update LEAPS2 as when new data become available. Thus, we add the
80 data sets from S4 to the initial directory and retrain LEAPS2 with all 344 data sets.
We get P ∗ = 4 and evaluate the performance of LEAPS2 across all the data sets. Table
9 summarises the training and evaluation performance of LEAPS2 in all the five steps.
Overall, it achieves average DoS1 = 0.71, DoS2 = 0.14, and DoS3 = 0.05 across all the
five steps.

The learning and evolution of LEAPS2 towards a powerful system modelling tool can
occur along three dimensions, viz. data sets, attributes, and surrogates. Our progressive
development of LEAPS2 in this work shows its evolution with respect to data sets. As
we added more and more data sets progressively, LEAPS2 learnt. This is evident from
the decreasing P ∗ through S1 to S5 as seen in Table 9. The lower value of P ∗ reveals
that LEAPS2 is able to recommend the best surrogates with higher certainty and lower
computational efforts.
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Table 9: Learning of LEAPS2 from S1 to S5.

Description S1 S2 S3 S4 S5
Training data sets 185 185 264 264 344

Evaluation data sets 185 79 264 80 344
P ∗ 5 6 5 3 4

DoS1 0.70 0.73 0.80 0.65 0.69
DoS2 0.20 0.15 0.10 0.10 0.17
DoS3 0.04 0.04 0.06 0.04 0.07

The evolution of LEAPS2 over attributes can be spawned by incorporating more attributes
to the current set of 18 attributes. Similarly, its evolution over surrogates can be affected
by adding more surrogates to its current database of 25 surrogates. This will require
us to update our system-surrogate information by computing the new attributes and by
constructing and evaluating the new surrogate for all its data sets (currently 344). Then,
LEAPS2 must be retrained using the updated system-surrogate information. The addition
of the new attributes will equip LEAPS2 for better system identification while the new
surrogates will provide more options for system approximation. Overall, such learning
will impart more versatility to LEAPS2 and extend its ability to handle more complex
systems.

Next, we demonstrate the practical utility of LEAPS2 on a real-life case study.

6 Surrogates for the VLE properties of LNG

Natural gas (NG), the cleanest fossil fuel available, has gained a lot of attention due
to pressing environmental issues, need for energy sustainability, and rapidly increasing
global competition [25]. Typically, NG is transported over long distances as liquefied nat-
ural gas (LNG). However, some of the LNG inevitably boils off during loading, unloading,
and transportation, requiring a keen understanding of its vapour-liquid equilibrium (VLE)
for modelling LNG systems. This understanding is crucial in the operational modelling
and optimization of LNG systems [10, 20, 25, 39]. Typically, these works rely on process
simulators (e.g. Aspen HYSYS) for thermodynamic properties and numerical software
(e.g. MATLAB) for solving optimization problems. Their approach necessitates an inter-

Table 10: Design variables and their bounds for approximating the BPT and DPT of
LNG.

Design variables Lower bound Upper bound
CH4 (Mole fraction) 0.7330 0.9440
C2H6 (Mole fraction) 0.0040 0.0930
C3H8 (Mole fraction) 0.0040 0.0940

N2 (Mole fraction) 0.0200 0.0480
P (Pressure (kPa)) 101.1 300
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Table 11: Performance metrics of the surrogates suggested by LEAPS2 for approximating
the BPT and DPT of LNG based on a uniformly distributed set of 250 test
points.

BPT DPT
Surrogates AAE RMSE PE Surrogates AAE RMSE PE

P2 0.08 0.10 0.09 K1e 0.60 0.93 0.75
K1e 0.06 0.10 0.08 K0g 0.26 0.60 0.40
K2e 0.02 0.03 0.02 K1g 0.20 0.37 0.27
K0g 0.05 0.10 0.07 K2g 0.16 0.27 0.21

face between the black-box simulator and the numerical software, and repeated calls to the
simulator for the physical properties. Such interfacing causes instability and much longer
compute times. These issues can be ameliorated by employing surrogates to approximate
the VLE properties of LNG within the numerical software. Therefore, we use LEAPS2
to recommend surrogates for approximating the VLE data of LNG obtained from Aspen

(a) Residuals for P2 (b) Residuals for K1e

(c) Residuals for K2e (d) Residuals for K0g

Figure 6: Residuals for 4 surrogates recommended by LEAPS2 to approximate BPT.
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(a) Residuals for K1e (b) Residuals for K0g

(c) Residuals for K1g (d) Residuals for K2g

Figure 7: Residuals for 4 surrogates recommended by LEAPS2 to approximate DPT.

HYSYS.

LNG consists of CH4, C2H6, C3H8, C4H10, and N2. We wish to approximate its bubble
point (BPT) and dew point temperatures (DPT) as functions of composition and pressure.

Table 12: System attributes computed using input-output data set of K = 1000 for BPT
and DPT of LNG.

BPT DPT
N 5 A10 1856.65 N 5 A10 4595.72
K 1000 A11 2629.51 K 1000 A11 7636.78
A1 111.33 A12 -1.48E19 A1 221.67 A12 -3.44E21
A3 111.09 A13 4.40E20 A3 221.17 A13 7.32E22
A4 5.17 A14 22.98 A4 10.37 A14 51.97
A8 265.99 A15 0.32 A8 717.15 A15 0.30
A9 329.63 A16 0.30 A9 1103.39 A16 0.29
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Table 10 shows the five design variables and their bounds derived from the typical LNG
compositions. We then generate an input sample set of design variables and compute
their BPTs and DPTs using Aspen HYSYS. For these data, LEAPS2 recommends the
surrogates in Table 11 using P ∗ = 4. K2e is the best surrogate for BPT with PE = 0.02,
and K2g is the best for DPT with PE = 0.21.

Interestingly, the best PE for DPT is much higher than that for BPT, which suggest that
DPT is harder to approximate than BPT. A possible reason for the difference in PE could
be the different magnitudes of BPT and DPT, as evidenced from their A1 values in Table
12. Another reason could be the higher A4 (10.4 vs. 5.2) for DPT than BPT. Finally,
the higher values of A8 to A11 (Table 12) for DPT also suggest that it is much more
non-linear than BPT.

For a visual comparison of various surrogates, we plot their residuals (Eq. (44)) shown in
Figures 6 and 7.

res(q) = y
(
x(q)
)
− S

(
x(q)
)
∀ q = 1, 2, · · ·Q (44)

The residuals for each surrogate (Figures 6a-7d) are plotted with respect to all the five
normalized design variables. The superior approximations of K2e and K2g are clear from
their narrower spreads in Figure 6d and 7d respectively.

7 Comparison with CRS

Finally, we compare the performance of LEAPS2 with the three metalearning-based rec-
ommendation schemes (CRS-ANN, CRS-1 NN, and CRS-3 NN) of Cui et al. 8. As dis-
cussed earlier in Section 1, CRS in contrast to LEAPS2 recommends a surrogate mod-
elling technique rather than a surrogate model. Furthermore, CRS schemes are based on
total 44 ten dimensional data sets of which 98% were used for training and the remaining
2% for evaluation. On the contrary, LEAPS2 is based on 264 data sets with wide ranges
of dimensions and sizes for training and validation. Therefore, a straightforward com-
parison is not entirely fair. However, we can still compare CRS and LEAPS2 based on
their success in identifying the best modelling technique. To this end, we use the LEAPS2
from S3 (see Section 5) to recommend the best modelling techniques for all 264 data sets.
LEAPS2 identifies the the true best for 236 data sets, thus attaining CoS = 0.89. Table
13 compares this CoS with those reported by Cui et al. for their three schemes. LEAPS2
offers higher CoS than the three CRS schemes showing superiority despite versatility.

Table 13: Comparison between the performances of LEAPS2 and CRS using CoS for
recommending modelling techniques.

Recommendation scheme CoS
LEAPS2 0.89 (236/264)

CRS-ANN 0.86 (38/44)
CRS-1 NN 0.82 (36/44)
CRS-3 NN 0.84 (37/44)
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8 Conclusions and future works

In this work, we develop a surrogate recommendation paradigm namely LEAPS2 which
selects the best surrogate/s for a underlying physico-numerical system simply based on
its input-output data. The novel core philosophy of our paradigm embraces the concept
of knowledge pyramid that hierarchically reduces data volume while enhancing its effi-
cacy by exploiting data-information-knowledge inter-linkage. By progressively adding
more data, we demonstrate that LEAPS2 learns to attain better computational efficiency
and functional accuracy. Moreover, the architecture of LEAPS2 allows its evolution by
including more attributes and surrogates. Besides, it performs better than the literature
approaches in recommending modelling techniques despite its generalized philosophy.
Finally, the practical utility of LEAPS2 is demonstrated by successfully employing it
to recommend surrogates for estimating BPT and DPT of LNG system. Interestingly,
LEAPS2 recommends a different surrogate for each temperature, and suggests that the
latter may be more non-linear and thus harder to approximate than the former. Overall,
LEAPS2 is a comprehensive, practical, data-driven surrogate recommendation scheme
that performs very well for a wide range of systems.

This is just a first step towards developing an intelligent tool for system modelling and we
aim to march on several fronts in the future. First, we aim to incorporate more analytical
functions to the existing directory as LEAPS2 continuously evolves with the addition of
new data. Second, we will develop and add more system attributes to LEAPS2 for better
system identification. Lastly, we will integrate the complexity of surrogates to the existing
performance metrics that will give an additional objective to users for surrogate selection.
In a nutshell, these future tasks will further empower LEAPS2 to tackle more complex
problems efficiently.
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Nomenclature

Abbreviations

AAE: average absolute error
ANN: artificial neural network
BPT: bubble point temperature
CoCS: coefficient of computational savings
CoR: coefficient of reward
CoS: coefficient of success
CRS: Cui et al. recommendation scheme
DoS: degree of success
DPT: dew point temperature
LNG: liquefied natural gas
MARS: multivariate adaptive regression splines
NG: natural gas
PE: pooled error
PRSM: polynomial response surface model
QS: Sobol sampling
RBF: radial basis functions
RMSE: root mean squared error
SVM: support vector machine
SVR: support vector regression
VLE: vapour liquid equilibrium

Notation

Subscripts

b: index for basis functions in MARS
d: index for splits of hinge functions in MARS
m: index for elements of response/output variables’ vector
n: index for elements of design/input variables’ vector
p: index for input variables in PRSM expansion
r: index for elements in a set of subregions

Superscripts

j: index for elements of a set
k: index for elements of a set
q: index for elements in test set
L: lower bound
U : upper bound
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Parameters

ε: threshold parameter in SVR
ηg: positive parameter in Gaussian RBF
ηm: positive parameter in multi-quadratic and inverse multi-quadratic RBF
θn: correlation parameter for n-th variable in kriging
ρMARS: maximum order of expansion for hinge function in MARS
ρPRSM: maximum order of expansion in PRSM
ρSVR: maximum order of polynomial kernel function in SVR
e: small positive number depending on the number of significant digits
Db: total number of splits in b-th hinge function in MARS
K: total number of sample points in a sample set
LH : number of neurons in the hidden layer of ANN
LI : number of neurons in the input layer of ANN
M : total number of output/response variables
N : total number of input/design variables
P : internal parameter of LEAPS2
Pmax: total number of surrogate options available for selection
Q: test set size
Rs: total number of subregions in D

Continuous Variables

x: vector of input/design variables
y: vector of output/response variables

Symbols

α: vector of dual variables in SVR
α∗: vector of dual variables in SVR
β0: constant term in polynomial expansion
βb: coefficient of b-th hinge function in MARS
βn: coefficient of the first order term of the n-th variable in polynomial expansion
βnn: coefficient of the second order term of the n-th variable in polynomial expansion
βnp: coefficient of the second order interaction between n-th and p-th variables in poly-
nomial expansion
γ1: Fisher-Pearson coefficient of skewness
γ2: Kurtosis of responses
δ: transfer function in ANN
ε: a random error with zeros mean
ζ0: bias of the output neuron in ANN
ζj: bias of the j-th hidden neuron in ANN
κ: empirical mean of curvature
λ: coefficients of basis functions in RBF
νn(d,b): location of the knot for n-th variable in d-th split of b-th hinge function in MARS
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σ2
KRG: variance of random process in kriging
υ
(k)
n : n-th eigen value ofH(k)

ψ: radial basis function
ωij: weight factor of the connection between i-th input neuron and j-th hidden neuron in
ANN
ωj: weight factor of the connection between j-th hidden neuron and the output neuron in
ANN
c: centre of hyper-spherical sub-region Dr
d: diameter of hyper-spherical sub-region Dr
f : computationally expensive black-box system
fb: global model in kriging
fk: kernel function in SVR
g(k): estimate of a gradient at x(k)

h: hinge function in expansion of MARS
sd,b: sign function denoting the right/left sense of the step function in MARS
sκ: empirical standard deviation in the curvature
sgn: empirical mean of the standard deviations in gradient estimates
ssg : empirical standard deviation in the standard deviations in gradient estimates
sy: empirical standard deviation in response y
tp: polynomial tail function in RBF
g: empirical mean of the gradient estimates
sg: empirical standard deviation in gradient estimates
y: empirical mean of the responses
yg: empirical geometric mean of the responses
yh: empirical harmonic mean of the responses
Cv: empirical coefficient of variation
R: correlation function in kriging
Rmin/max,D: fluctuation in D
Rmin/max,Dr : mean fractional fluctuation over all subregions
Rmin/max,Dr : local fluctuation in subregion r
S: surrogate model
SANN: ANN surrogate
SHDMR: HDMR surrogate
SKRG: kriging surrogate
SMARS: MARS surrogate
SPRSM: PRSM surrogate
SRBF: RBF surrogate
SSVR: SVR surrogate
Z(x): random process over x
E: expectation
N: set of natural numbers
R: set of real numbers
COV: covariance matrix of random process in kriging
D: input domain
Dr: r-th subregion in the domain
H(k): estimate of a Hessian at x(k)
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Q: uniformly distributed test set of size Q
R: correlation matrix in kriging
T : set of surrogate modeling techniques
X (K): sample set of size K
Y(K): response set of size K
A: ANN surrogate
DoS1: first degree of success
DoS2: second degree of success
DoS3: third degree of success
K0e: kriging surrogate with zeroth order global function and exponential correlation func-
tion
K1e: kriging surrogate with first order global function and exponential correlation func-
tion
K2e: kriging surrogate with second order global function and exponential correlation
function
K0g: kriging surrogate with zeroth order global function and Gaussian correlation func-
tion
K1g: kriging surrogate with first order global function and Gaussian correlation function
K2g: kriging surrogate with second order global function and Gaussian correlation func-
tion
K0l: kriging surrogate with zeroth order global function and linear correlation function
K1l: kriging surrogate with first order global function and linear correlation function
K2l: kriging surrogate with second order global function and linear correlation function
K0s: kriging surrogate with zeroth order global function and spherical correlation func-
tion
K1s: kriging surrogate with first order global function and spherical correlation function
K2s: kriging surrogate with second order global function and spherical correlation func-
tion
K0c: kriging surrogate with zeroth order global function and cubic spline correlation
function
K1c: kriging surrogate with first order global function and cubic spline correlation func-
tion
K2c: kriging surrogate with second order global function and cubic spline correlation
function
M: MARS surrogate
P1: first order polynomial surrogate
P2: second order polynomial surrogate
Rb: RBF surrogate with biharmonic basis function
Rm: RBF surrogate with multi-quadratic basis function
Ri: RBF surrogate with inverse multi-quadratic basis function
Rt: RBF surrogate with thin plate basis function
Rg: RBF surrogate with Gaussian basis function
S: SVR surrogate
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A Analytical test functions

This appendix provides the test functions used throughout the article for training and
evaluation of LEAPS [45]. Tables A-I-A-IV list analytical test functions with following
characteristics: (i) multi-modality, (ii) bowl-shaped, (iii) plate-shaped, and (iv) ridges-
shaped. Note that we use the following parameters for function computation wherever
applicable.

• F16a: The user must define L ∈ N, c a vector of size N , and a matrix A of size
L×N .

• F17-F22b: cn = 1 + xn−1
4

• F61-F66c: L = 10
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