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Abstract

In this paper we investigate a new stochastic particle method (SPM) for
solving an extension to the sintering-coagulation equation and model two par-
ticle systems: the production of SiO2 and TiO2. A model which includes both
a particle source and an area dependent surface growth term as well as co-
agulation and sintering is presented. A new mass-flow stochastic algorithm
to solve the model is stated. The stochastic method is able to recover fully
the evolution the bivariate particle size distribution function (PSDF) and is
computationally very efficient when compared to traditional finite element
methods. The SPM is compared to a bivariate sectional method for a sys-
tem with coagulation and sintering as the only mechanisms. Despite using a
different form of coagulation kernel to the sectional investigation, the results
obtained agree closely to those in the literature and were obtained in a small
fraction of the time. The full model with particle inception and surface growth
was then used to model the TiCl4 → TiO2 system under various conditions.
At low precursor concentration we investigate the effect of changing tempera-
ture, whilst at high precursor concentration we investigate the effect of surface
growth on the system. The results agree with many of the conclusions reached
in the literature.
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1 Introduction

The ability to model the particle size distribution (PSD) of a nanoparticle system is
extremely important as the size and shape of the particles may affect the physical
attributes of the final product. The use of population balance models to study
nanoparticle growth has become widespread, especially when studying nanoparticles
formed in flames [5, 11, 12, 10]. Mechanisms that focus on more than one variable
(e.g., particle mass and surface area) can be simulated and represent a more complete
picture of what is happening in the system.

Bivariate population balances have been solved in the past using sectional (finite
element) methods. These methods show the evolution of the PSD however, the
reported computational times associated with this method (of the order of days)
make it an impractical method to use. Stochastic particle methods (SPMs) are also
able to model the PSD evolution but without the added computational cost.

Stochastic methods have been used previously to study univariate nanoparticle dy-
namics with a source term [2, 3] and bivariate dynamics that include coagulation
and sintering [13, 15]. The purpose of this paper is to extend the model to include
surface growth as well as particle inception, coagulation and sintering, and introduce
a new mass-flow stochastic algorithm. The mass-flow algorithm has a major advan-
tage over the direct-simulation algorithm: the variance of important functionals is
reduced compared to a similar direct simulation algorithm.

The stochastic particle approach represents the system as an ensemble of N stochas-
tic particles. These particles interact according to the relative rates of the various
processes involved in the simulation. We make no assumptions about the final shape
of the PSD. The number of stochastic particles used in the simulation determines the
accuracy of the simulation. It has be shown for a simple univariate system undergo-
ing coagulation and fragmentation [1] that as N → ∞ the particle system converges
to the solution of the model. The convergence properties of the pure coagulation-
sintering algorithm have been investigated in [15] and the error was found to be of
the order N−1/2 whilst the complexity of the algorithm is of the order N logN .

For the first time, the method outlined above is applied to two systems. The first
system is that used in [7] for particles of SiO2 at various temperatures, simulating the
coagulation and sintering behaviour. The second system is that of TiCl4 oxidation to
TiO2 and includes the full model for particle inception and surface growth together
with coagulation and sintering.

2 The Particle Model

The equation used to describe the evolution of the particle sizes with time is the
coagulation-sintering equation [16] which is an extension to the Smoluchowski coag-
ulation equation [14]. We add two further terms to the equation to model a particle
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source and surface growth of the particles:
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with the initial condition n0(v, a), where v and a are volume and surface area respec-
tively. The gas phase concentration (C) is determined by the following equation,

dC

dt
= −ktotC, (2.2)

where ktot is the total rate of loss of the gas phase precursor.

The model can be split into four distinct parts that represent the four processes that
are being simulated: sintering, coagulation, particle inception and surface growth.
The first part of the right hand side of Eqn. 2.1 describes the sintering of particles.
The expression in the square brackets determines the difference between the current
area of a particle and its spherical minimum. The parameter t0 is the characteristic
sintering time and takes the form of a function of temperature (T ) and particle
diameter (dp). If the sintering is determined by viscous flow then the sintering time
is proportional to dp and is of the form

t0 =
µdp

σ
, (2.3)

where µ is the viscosity and σ is the surface energy of the particulate matter. If the
sintering is determined by boundary diffusion then the sintering time is of the form

t0 = AsintTd
4
p exp

(
Bsint

T

)
, (2.4)

where Asint and Bsint are constants depending on the system being simulated. In
general we will take the characteristic sintering time to take the form

t0 = t1f(v/v0, a/a0, T/T0) = t1f(ν, σ, θ), (2.5)

where v0 and a0 are the volume and surface area of the primary particles and T0 is
the initial temperature.

The second and third lines of Eqn. 2.1 describe the coagulation of particles within
the system. The first is a birth term and the second is a death term.

The coagulation kernel, βv,v′(a, a′) can be written as

βv,v′(a, a′) =

(
kbT0a

2
0

2πm0

) 1
2

θ
1
2K(x, x′), (2.6)
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where kb is Boltzmann’s constant, m0 is the mass of a primary particle and K(x, x′)
is a dimensionless form where x = (ν, σ). The kernel, K(x, x′) is given by:

K(x, x′) =

(
1

ν
+

1

ν ′

) 1
2 [

(s(ν)σ)
1
2 + (s(ν ′)σ′)

1
2

]2
. (2.7)

The function s(ν) is the surface area accessability function and is given by

s(ν) = λ1ν
α−1 + λ2;

λ1 = 21−α(DS − 2);
λ2 = 3 −DS, (2.8)

where DS ∈ [2, 3] is a surface fractal dimension and α ∈ [0, 1] is the surface area
scaling factor.

The first term on the fourth line of Eqn. 2.1 describes particles entering the system
from the gas phase. The parameter kg is the gas-phase oxidation rate.

The final term of Eqn. 2.1 describes the deposition of new mass onto the surface
of a particle. As with the particle coagulation term, the surface growth term has a
birth-death part. The quantity ksAs is the surface oxidation rate where As is the
surface area density of the system.

The overall rate for the production of new mass in the system is equal to the the
sum of the gas-phase (kg) and surface growth (ksAs) rates:

ktot = kg + ksAs. (2.9)

The particle size distribution function (PSDF), nt(v, a) is multiplied by a constant
term to obtain a dimensionless PSDF, Nτ (x) thus:
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2
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) 1
2

nt(v, a) = ξnt(v, a), (2.10)

where τ is a dimensionless time, given by τ = t/t1. This allows Eqn. 2.1 to be
converted to a dimensionless form:
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where we define (x− 1) = (ν − 1, σ − 1).

5



3 The Stochastic Particle Algorithm

Casting Eqn. 2.11 into a weak mass flow form allows us to write down the stochastic
generators of the various processes that the model describes and hence determine
their contributions to the stochastic simulation [15, 6]. To make the simulation more
efficient, we use the majorant kernel, K̂(x, x′) introduced in [15]. This reduces the
complexity of the algorithm compared to using K(x, x′) explicitly. The majorant
kernel takes the form:

K̂(x, x′) = 2
(
ω(x) + ψ(x)ν ′−

1
2 + ψ(x′)ν−

1
2 + ω(x′)

)
, (3.1)

where

ω(x) = λ1σν
α−3/2 + λ2σν

1
2 and

ψ(x) = λ1σν
α−1 + λ2σ. (3.2)

Sintering is dealt with by introducing a finite step size parameter, Λ. This param-
eter determines the discretization of surface area and hence the sintering time step
parameter, �Λ given by

�Λ(x) =

⎧⎨
⎩

Λ−1
(
σ−ν

2
3

)
f(ν,σ,θ)

if ν
2
3 + Λ ≤ σ ≤ ν,

0 otherwise.
(3.3)

It is important to note that the algorithm used in this paper is a mass flow algorithm.
Mass-flow coagulation is a constant N operation and so to conserve this property for
other operators, we introduce an overall scaling factor for the simulation that changes
as new mass enters the system. The scaling of the simulation (κ) is determined by

κ =
n0(v, a)ξ

N
, (3.4)

Each time a new particle enters the system, κ is increased by a factor of N/(N − 1).

A second point of note is that in the mass-flow algorithm, surface growth is imple-
mented as two separate jumps, each with its own rate. For a further explanation,
see [6].

The simulation proceeds as follows:

1. Generate initial state, p, and calculate κ.

2. Calculate the total surface area density of the system, As from:

As =
a2

0v0κ

ξ

N∑
i=1

σi

νi

,

calculate ktot from:
ktot = kg + ksAs,

and hence numerically integrate Eqn. 2.2 to calculate the new concentration
of the gas phase precursor, C.
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3. Wait an exponentially distributed time step τ , with parameter ρ̂(p) equal to
the sum of the rates of the processes:

ρ̂(p) = ρsint(p) + ρ̂coag(p) + ρinf(p) + ρSurf1(p) + ρSurf2(p)

ρ̂(p) =
N∑

i=1

�Λ(xi) + κθ1/2

N∑
i,j=1

K̂(xi, xj)

νj

+
kgCξt1
v0a0κ

+a0t1ksC

N∑
i=1

σi + a0t1ksC

(
N − 1

N

) N∑
i=1

σi

νi

,

and increase time according to

t �→ t+ τ

if t � tstop then stop simulation, else go to 4.

4. Choose one of the events probabilistically according to their relative rates.
For sintering, go to 5
for particle inception, go to 6
for surface growth (type one) go to 7
for surface growth (type two) go to 8
for coagulation go to 9.

5. Perform a sintering step:

(a) choose a particle i according to the distribution �Λ(xi) and reduce the
surface area of the particle by an amount Λ.

(b) go to 2.

6. Perform a particle inception step:

(a) Add a cluster of size 1 to the system and remove one of size x where x is
chosen uniformly from the particle array.

(b) go to 2.

7. Perform a surface growth step (type 1):

(a) Choose a particle, i, according to the distribution:

σi∑N
k=1 σi

(b) Remove particle i and replace with a particle of size (νi + 1, σi + 1)

(c) go to 2.

8. Perform a surface growth step (type 2):
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(a) Choose a particle, i, according to the distribution:

σi/νi∑N
k=1 σi/νi

and a particle j uniformly.

(b) Remove particle j and replace with a particle of size (νi + 1, σi + 1)

(c) go to 2.

9. Perform a coagulation step:

(a) Choose particles i and j according to the distribution:

K̂(xi,xj)

νj∑
i,j

K̂(xj ,xj)

νj

, i �= j

(b) With probability
K(xi, xj)

K̂(xi, xj)

add a particle of size (xi + xj) to the particle ensemble and remove one
of size xi. Otherwise the jump is fictitious and the particles have not
interacted.

(c) go to 2.

4 Results

4.1 Silica undergoing sintering and coagulation

The algorithm’s performance was compared to that of a bivariate sectional method
by simulating the system described in [7].

The characteristic sintering time associated with this simulation is of the form of
Eqn. 2.4, with the sintering time constants, Asint and Bsint coming from [4]. The
parameters used in the simulations are set out in Table 1.

Table 1: Parameters for SiO2 simulation.
Parameter Value
C0 1022 m−3

tstop 10−4 s
T 573/773/1073 K
Asint 1.838 × 1010 K−1m−4s
Bsint 2.766 × 104 K
N 8192
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In Fig. 1 various properties for the stochastic particle system are plotted. The
average particle diameter (Fig. 1(b)) is calculated using

dp =
6v

a
. (4.1)

With this in mind, we see that sintered particles will have a larger calculated value
of dp. If we compare the results calculated by the stochastic method to the ones
obtained is [7] we see that in general the correlation is good. We believe the dis-
crepancies arise due to that fact that a different form of coagulation kernel was used
in the sectional investigation. At high temperatures, the two kernels behave very
similarly and hence the results are in good agreement. It is worth noting that the
run time for the simulation at 1073K with 8192 particles took just over 240 seconds
to run on an Athlon 1.2GHz PC. This compares very well with the run time men-
tioned in [7] of 112 days however since no estimate of error is made in the paper, an
exact comparison is not possible.

Figure 2 shows the extent to which the particles have sintered, given the temperature
for which the system was simulated. At higher temperatures, the characteristic
sintering time of particles is considerably less than at lower temperatures. For
example, the sintering time of a medium sized particle changes by 14 orders of
magnitude when we change the temperature from 500K to 1200K. The figure shows
that at 573K no sintering occurs and we only get aggregates. At 773K some sintering
occurs and the particles deviate from the line of pure coagulation. Finally at 1073K
we get complete sintering and all particles lie on the line of total sintering.

4.2 Titania Reaction Simulation

The TiCl4 gas phase kinetics are described by a very simple reaction scheme that
incorporates both the gas-phase oxidation and surface oxidation processes. The
rates for the surface oxidation and gas-phase oxidation were taken to be the same
as those used in [11], kg and ks taking the form of a simple Arrhenius equation
(k = A exp(−EA/RT )). The simulations were run using the conditions in Table 2
(‘gas’ refers to the gas phase oxidation rate and ‘surf’ the surface oxidation rate).
Sintering was taken to be boundary diffusion with Asint and Bsint taken from [16].

Figure 3 shows the evolution of the marginal PSDs. In Fig. 3(a) and Fig. 3(b) we
observe a bimodal distribution. For Titania, v0 = 0.033 nm3 and a0 = 0.499 nm2.
The incepted particles from the gas-phase dominate the PSD at very early times
(10 ms) and the secondary peak is barely visible, however at slightly later times
(100 ms) the secondary peak becomes more noticeable. At much later times (Fig.
3(c) and Fig. 3(d)) the distribution has become unimodal as coagulation becomes
the predominant mechanism in the system.

Figure 4 shows how the system is affected at lower temperatures. We see from Fig.
4(a) that the average diameter of TiO2 particles is reduced as the temperature falls.
This effect is caused in part by the reduction in the rate of coagulation (proportional
to T 1/2) but mainly by the reduction in the concentration of particles in the system
(Fig. 4(b)) caused by the reduction in the rate of particle inception.
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Table 2: Parameters for TiO2 system.
Parameter Value
C0(TiCl4) 5 × 10−6 mol m−3

tstop 10.0 s
T 800/1100/1400 K
A(gas) 8.26 × 104 s−1

EA/R(gas) 10681 K
A(surf.) 49.0 m s−1

EA/R(surf.) 8993 K
Asint 7.4 × 108 K−1m−4s
Bsint 3.1 × 104 K

In Fig. 5 we investigate the effect of increasing the initial concentration of the pre-
cursor (TiCl4), with both particle inception and surface growth simulated (denoted
‘SG’) and with particle inception only (denoted ‘no SG’). Figure 5(a) and Fig. 5(b)
show that at high concentrations, surface oxidation causes the marginal PSDs for
both volume and area to be shifted to the right. At lower concentrations, the PSDs
remain the same irrespective of surface growth. The figures support the conclusion
reached in [8] that surface oxidation is more relevant at high concentrations of TiCl4.
In contrast however to one of the conclusions reached in [9] we see that surface oxi-
dation causes a noticeable effect even when taking the total oxidation rate of TiCl4
to be ktot = kg + ksAs as opposed to the model mentioned in [9].

5 Conclusion

We investigated a model that includes four mechanisms for nanoparticle evolution:
coagulation, particle inception, surface growth and sintering. To simulate this model,
we used a mass-flow stochastic particle system to generate the evolution of the
PSDF without the great computational expense of other numerical techniques. The
stochastic particle method was able to illustrate the many subtleties associated with
the model; sintering is affected by temperature and particle size, when particle in-
ception is included a bimodal distribution is initially established, and that surface
growth is dependent upon high precursor concentrations.

The simplicity of the stochastic algorithm and its high computational efficiency
should allow simulations to be coupled to computational fluid dynamics simulations
so that particle-flame models may be solved without having to resort to simple,
monodisperse models that cannot elucidate the subtleties of the particle size distri-
butions.
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