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Abstract

In this article, we extensively evaluate the smart sampling algorithm (SSA) devel-
oped by Garud et al. (Computers & Chemical Engineering, 96, 103-114, 2017) for
constructing multidimensional surrogate models. Our numerical evaluation shows
that SSA outperforms Sobol sampling (QS) for polynomial and kriging surrogates
on a diverse test bed of thirteen functions. Furthermore, we compare the robustness
of SSA against QS by evaluating them over ranges of domain dimensions and edge
length/s. SSA shows consistently better performance than QS making it viable for a
broad spectrum of applications. Besides this, we show that SSA performs very well
compared to the existing adaptive techniques, especially for the high dimensional
case. Finally, we demonstrate the practicality of SSA by employing it for three case
studies. Overall, SSA is a promising approach for constructing multidimensional
surrogates at significantly reduced computational cost.

Highlights:

• Extensive numerical evaluation of smart sampling algorithm (SSA) is performed
using a diverse test bed of analytical functions.

• Robustness of the performance is examined for SSA over the wide ranges of dimen-
sions and domain sizes.

• Numerical comparison of SSA with existing adaptive approaches is illustrated.

• SSA is employed for three process systems engineering case studies to demonstrate
its practical applicability.

1



Contents

1 Introduction 3

2 Overview of SSA 5

3 Evaluation basis and plan 7

3.1 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Sampling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Numerical results 12

4.1 Comparison with Sobol sampling . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Comparison with adaptive sampling techniques . . . . . . . . . . . . . . 16

5 Case studies 17

5.1 Biodiesel production process . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Multi-component distillation column . . . . . . . . . . . . . . . . . . . . 21

5.3 Carbon capture unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusions 26

Nomenclature 27

References 30

2



1 Introduction

Process simulators are commonly used to model, study, and analyze complex nonlinear
physicochemical systems. However, such simulations are generally computationally in-
tensive, thus, prohibiting their repeated evaluations in a typical analysis procedure. More-
over, the custom-made process simulators are often black-box in nature. Hence, no sys-
tem information is available to the users without evaluating an instance of this costly
simulation. On these accounts, it is beneficial to convert such high-fidelity simulations
into computationally inexpensive surrogate models that capture essential features with
reasonable numerical accuracy. Surrogate modeling, also known as metamodeling or re-
sponse surface model, is a technique to generate a mathematical or numerical represen-
tation of a complex system based on some sampled input-output data. In a philosophical
discussion on the future of computational modeling, Kraft and Mosbach highlight the
importance of approximation techniques and experimental designs (sampling techniques)
in tackling complex multi-scale systems. The quality of any surrogate approximation
depends on a sampling technique used to generate the input-output data and a surrogate
modeling technique used to build the approximation. The literature [35] has several forms
of surrogate models like polynomial response surface model (PRSM), high dimensional
model representation (HDMR), kriging, radial basis functions (RBFs), support vector
regression (SVR), artificial neural networks (ANNs), etc. Furthermore, many scholars
[6, 19, 20] have employed these techniques in the context of various physicochemical
systems. Nonetheless, this work focuses on the critical evaluation of a smart and adaptive
sampling approach for multidimensional surrogate construction paradigms.

Commonly used sampling techniques employ uniform, quasi-random, or systematic dis-
tributions [26, 32]. Examples are factorial design or grid sampling, random sampling,
Latin hypercube sampling, orthogonal arrays, Hammersley points, Sobol sampling (QS),
etc. A recent review by Garud et al. classifies the literature on sampling techniques into
three major categories viz. static system-free, static system-aided, and adaptive-hybrid. It
discusses each of them thoroughly and identifies their advantages and disadvantages. The
static techniques are often prone to the curse of dimensionality. Moreover, they can result
in under/oversampling and thus, resulting in poor system approximation [17]. In order to
tackle these issues, a new upcoming class of modern DoE (design of experiments) called
adaptive sampling (sequential sampling) has gained attention from the research commu-
nity over the past few years. Adaptive sampling approach has two vital advantages over
the static ones viz. low computational expense and better approximation quality [9]. Typ-
ically, an adaptive sampling technique starts with a small set of sample points, and then
adds points sequentially based on some user-defined criterion. Such criterion involves an
objective (sometimes referred as a score) that aims to fill the domain (exploration) as well
as improve the overall surrogate quality (exploitation) [9, 17]. We summarize various
adaptive approaches from the literature and their vital characteristics like the exploration
and exploitation criteria, dependence on the surrogate form, and the placement approach
in Table 1. Although, we only discuss the key works from the adaptive sampling liter-
ature, Garud et al. has dedicated an entire section for their discussion and the interested
readers may refer to it for further details.

Jin et al. propose two approaches, namely the maximin scaled distance (MSD) and the
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Table 1: Overview of the adaptive sampling literature. (Mm: maximin distance, CVE:
cross validation error, MD: Mahalanobis distance, ME: maximum entropy, VT:
Voronoi tessellation, LOLA: local linear approximation, CC: clustering con-
straint, EE: expected error, NN: nearest neighbor, JK: Jackknifing, DT: Delau-
nay triangulation, MSE: maximum sampling error, CDM: crowding distance
metric, DF: departure function)

Author/s Exploration Exploitation Surrogate
Dependence

Placement
Approach

Jin et al. Mm CVE × Optimization
Busby et al. MD ME X(Kriging) Score

Crombecq et al. VT LOLA × Score
Li et al. CC EE X(Kriging) Optimization
Xu et al. VT CVE X (Kriging) Optimization

Eason and Cremaschi NN JK × Score
Ajdari and Mahlooji DT CVE × Score

Cozad et al. - MSE × Optimization
Garud et al. CDM DF × Optimization

cross validation (CV). The former is a modification of maximin distance based sampling
that utilizes system information by assigning weights to the important variables while the
latter uses CV error [27] to place new sample points. The CV approach can be viewed as
a maximum sampling error approach with an additional feature of clustering constraint.
Crombecq et al. propose a novel and generic score based sequential strategy involving
exploration and exploitation. They use a combination of derivative-based local linear ap-
proximations and Voronoi tessellations to place new sample points. Although the LOLA-
Voronoi strategy has shown some promising results, it can be computationally intensive
for large N . A recent work by Eason and Cremaschi proposes an adaptive sampling
strategy for ANN surrogates. Instead of generating all sample points in one shot, they
choose them gradually based on some score from randomly generated sample sets. The
score considers the normalized nearest neighbor distance of a potential point from the cur-
rent sample points and its normalized expected variance evaluated using jackknifing [14].
Though their selection of sample points is systematic, it is still from randomly generated
points. Cozad et al. propose an adaptive sampling for their surrogate modeling tool called
ALAMO. They add sample points one at a time to the initial sample set. For each new
sample point, they solve a derivative-free optimization problem to maximize the devia-
tion of the surrogate from the real function. This can obviously be compute-intensive, as
it requires the evaluation of the real function during optimization.

To this end, the adaptive sampling techniques in the literature can be broadly classified
as either score-based or optimization-based. Although the latter strategies aim at the op-
timal sample placement, the literature suggests that such approaches are employed only
with kriging surrogate due to its ready availability of the error estimate. Furthermore,
these approaches may not be suitable for a wide range of problems as the performance
of kriging may drop significantly with increasing dimensions. This can be tackled by us-
ing the surrogate techniques other than kriging. However, the literature clearly points out
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that surrogate (kriging)-independent approaches are score-based and lack the placement
optimality. Therefore, there is a need for surrogate-independent and optimization-based
adaptive sampling approach which is generic, robust, and ascertains optimal sample place-
ment. Garud et al. address this exact conundrum by proposing a novel adaptive sampling
strategy, namely smart sampling algorithm (SSA). It uses crowding distance metric to
identify the unexplored regions while departure function to identify the regions with com-
plex behavior. These two concepts are then combined into an objective to formulate a
point placement optimization problem. SSA iteratively solves this optimization problem
to place new sample points. SSA has been developed and presented in our previous work
[17] along with its application to one dimensional cases. In this work, we present the
critical evaluation of SSA for constructing multidimensional surrogate models.

This article is organized as follows. Section 2 gives a brief overview of SSA followed
by our evaluation basis and plan in section 3. We present the numerical results in section
4 and section 5 shows the practical application of SSA using three case studies from the
chemical and process systems engineering field. Finally, in section 6, we present our
conclusions.

2 Overview of SSA

Herein, we present a brief overview of SSA for the sake of completeness. The readers
may refer to the article by Garud et al. for the details on the development thought-process.
Let y = f(x); f : RN → RM for D : xL ≤ x ≤ xU describe the behavior of a
unit/process/system whose experimental or computational quantification is complex and
computationally expensive. Thus, we need an analytical or numerical surrogate model
S(x) to replace f(x) so that y ≈ S(x). Here onwards, we denote S(x) by S for the sake
of convenience. To this end, SSA solves the following problem:

Given:

• y = f(x); f : RN → RM for xL ≤ x ≤ xU . Note that we consider M = 1
throughout this article.

• A mathematical form for S.

• Upper limit (Kmax) on the number of sample points at which f(x) may be evaluated
to obtain S, or a desired accuracy for S.

Obtain:

• Kmax sample points {x(k) | k = 1, 2, · · · , Kmax} that give the best S for approxi-
mating f(x).

• Or, the sample points that give S with a prescribed accuracy for approximating
f(x).
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In SSA, we quantify the exploration of D using crowding distance metric (CDM) as fol-
lows.

CDM(x) =
I∑
i=1

(||x− x(i)||2)2 (1)

where ||·||2 is the Euclidean norm. CDM(x) quantifies the relative isolation of x and
the greater the CDM(x), the greater its isolation, thus, making the neighborhood of x
a potential candidate for sample placement. Additionally, we quantify the exploitation
using departure function defined as follows. Let S(I)(x) denote a surrogate constructed
using sample set X (I)

N = {x(i) | i = 1, 2, · · · , I}. Let x(j) be a sample point in X (I)
N , and

let S(I/j)(x) be the surrogate constructed using X (I/j)
N = {x(i) | i = 1, 2, · · · , I, i 6= j}.

Then, departure function is given by Eq.(2).

∆(I/j)(x) = SI(x)− S(I/j)(x) j = 1, 2, · · · , I (2)

Qualitatively, it determines the impact of locating a sample point in the neighborhood of
x(j) on SI(x). The larger the departure function value, the greater the placement impact,
hence, the more plausible the region for sample placement.

A single objective that combines the above discussed two concepts of CDM and departure
function can yield the best new sample point. This is achieved by formulating a point
placement optimization problem as follows. Given a sample set X I

N and a surrogate SI(x)
constructed using it, we aim to place the new point as far away from existing points as
possible, and the new point should have the highest impact on SI(x). Therefore, we
formulate a series of NLPs given in Eq.(3). The optimal solution to this NLP (Eq.(3)) can
be a good candidate for new sample point.

NLP (j) : max
D

(∆(I/j)(x))2 × CDM(x) j = 1, 2, · · · , I (3)

SSA employs these concepts iteratively and adaptively to place new samples, thus, com-
prising of following key distinct features:

• Single analytical objective consisting exploration and exploitation for placement
optimization;

• Inexpensive placement optimization due to surrogate-based objective;

• Placement strategy independent of the surrogate model type and thus, applicable
over a wide range of problems.

For K (< Kmax) initial sample points and a surrogate model type S, SSA proceeds as
follows.

1. Generate a sample set XK
N = {x(i) | i = 1, 2, · · · , K} using any modern DoE tech-

nique e.g. QS.

2. Compute YKM = {y(i) | i = 1, 2, · · · , K} using a sample set XK
N . Note that through-

out our discussion M = 1. Thus, it is dropped from the subscript here onwards for
the sake of convenience.
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3. Set k = K.

4. Construct Sk(x) using X k
N and Yk.

5. If k = Kmax, then S(x) = S(k)(x) and STOP. Otherwise, proceed to step 6.

6. Compute CDM (j) = CDM(x(j)) ∀ x(j) ∈ X k
N and j = 1, 2, · · · , k using Eq.(1).

Arrange CDM (j) (j = 1, 2, · · · , k) in descending order and define the order as
p = 1, 2, · · · , k.

(a) Set p = 1.

(b) Construct S(k/p)(x) using data from Steps 1, 2, and i 6= p.

(c) Construct and solve NLP (p) given Eq.(3). Let x∗ be the optimal solution. If
||x∗ − x(i)||2 ≤ ε for any i = 1, 2, · · · , k, then set p = p + 1 and go to Step 6
(b). Otherwise, x(k+1) = x∗, evaluate y(k+1) and go to Step 4.

3 Evaluation basis and plan

We now present a detailed plan for the evaluation of SSA for constructing multi-dimensional
surrogates. For this, we use two surrogate model types and compare the performance of
SSA against a variety of commonly used sampling techniques. This evaluation is per-
formed using a diverse test bed of analytical functions. Additionally, the robustness of
SSA is analyzed for the wide ranges of domain sizes and dimensions. Finally, three differ-
ent performance metrics are employed for these analyses to assure a thorough comparison
of sampling techniques.

3.1 Surrogate models

As discussed earlier, one of the key features of SSA is its ability to function with any
surrogate modeling technique. Naturally, this requires us to analyze the performance of
SSA using different surrogate models. Therefore, we employ PRSM (Eq.(4) and kriging
(Eq.(5)) for the evaluation of SSA. These two models are deliberately chosen to show that
SSA performs very well for both regression (in case of PRSM) as well as interpolation
(in case of kriging) based techniques. Moreover, we use kriging for the comparative
illustration of SSA with adaptive techniques in the literature [38] as discussed next in
section 3.2. Eq.(4) illustrates second order PRSM and it can easily be generalized to any
order ρp ∈ N. The detailed theory and implementation of PRSM can be found in the
article by Sikorski et al..

y ≈ SPRSM = β0 +
N∑
n=1

βnxn +
N∑
n=1

βnnx
2
n +

N∑
n=1

N∑
p=n+1

βnpxnxp (4)

Eq.(5) shows a general form for kriging interpolator and we use polynomial basis func-
tions (gb) with kriging order ρk. Kleijnen discusses the theory behind kriging and its
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implementation in detail.

y ≈ SKRG =
B∑
b=1

βbgb(x) + Z(x) (5)

where Z(x) is random process with E(Z(x)) = 0.

3.2 Sampling techniques

We compare the performance of SSA against QS, a popular static technique due to its
robust performance across dimensions as discussed by Garud et al.. Additionally, we il-
lustrate the comparative performance of SSA against a variety of adaptive techniques like
CV-Vor [38], LOLA-Vor [9], SFCVT [29], MIPT [10], and MSE [22]. CV-Vor, SFCVT,
and MSE are surrogate (kriging)-dependent optimization-based adaptive techniques while
LOLA-Vor is a surrogate-independent score-based adaptive technique. MIPT is a sequen-
tial space-filling technique (also known as adaptive exploratory technique). Since the
surrogate construction paradigms are limited by the computational time budget, we use a
fixed number of true function evaluations (Kmax) as the basis for our comparison. This
number differs with the system under consideration and dimensions of the system as ex-
plained next.

3.3 Test functions

The performance of any sampling approach strongly depends on the hyper-volume of D(
VN (D) =

N∏
n=1

dn

)
which is characterized by the dimensions (N ) and the edge lengths(

d = {dn = xUn − xLn |n = 1, 2, · · · , N}
)
. Thus, the robustness of a sampling technique

can be determined by evaluating its performance across the ranges of dimensions and edge
lengths [18]. This is achieved by formulating a diverse test bed of analytical functions with
various domain sizes (2 ≤ dn ≤ 1000), input dimensions (2 ≤ N ≤ 20), and a variety of
function characteristics. In our evaluation procedure, we consider a test bed with thirteen
test functions (TF1-TF13) from the literature. It is employed to evaluate the comparative
performance of SSA against QS. Furthermore, we use them to study the robustness of SSA
compared QS. Table 2 lists these test functions (TF1-TF13), their sources, their domain
bounds, and the number of input dimensions for each of them.

Additionally, we use two test cases from the article by Xu et al. viz. Peaks function
(TF14) and Ackley function (TF15) for illustrating the comparative performance of SSA
against the existing adaptive techniques. Table 3 lists these functions along with their
input dimensions and their bounds.

3.4 Performance metrics

Typically, the performance of a sampling technique in a surrogate construction paradigm
is measured by the quality of the constructed approximation. We quantify this quality

8



Table 2: Test functions, their dimensions, and their domain sizes for the numerical eval-
uation of SSA against QS.

Legend N Test Function Domain Bound
TF1 [2] 2 0.25x41 − 0.50x21 + 0.10x1 + 0.50x22 −10 ≤ x ≤ 10
TF2 [15] 2 (cos(x1))

2 + (sin(x2))
2 −5 ≤ x ≤ 5

TF3 [12] 2 (x2 − 5.1
4π2x

2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
cos(x1)) + 10

−5 ≤ x1 ≤ 10
0 ≤ x2 ≤ 15

TF4 [12] 3
∑N−1

n=1 (100(xn+1 − x2n)2 + (xn − 1)2) −30 ≤ x ≤ 30
TF5 [16] 5 10 sin(πx1x2) + 20(x3 − 0.50)2 + 10x4 + 5x5 −1.5 ≤ x ≤ 1.5
TF6 [34] 6 ∑N

n=1(xn sin(
√
|xn|)) −500 ≤ x ≤ 500

TF7 [34] 8
TF8 [21] 10

0.10
∑N

n=1 cos(5πxn)−
∑N

n=1 x
2
n −1 ≤ x ≤ 1TF9 [21] 12

TF10 [21] 14
TF11 [37] 15 ∑N

n=1(x
2
n − 10 cos(2πxn) + 10) −5.12 ≤ x ≤ 5.12TF12 [37] 17

TF13 [37] 20

Table 3: Test functions, their dimensions, and their domain sizes for the numerical eval-
uation of SSA against existing adaptive techniques.

Legend N Test Function Domain Bound

TF14 [38] 2
3(1− x1)2 exp(−x21 − (x2 + 1)2)
−10(x1

5
− x31 − x52) exp(−x21 − x22)

−1
3

exp(−(x1 + 1)2 − x22)
−5 ≤ x ≤ 5

TF15 [38] 10
−20 exp

(
−0.20

√
1
10

∑10
n=1 x

2
n

)
− exp

(
1
10

∑10
n=1 cos(2πxn)

)
+20 + exp(1)

−0.60 ≤ x ≤ 0.60

using three error-based performance metrics viz. Average Absolute Error (AAE), Root
Mean Squared Error (RMSE), and Pooled Error (PE) [17]. AAE depicts the overall mag-
nitude of the error while RMSE captures the sense of its distribution. PE combines these
two metrics to provide a single measure of performance. We use randomly generated test
setQ = {(x(q), y(q)) | q = 1, 2, · · · , Q} of size Q to compute these metrics for a surrogate
S. Typically, Q is a user-defined parameter and often, multiple test sets are generated for
the evaluation. To this end, we define the error metrics as follows.

AAE =

∑Q
q=1 |y(q) − S(x(q))|

Q
(6)

RMSE =

√∑Q
q=1 (y(q) − S(x(q)))

2

Q
(7)

PE =
√

AAE× RMSE (8)
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These error metrics quantify the approximation quality of S developed using a combi-
nation of a sampling technique and a surrogate form. Thus, for a given surrogate form,
we compute the relative performance of a technique t ∈ T , where T is a set of sam-
pling techniques, using normalized metrics given in Eqs(9a)-(9c). For the comparison
between SSA and QS, T = {SSA,QS}. While for the comparison among the adaptive
techniques, T = {SSA,CV-Vor,LOLA-Vor,SFCVT,MIPT,MSE}. We follow the nor-
malization procedure described by Garud et al. such that normalized metric value lies in
[1,∞). The readers may refer to [3, 17] for further details about calculation and normal-
ization of the metrics.

AAE
(t)

=
AAE(t)

min
t∈T

(AAE(t))
(9a)

RMSE
(t)

=
RMSE(t)

min
t∈T

(RMSE(t))
(9b)

PE
(t)

=
PE(t)

min
t∈T

(PE(t))
(9c)

The lesser the metric value, the better the surrogate quality, hence, the better the sampling
technique.

3.5 Evaluation procedure

SSA is implemented in C++ and is integrated with a computational toolkit called the
“Model Development Suite” (MoDS) [31]. We perform the sampling and surrogate con-

Figure 1: Flowchart describing the numerical evaluation procedure.
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Table 4: Experimental settings for the numerical evaluation of SSA against QS.

Test Function Training Set
Size (Kmax)

Test Set
Size (Q)

PRSM
Order (ρp)

Kriging
Order (ρk)

TF1 25 10, 25, 50 4 4
TF2 25 10, 25, 50 4 4
TF3 25 10, 25, 50 4 4
TF4 50 20, 50, 100 4 4
TF5 125 50, 125, 250 2 3
TF6 150 60, 150, 200 3 3
TF7 200 80, 200, 400 3 3
TF8 250 100, 250, 500 3 3
TF9 300 120, 300, 600 3 3
TF10 350 140, 350, 700 3 3
TF11 375 150, 375, 750 3 3
TF12 425 170, 425, 850 3 3
TF13 500 200, 500, 1000 3 3

struction paradigms in MoDS while the computation and normalization of performance
metrics are carried out in Matlab 2012b. To this end, we follow the procedure described in
Figure 1 to carry out the numerical evaluation of SSA against QS. For any test function,
we choose a type of surrogate model (PRSM or kriging) and construct the surrogates us-
ing both QS and SSA-QS i.e. SSA initiated with Sobol sampling (Step 1 of SSA in section
2). Henceforth, we denote SSA-QS by SSA for the sake of convenience. We then com-
pute and normalize the performance metrics. These metrics are computed for test sets of
three different sizes (Q) to ascertain good performance over the entire domain. Moreover,
we repeat the metric evaluation procedure three times for a given Q. The experimental
settings for our comparative evaluation between SSA and QS are given in Table 4. It lists
the polynomial order ρp for PRSM surrogate, polynomial basis functions’ order ρk for
kriging (chosen based on our experience), training and testing set sizes used for each test
function.

For the comparison among the adaptive techniques, we follow the same procedure for SSA
using kriging for two test cases (TF14 and TF15) while we adopt the numerical results for
the other adaptive techniques from [38]. As the literature reports only the RMSE values

Table 5: Experimental settings for the numerical comparison of SSA with adaptive tech-
niques.

Test Function Training Set Size
Kmax

Test Set Size
Q

Kriging Order
(ρk)

Peaks
30 5000 2
40 5000 2

Ackley
100 5000 2
150 5000 2

11



computed forQ = 5000, we compare these techniques only based on RMSE. Table 5 lists
the settings for numerical comparison of SSA with the adaptive techniques.

4 Numerical results

4.1 Comparison with Sobol sampling

We now compare the performance of SSA with QS using the performance metrics (Eqs.(9a)-
(9c)) discussed earlier. Tables 6 and 7 list the averaged performance metrics computed for
SSA and QS using PRSM and kriging surrogates respectively. Clearly, SSA outperforms
QS for all the test functions and across all the three metrics for both the surrogates. In
the case of PRSM, SSA outperformed QS with the minimum PE-based improvement of
9% and the average improvement of around 34% (excluding TF1 where improvement is
more than 6 times). Similarly, for the case of kriging surrogate, SSA outperformed QS
with the minimum PE-based improvement of 6% and the average improvement of around
35% (excluding TF4 where improvement is more than 5 times). Therefore, SSA performs
very well in constructing multidimensional surrogates irrespective of the surrogate type.

As discussed earlier, the robustness of a sampling technique is determined by its steady
performance across the ranges of N and d. Therefore, we use the metrics from the Tables
6 and 7 to compute the percentage improvement in the performance of SSA compared
to QS. This analysis is performed using three metrics, namely AAE, RMSE, and PE for
both the surrogates. To this end, Figures 2a-4a show the improvement in the performance
of SSA over N while Figures 2b-4b show this over d in the case of PRSM using AAE,
RMSE, and PE respectively. Similarly, Figures 5a-7a and 5b-7b present the performance
improvement in SSA over N and d using the three metrics in the case of kriging.

Table 6: Comparative performance between SSA and QS using PRSM surrogate.

Test Function AAE RMSE PE
QS SSA QS SSA QS SSA

TF1 5.52 1.00 5.99 1.00 6.02 1.00
TF2 1.31 1.00 1.40 1.00 1.35 1.00
TF3 1.36 1.00 1.66 1.00 1.50 1.00
TF4 2.15 1.00 1.99 1.00 2.07 1.00
TF5 1.19 1.00 1.24 1.00 1.22 1.00
TF6 1.26 1.00 1.30 1.00 1.28 1.00
TF7 1.90 1.00 1.93 1.00 1.92 1.00
TF8 1.13 1.00 1.16 1.00 1.14 1.00
TF9 1.08 1.00 1.10 1.00 1.09 1.00

TF10 1.17 1.00 1.21 1.00 1.19 1.00
TF11 1.10 1.00 1.10 1.00 1.10 1.00
TF12 1.12 1.00 1.12 1.00 1.12 1.00
TF13 1.10 1.00 1.10 1.00 1.10 1.00
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Table 7: Comparative performance between SSA and QS using kriging surrogate.

Test Function AAE RMSE PE
QS SSA QS SSA QS SSA

TF1 2.13 1.00 2.43 1.00 2.37 1.00
TF2 1.25 1.00 1.30 1.00 1.28 1.00
TF3 1.51 1.00 1.81 1.00 1.65 1.00
TF4 5.55 1.00 4.97 1.00 5.25 1.00
TF5 1.17 1.00 1.24 1.00 1.20 1.00
TF6 1.16 1.00 1.22 1.00 1.19 1.00
TF7 1.73 1.00 1.81 1.00 1.77 1.00
TF8 1.10 1.00 1.11 1.00 1.10 1.00
TF9 1.09 1.00 1.10 1.00 1.10 1.00

TF10 1.25 1.00 1.27 1.00 1.26 1.00
TF11 1.11 1.00 1.12 1.00 1.12 1.00
TF12 1.12 1.00 1.12 1.00 1.12 1.00
TF13 1.07 1.00 1.06 1.00 1.06 1.00

Clearly, SSA is a robust sampling approach as it shows a consistently superior perfor-
mance compared to QS for the various combinations of N and d irrespective of the surro-
gate model types. This analysis presents two key findings. First, it shows a better relative
performance of SSA for the larger d. This is in agreement with our intuition and can be
understood with the following argument. In SSA, the placement is driven by the quality of
the surrogate approximation while in QS it is driven by the degree of space-filling. More-
over, the hyper-volume of the domain increases tremendously with increasing d, thus re-

(a) % performance improvement vs. N . (b) % performance improvement vs. d.

Figure 2: Percentage improvement in the AAE-based performance of SSA compared to
QS for PRSM surrogate. (Note that Figure 2b uses log scale for the horizontal
axis.)
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(a) % performance improvement vs. N . (b) % performance improvement vs. d.

Figure 3: Percentage improvement in the RMSE-based performance of SSA compared to
QS for PRSM surrogate. (Note that Figure 3b uses log scale for the horizontal
axis.)

(a) % performance improvement vs. N . (b) % performance improvement vs. d.

Figure 4: Percentage improvement in the PE-based performance of SSA compared to QS
for PRSM surrogate. (Note that Figure 4b uses log scale for the horizontal
axis.)

quiring many more samples to achieve the same degree of space-filling. This is why SSA
performs much better than QS for the larger d. On the other hand, the relative improve-
ment in the performance of SSA drops for the larger N and to understand this consider
the following argument. The approximation ability of a surrogate modeling technique can
typically decrease with increasing dimensions. This in turn can affect the performance of
SSA since its sample placement strategy is driven by the surrogate approximation. There-
fore, a good choice of surrogate modeling technique assures a better relative performance

14



(a) % performance improvement vs. N . (b) % performance improvement vs. d.

Figure 5: Percentage improvement in the AAE-based performance of SSA compared to
QS for kriging surrogate. (Note that Figure 5b uses log scale for the horizontal
axis.)

(a) % performance improvement vs. N . (b) % performance improvement vs. d.

Figure 6: Percentage improvement in the RMSE-based performance of SSA compared to
QS for kriging surrogate. (Note that Figure 6b uses log scale for the horizontal
axis.)

of SSA. Nevertheless, for a given technique, SSA always outperforms QS promising a
better approximation at a reduced computational expense.

15



(a) % performance improvement vs. N . (b) % performance improvement vs. d.

Figure 7: Percentage improvement in the PE-based performance of SSA compared to QS
for kriging surrogate. (Note that Figure 7b uses log scale for the horizontal
axis.)

4.2 Comparison with adaptive sampling techniques

We now illustrate the comparative performance of SSA with the adaptive techniques for
two cases viz. Peaks (TF14) and Ackley (TF15) functions. The former is a two dimen-
sional function with nonlinearity concentrated in the central region of the domain while
the latter is a ten dimensional function with high nonlinearity over the entire domain. We
use the experimental settings listed in Table 5 for evaluating SSA and computing RMSE
metrics while RMSE values for the other techniques are taken from the literature [38]. We
then normalize the RMSE values using Eq. (9b). Figures 8 and 9 show the comparative

(a) Kmax = 30 (b) Kmax = 40

Figure 8: Numerical comparison of various adaptive techniques using RMSE for Peaks
function (TF14).
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(a) Kmax = 100 (b) Kmax = 150

Figure 9: Numerical comparison of various adaptive techniques using RMSE for Ackley
function (TF15).

performance of SSA with various adaptive techniques for Peaks and Ackley functions re-
spectively. SSA performs the best for Kmax = 30 for Peaks function. However, CV-Vor
becomes the best performer for Kmax = 40 followed by LOLA-Vor and SSA perform-
ing equally while the rest of the techniques show relatively poor performance with MSE
being the worst performer. On the other hand, for Ackley function, SSA performs the
best for both Kmax = {100, 150} followed by SFCVT, MIPT, MSE, LOLA-Vor, and CV-
Vor. Overall, SSA shows a very good performance compared to the other techniques,
especially for a high dimensional case.

5 Case studies

Besides the numerical comparison using analytical functions, the ultimate test of a tech-
nique is its practical applicability to real-life case studies. Thus, we employ SSA to the
following three cases from the literature of chemical and process systems engineering: (i)
Biodiesel production process, (ii) Multi-component distillation column, and (iii) Carbon
capture unit. We follow the same evaluation procedure as described earlier in Figure 1
and compare its performance with QS using PRSM surrogate.

5.1 Biodiesel production process

Biodiesel is industrially produced via transesterification of vegetable oils with alcohol
(typically methanol or ethanol) in presence of base catalyst. In transesterification, triglyc-
erides of fatty acids react with alcoxide (resulting from alcohol and base) to form methyl
esters (biodiesel) and glycerol. Following equation only shows a general transesterifica-
tion reaction, however, its detailed mechanism and kinetics can be found in a recent article

17



Ta
bl

e
8:

E
xp

er
im

en
ta

ls
et

tin
gs

fo
r

ap
pr

ox
im

at
in

g
th

e
ex

ch
an

ge
rs

in
th

e
bi

od
ie

se
lp

la
nt

si
m

ul
at

io
n.

O
ut

pu
tv

ar
ib

al
e

In
pu

tv
ar

ia
bl

e
D

es
cr

ip
tio

n
of

In
pu

tV
ar

ia
bl

e
D

ef
au

lt
Va

lu
e

L
ow

er
bo

un
d

U
pp

er
bo

un
d

y 1
(D

ut
y

of
10

E
01

)

x
1

M
ol

ar
flo

w
ra

te
of

O
IL

30
K

m
ol

/h
27

K
m

ol
/h

33
K

m
ol

/h
x
2

Te
m

pe
ra

tu
re

of
O

IL
30

3.
15

K
30

0.
15

K
30

6.
15

K
x
3

Te
m

pe
ra

tu
re

of
10

E
01

34
3.

15
K

33
6.

15
K

35
0.

15
K

y 2
(D

ut
y

of
10

E
02

)

x
1

M
ol

ar
flo

w
ra

te
of

O
IL

30
K

m
ol

/h
27

K
m

ol
/h

33
K

m
ol

/h
x
2

Te
m

pe
ra

tu
re

of
O

IL
30

3.
15

K
30

0.
15

K
30

6.
15

K
x
3

Te
m

pe
ra

tu
re

of
10

D
01

33
3.

15
K

32
7.

15
K

33
9.

15
K

x
4

Vo
lu

m
e

of
10

D
01

45
m

3
40
.5

m
3

49
.5

m
3

x
5

Te
m

pe
ra

tu
re

of
10

E
01

30
3.

15
K

30
0.

15
K

30
6.

15
K

x
6

M
ol

ar
flo

w
ra

te
of

M
E

O
H

18
0

K
m

ol
/h

16
2

K
m

ol
/h

19
8

K
m

ol
/h

x
7

Te
m

pe
ra

tu
re

of
M

E
O

H
30

3.
15

K
30

0.
15

K
30

6.
15

K
x
8

Te
m

pe
ra

tu
re

of
10

E
02

36
3.

15
K

35
4.

15
K

37
2.

15
K

18



O
ut

pu
tv

ar
ib

al
e

In
pu

tv
ar

ia
bl

e
D

es
cr

ip
tio

n
of

In
pu

tV
ar

ia
bl

e
D

ef
au

lt
Va

lu
e

L
ow

er
bo

un
d

U
pp

er
bo

un
d

y 3
(D

ut
y

of
10

E
03

)

x
1

M
ol

ar
flo

w
ra

te
of

O
IL

st
re

am
30

K
m

ol
/h

27
K

m
ol

/h
33

K
m

ol
/h

x
2

Te
m

pe
ra

tu
re

of
O

IL
30

3.
15

K
30

0.
15

K
30

6.
15

K
x
3

Te
m

pe
ra

tu
re

of
10

D
01

33
3.

15
K

32
7.

15
K

33
9.

15
K

x
4

Vo
lu

m
e

of
10

D
01

45
m

3
40
.5

m
3

49
.5

m
3

x
5

Te
m

pe
ra

tu
re

of
10

D
02

F
36

3.
15

K
35

4.
15

K
37

2.
15

K
x
6

Te
m

pe
ra

tu
re

of
10

E
01

30
3.

15
K

30
0.

15
K

30
6.

15
K

x
7

M
ol

ar
flo

w
ra

te
of

M
E

O
H

18
0

K
m

ol
/h

16
2

K
m

ol
/h

19
8

K
m

ol
/h

x
8

Te
m

pe
ra

tu
re

of
M

E
O

H
30

3.
15

K
30

0.
15

K
30

6.
15

K
x
9

Te
m

pe
ra

tu
re

of
10

D
02

D
30

3.
15

K
30

0.
15

K
30

6.
15

K
x
1
0

Te
m

pe
ra

tu
re

of
10

E
02

36
3.

15
K

35
4.

15
K

37
2.

15
K

x
1
1

Te
m

pe
ra

tu
re

of
10

E
03

34
3.

15
K

33
6.

15
K

35
0.

15
K

19



Figure 10: Aspen Plus flowsheet of biodiesel production plant.

by Likozar and Levec.

Triglyceride + 3 Methanol −−→ 3 MethylEster + Glycerol

Here, we simulate the biodiesel production process designed by Lurgi GmbH using Aspen
Plus v8.6 [36]. Palm oil (simulated using tripalmitin) is used as a feedstock for biodiesel
production. It is preheated to 343.15 K and is fed to the reactor with a mixture of methanol
and sodium hydroxide. Transesterification is carried out in a continuously stirred tank
reactor (CSTR) at 1 bar with high mixing intensity. This ascertains the homogeneity
in the reactor, thus removing the mass transfer limitations. The product mixture from
the reactor is heated in 10E02 and passed to the flash drum (10D02F) to remove excess
methanol. Then the liquid stream from the flash drum is fed to the decanter 10D02D to
separate the side product i.e. glycerol. Finally, crude biodiesel from the decanter is sent
downstream for further processing which is not considered in this case study.

To this end, we employ SSA and QS to approximate the duties of the three exchangers
from this flowsheet simulation (Figure 10) using PRSM surrogates. Table 8 shows the
responses (duties of three exchangers viz. 10E01, 10E02, and 10E03), their respective
inputs, the default values of the input variables, and their bounds. Overall, we construct
six surrogates based on two surrogate model-sampling technique combinations and three
responses. We useKmax = {25, 200, 275} for approximating the duties of 10E01, 10E02,
and 10E03 respectively, andQ = {10, 50, 50} for evaluating the performances of these ap-

Table 9: Performance of SSA against QS for approximating the exchanger duties in the
biodiesel production process.

Legend AAE RMSE PE
QS SSA QS SSA QS SSA

10E01 1.02 1.00 1.02 1.00 1.02 1.00
10E02 1.12 1.00 1.14 1.00 1.13 1.00
10E03 1.08 1.00 1.11 1.00 1.09 1.00

20



proximations. Tables 9 shows the comparative performance and clearly, SSA outperforms
QS in approximating all the three exchangers with the maximum PE based improvement
of 13%. Note that a small amount of improvement is observed for 10E01 due to its lin-
ear response. However, the improvement significantly rises for the other two exchangers.
This shows that SSA can be successfully employed to reduce computational expense in
approximating the typical heaters or coolers in process simulations.

5.2 Multi-component distillation column

Now, we consider one of the most complex and nonlinear process units for approximation
viz. a multicomponent distillation column. This case study is adopted from the article by
Dhole and Linnhoff and its Aspen Plus flowsheet is shown in Figure 11. The feed stream
(denoted as FEED in Figure 11) at 373.15 K and 2 bar consists of 5 components namely
N-Heptane, N-Octane, N-Nonane, N-Decane, and N-Pentadecane. This is preheated in
10E01 and then fed to the distillation column 10D01. The column 10D01 aims to separate
N-Heptane and N-Octane as distillate products and the rest as still products. The column
operates at 2 bar and has 30 stages. We simulate the column for the following two design
specifications: (i) 99% recovery of Octane in the distillate stream by adjusting the reflux
ratio and (ii) 98.5% recovery of Nonane in the still stream by adjusting boil-up ratio.

To this end, we wish to approximate the reboiler duty, condenser duty, reflux ratio, and
boil-up ratio of the column as a function of component flow rates of the feed, temperature
of the feed, and the preheater duty. Table 11 lists the input-output variables considered
for the approximation, their defaults values, and their lower and upper bounds. Overall,
we construct eight surrogates based on two surrogate modeling-sampling technique com-
binations for four responses. We use Kmax = 175 for constructing the surrogates and
three randomly generated test sets of size Q = 50. Tables 10 presents the comparative
performance of SSA against QS. Clearly, SSA performs very well compared to QS with
respect to all the three metrics. Overall, the maximum PE-based improvement of 52% is
achieved with SSA against QS across all the four responses.

Figure 11: Aspen Plus flowsheet of multi-component distillation column.
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Table 10: Performance of SSA against QS using PRSM for approximating the multicom-
ponent distillation column.

Response AAE RMSE PE
QS SSA QS SSA QS SSA

Condenser Duty 1.56 1.00 1.48 1.00 1.52 1.00
Reboiler Duty 1.57 1.00 1.47 1.00 1.51 1.00
Reflux Ratio 1.57 1.00 1.47 1.00 1.52 1.00
Boil-up Ratio 1.56 1.00 1.48 1.00 1.52 1.00

5.3 Carbon capture unit

Herein, we simulate and approximate a typical CO2 capture unit (CCU) in natural gas
processing industry. It removes CO2 from a gaseous mixture of CH4, C2H6, C3H8, N2,
CO2, and H2S using diethanolamine (DEA) in a reactive absorption column. We use this
case study from Aspen Plus v8.6 user guide and is simulated using operational data from
a natural gas treatment unit at Pyote, Texas [5]. Simulation of this reactive absorption
column entails three critical aspects: (i) Simulation of the ionic species with Electrolyte
NRTL fluid package, (ii) Incorporation of the electrolyte transport property models, and
(iii) The reaction kinetics and equilibrium calculations in the absorption column. Addi-
tionally, the following system of equilibrium and kinetic reactions is modeled within the
absorption column.

DEAH+ + H2O −−⇀↽−− DEA + H3O
+

2 H2O −−⇀↽−− H3O
+ + OH−

Figure 12: Aspen Plus flowsheet of the reactive absorption column in CCU.
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HCO −
3 + H2O −−⇀↽−− H3O

+ + CO −2
3

CO2 + OH− −−→ HCO −
3

HCO −
3 −−→ CO2 + OH−

DEA + CO2 + H2O −−→ DEACOO− + H3O
+

DEACOO− + H3O
+ −−→ DEA + CO2 + H2O

H2O + H2S −−⇀↽−− HS− + H3O
+

H2O + HS− −−⇀↽−− S−2 + H3O
+

The equilibrium reactions are taken from [23, 24] while the kinetic reactions and their
rate constants are taken from [33]. Figure 12 shows the Aspen Plus simulation of the ab-
sorption column where gaseous mixture (GASIN) at 295.35 K and 900 psig is fed through
the bottom of the absorber and liquid DEA absorbent stream at 312.04 K and 900 psig is
fed through the top. This column has 20 stages with 1.66 m as tray diameter and 0.06 m
weir height for Glitch Ballast type of tray. We use “rate-based” calculation mode in Aspen
Plus and the readers may refer to Aspen Plus user guide for further details. The default
component flow rates of the feed streams, their lower and upper bounds are listed in Table
13. Finally, we employ SSA for developing the approximation of this simulation using
Kmax = 225. Tables 12 show the averaged comparative performance metrics computed
for three different test sets of size Q = 50 and clearly, SSA outperforms QS.

Table 12: Performance between SSA and QS for approximating CCU.

Legend AAE RMSE PE
QS SSA QS SSA QS SSA

CO2 molar flow 1.03 1.00 1.15 1.00 1.08 1.00

Based on these case studies, it is evident that SSA performs equally well in approximat-
ing real life simulations as it does for the analytical functions. Thus, it has an immense
potential in reducing computational cost associated with approximating typical unit oper-
ations like heat exchangers, distillation columns, reaction systems, thermodynamic prop-
erty packages, absorption columns etc.
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6 Conclusions

In this article, we extensively evaluated a novel adaptive sampling approach, namely smart
sampling [17] for constructing multidimensional surrogate approximations. We draw fol-
lowing conclusions from our numerical investigation.

1. SSA shows an excellent performance compared to QS for approximating a variety
of test functions using polynomial and kriging surrogates.

2. It performs more robustly compared to QS over ranges of domain dimensions and
edge length/s for both the surrogates highlighting its viability for a broad spectrum
of applications.

3. SSA also performs better than the existing adaptive sampling approaches like CV-
Vor, LOLA-Vor, SFCVT, MIPT, and MSE, especially for the high dimensional case.

4. Finally, SSA is successfully applied to three practical case studies viz. biodiesel
production process, multi-component distillation column, and reactive absorption
column in CO2 capture unit and it shows an excellent performance for approxi-
mating commonly encountered processes and units such as exchangers, distillation
column, absorption column, a system of kinetic reactions etc.

Overall, SSA is a generic, robust, optimal, and surrogate-independent adaptive sampling
approach that has an immense potential to reduce computational expenses associated with
surrogate construction paradigms.
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Nomenclature

Abbreviations

AAE: average absolute error
ANN: artificial neural network
CC: clustering constraint
CCU: carbon capture unit
CDM: crowding distance metric
CSTR: continuously stirred tank reactor
CV: cross validation
CVE: cross validation error
DEA: diethanolamine
DF: departure function
DoE: design of experiments
DT: Delaunay triangulation
EE: expected error
HDMR: high dimensional model representation
JK: Jackknifing
LOLA: local linear approximation
MD: Mahalanobis distance
ME: maximum entropy
Mm: maximin distance
MoDS: model development suite
MSD: maximum scaled distance
MSE: maximum sampling error
NLP: nonlinear programming problem
NN: nearest neighbor
PE: pooled error
PRSM: polynomial response surface model
QS: Sobol sampling
RBF: radial basis function
RMSE: root mean squared error
SSA: smart sampling algorithm
SVR: support vector regression
VT: Voronoi tessellation
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Notation

Subscripts

b: index for the basis functions in kriging
m: index for elements of response/output variables’ vector
n: index for elements of design/input variables’ vector

Superscripts

i: index for elements of set
j: index for elements of set
k: index for elements of set
t: index for elements in set of sampling techniques
L: lower bound
U : upper bound

Parameters

K: size of initial sample set
Kmax: maximum number of sample points
N : total number of input domain dimensions
M : total number of output domain dimensions

Continuous Variables

x: vector of input/design variables
y: vector of output/response variables

Symbols

dn: edge length of nth dimension of D
d: vector of edge lengths of D
D: domain
∆: departure function
ε: minimum allowed distance between two points
E: expectation
f : computationally costly function
gb: basis function in kriging
N: set of natural numbers
ρk: kriging order
ρp: PRSM order
Q: test set size
Q: test set
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R: set of real numbers
S: surrogate model form
T : set of sampling techniques
VN(D): hyper-volume of D
X (K)
N : N dimensional sample set of size K
Y(K)
M : M dimensional response set of size K

Z: random process
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