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Abstract

In this work, a process flowsheet of biodiesel plant is used to construct surrogate
models by various machine learning methods. For this paradigm, we approximate the
heat duties of various units in the flowsheet by varying 1, 2, 6 and 11 input variables.
We use 3 domain sizes of input variables, and 5 different surrogates namely sup-
port vector regression (SVR), artificial neural network (ANN), deep belief network
(DBN), random forests (RF), and random vector functional link network (RVFL). A
comparison among polynomial response surface fitting, high dimensional model rep-
resentation (HDMR) and machine learning models is performed based on three error
measures namely root-mean-squared-deviation (RMSD), R2 and residuals. More-
over, the efficiency of learning methods is compared based on their computational
expense and some statistical measure. The simulation results show the attractiveness
of machine learning methods for constructing surrogate models in context of process
simulation.
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Highlights:

• Input-output relations within process flowsheet of a biodiesel plant are analyzed.

• Various machine learning algorithms are employed for constructing surrogate mod-
els.

• A variety of scenarios are considered including four input dimensions and five sur-
rogates.

• Polynomial response surface fitting and high dimensional model representation are
compared with machine learning methods.

• The simulation results show the effectiveness and efficiency of machine learning
methods.
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1 Introduction

Mathematical models play an important role in the design and operation of chemical
plants. Two often conflicting aims must be met. The plant needs to maximize its profits
and at the same time minimize its negative impact on the environment. Typical environ-
mental constraints include the reduction of wastes and pollutants and reducing the carbon
foot print. Operating plants in vicinity to each other have led to the concept of the eco-
industrial park in which synergistic effects such as sharing waste heat can be exploited.
As a result, eco-industrial parks (EIPs) have attracted public interests and become popular
with the development of the concepts of “industrial ecology” [17, 29], “industry symbio-
sis” [12, 38], and “sustainable development” [8].

In recent years, numerous research works concerning various aspects of EIPs have been
published, which mainly focus on optimal design of sustainable industrial activities by
constructing mathematical models to create exchange networks of resources among the
members of EIPs [13, 31, 32, 36]. However, it is very challenging and expensive to
perform the holistic modelling of complex and highly interconnected networks such as
EIPs, that include many physical models with disparate processes. This problem may be
tackled by the concept of “Industry 4.0” as discussed by Pan et al. [38], wherein they
suggest that the physical models can be replaced by their surrogate models to reduce the
computational expense and memory significantly. Moreover, this would make dynamic
modelling and optimization possible. Figure 1 is the framework of EIP modelling based
on Industry 4.0.

Figure 1: Framework of EIP modelling based on Industry 4.0 (Adopted from [38]).

A surrogate model is a reasonably accurate and computationally cheap approximation of
expensive high fidelity experiment and/or computer simulation [20]. Surrogate models
are typically used to obtain the behaviour of the input-output relationships, deal with the
noise or missing data, and assist in design and optimization of computer experiments.
The literature is replete with the applications of surrogate models in various fields of en-
gineering and science like modelling [11], sensitivity analysis [3], space exploration [21],
parameter estimation [33], optimization in circuit design, nanoparticle synthesis, flood
monitoring [43] etc. Model selection is the most important part for constructing a surro-
gate model and there are numerous modelling techniques in the literature, which include
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polynomial fitting [44], kriging [34], artificial neural network (ANN) [15], support vector
machine (SVM) [20] and so on. A detailed review on data sampling, surrogate model
generation techniques and their performance measures can be found in [45].

Sikorski et al.[44] employ two surrogate models viz. polynomial response surface and
(HDMR) for parametrisation of typical process flowsheet of a biodiesel plant. Moreover,
they investigate the effects of dimensionality, domain size, and surrogate type on the ac-
curacy of surrogate models in a variety of scenarios. In this paper, we construct accurate
surrogate models using machine learning algorithms, instead of polynomial and HDMR
fitting, using 11 inputs and 6 outputs in a typical biodiesel plant. The same simulation sce-
narios as in [44] are considered: 1, 2, 6 and 11 input variables and 3 domain sizes. Overall,
5 different machine learning techniques (support vector regression (SVR), artificial neu-
ral network (ANN), deep belief network (DBN), random forests (RF) and random vector
functional link network (RVFL)) are used for constructing surrogates. These machine
learning algorithms are compared based on both accuracy and efficiency.

This paper is organized as follows. Section 2 explains the theoretical background on
machine learning methods followed by section 3 that discusses the details of experiment
setup, including biodiesel plant simulation, data collection, implementation and perfor-
mance estimation. The experimental results and comparison are discussed in Section 4.
Finally, section 5 presents our conclusions and future works.

2 Background

2.1 Support Vector Regression

Support vector machine (SVM) is a machine learning algorithm proposed by Cortes and
Vapnik [14] based on statistical learning theory. Structural risk minimization is the basic
concept of this method. A version of SVM for regression is proposed in [19], which is
called SVR.

Consider a training data set given in Eq. 1 for constructing a surrogate model.

D =
{

(x(k), y(k))
}
, 1, 2, · · · , l (1)

where x(k) ∈ Rn is the kth input vector with n elements, y(k) ∈ R is the corresponding
output data and l is the number of training samples. The regression function can be defined
as

y′(x) = wTφ(x) + b (2)

where w is the weight vector, b is the bias, and φ(x) maps the input vector x to a higher
dimensional feature space. w and b can be obtained by solving the following optimization
problem:

min
w,b,ξ,ξ∗

1

2
wTw + C

l∑
k=1

(ξk + ξ∗k) (3)
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Subject to:
y(k) − wTφ(x(k))− b ≤ ε+ ξk

wTφ(x(k)) + b− y(k) ≤ ε+ ξ∗k
ξk, ξ

∗
k ≥ 0

(4)

where C is a predefined positive trade-off parameter between model simplicity and gen-
eralization ability, ξk and ξ∗k are the slack variables measuring the cost of the errors.

For nonlinear input data set, kernel functions can be used to map from original space onto
a higher dimensional feature space in which a linear regression model can be built. The
dual optimization problem is

min
α,α∗

1

2
(α− α∗)TQ(α− α∗) + ε

l∑
k=1

(αk + α∗k) +
l∑

k=1

y(k)(αk − α∗k) (5)

Subject to:
eT (α− α∗) = 0,

0 ≤ αk, α
∗
k ≤ C

(6)

where e = [1, . . . , 1]T is the vector of all ones, Q is an l by l positive semidefinite matrix,
K is the kernel function, Qij = K(xi, xj) ≡ φ(xi)

Tφ(xj).

Thus, the final SVR function is obtained as follows

y′(x) =
l∑

k=1

(α∗k − αk)K(x(k), x) + b (7)

where αk and α∗k are the Lagrange multipliers. The most frequently used kernel function
is the Gaussian radial function (RBF) with a width of σ

K(xi, xj) = exp(−‖xi − xj‖2 /(2σ2)) (8)

In this study, we use ε-SVR provided by LIBSVM [9], and choose RBF kernel function
with parameters chosen by a grid search. As suggested by the authors of LIBSVM tool-
box, exponentially growing sequences of the prediefined positive trade-off parameter C
and the tolerance of termination criterion ε are used for parameter selection. The range
of C is [2−4, 24], and the range of ε is [10−3,10−1]. All the other parameters remain at
default settings in LIBSVM.

2.2 Artificial Neural Network

ANN is a learning model inspired by human brain, especially the central nervous sys-
tem [22]. The simplest version of ANN is called single-hidden layer feedforward neural
network (SLFN). Figure 2 is an illustration of a three-layer SLFN. There are three funda-
mental layers in a SLFN: an input layer with the same number of neurons as the dimension
of input features; a hidden layer comprised of neurons with nonlinear activation function;
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and an output layer which aggregates the outputs from the hidden layer neurons. The
output from SLFN is:

y′(x) = g(
h∑
j=1

wjovj + bho), j = 1, . . . ,m (9)

vj = f(
n∑
i=1

wijxi + bih), i = 1, . . . , n (10)

where xi is the input to the neuron ii; f() and g() are nonlinear activation functions; vj
is the output of hidden layer neuron hj; y is the output of this SLFN; n and m are the
number of input features and the number of the hidden layer neurons respectively; wij is
the weight of the connection between the input variable ii and the neuron hj of the hidden
layer; wjo is the weight of the connection between the hidden layer neuron hj and the
output; bih and bho are the biases.

i1 h1

...
...

ii hj

...
... o

in hm

bih bho

Input Layer Hidden Layer Output Layer

x1

xi

xn

y

wij

wjo

Figure 2: Schematic of a neural network model

While training an SLFN, random values are assigned to the weights and then the weights
are tuned by back-propagation (BP) [35] or using a closed form solution [42, 51].

In this work, a deep learning toolbox in Matlab is used for constructing neural net-
works [37]. The size of neural networks is determined by the size of input dimension.
For input layer, the number of input neurons n = 11 for 11-dimensional surrogates, while
the number of hidden size neurons is twice of the input layer neurons, e.g. m = 22 for
11-dimensional surrogates. The activation function of hidden layer f() is optimal tanh,
while the activation function of output layer g() is sigmoid. Moreover, the number of
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iterations for back propagation is set to 3000, and we take a mean gradient step over a
batch of samples with the size of 10. All the other parameters remain at default settings
in the deep learning toolbox.

2.3 Random Vector Functional Link Network

RVFL network is a randomized version of the SLFN, which has direct connections be-
tween input and output neurons (functional link). It uses fixed random weights and closed
form least square estimation instead of the BP to tune the weights [39, 40]. Figure 3 shows
the schematic of an RVFL network.

1 h1

i1 ...

... hj o

ii ...

... hm

in

x1

xi

xn

y

wij

wjo

wio

Figure 3: Schematic of an RVFL network. The dashed arrows show the direct connections
between the input neurons and the output neurons, whose weights are denoted
as wio.

It is worth noting that all hidden layer weights wij in an RVFL are generated with uni-
formly distributed random values within the interval [−S,+S], where S is a scale factor to
be determined during the parameter tuning stage [50]. Therefore, the output vj from hid-
den neuron hj can be calculated based on the activation function. Here, logistic sigmoid
function is used as an example:

vj = logsig(
n∑
i=1

wijxi + bih), i = 1, . . . , n (11)

where xi is the training data.

The output layer weight vector wo, which includes both wio and wjo, need to be deter-
mined by certain optimization method. Due to the efficiency of closed-form solution,
RVFL employs least square estimation to calculate the output layer weights:

wo = (vTv)−1vTy (12)
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where y is the training target vector. Thus, the predicted values can be calculated by
applying the obtained wo and wij to testing data [41]:

y′ = wo · logsig(wij · x) (13)

Herein, RVFL is developed by the authors in Matlab based on the work in [50]. According
to suggestions in [42, 50], the randomization uses a uniform distribution in [−1, 1], the
logistic sigmoid function is used and the number of hidden neurons is selected over 1000 :
10000 with a step-size of 1000.

2.4 Deep Belief Network (DBN)

Deep learning is a branch of machine learning that attempts to model high-level abstrac-
tions in data by using model architectures, with complex structures with multiple non-
linear transformations [4]. Deep learning algorithms are fundamentally based on dis-
tributed representations, which means that observed data can be represented by interac-
tions of many different factors on different levels. The main promise of deep learning is
replacing handcrafted features with efficient algorithms for unsupervised feature extrac-
tion [46].

DBN proposed by [23] provides a new way to train deep generative models, which is
called layer-wise greedy pre-training algorithm. Figure 4 shows the flowchart of DBN
and there is no inter-connection between units in each layer. A restricted Boltzmann
machine (RBM) is a neural network which can learn the probability distribution over the
input datasets. Figure 5 shows the network structure of an RBM. The DBN pre-training
procedure treats each consecutive pair of layers in the MLP as a restricted Boltzmann
machine (RBM) [26] whose joint probability distribution is defined as p(v, h) = 1

Z
·

exp(−E(v, h)) with the energy function

E(v, h) = −
p∑
i=1

q∑
j=1

wijhivj −
q∑
j=1

bjvj −
p∑
i=1

aihi (14)

where Z =
∑

v,h exp(−E(v, h)), V = (V1, . . . , Vq) represent q visible units, H =

(H1, . . . , Hp) are p hidden units, wij is a real valued weight associated with the edge
between units Vj and Hi, and bj and ai are real valued bias terms associated with the jth

visible and the ith hidden variable, respectively. In binary RBMs, the random variables
(V,H) take values (v, h) ∈ {0, 1}p+q [47].

The conditional probability of a single variable is

p(Hi = 1|v) = σ(

q∑
j=1

wijvj + ai)

p(Vj = 1|h) = σ(

p∑
i=1

wijhi + bj)

(15)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid activation function.
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The RBM parameters can be efficiently trained in an unsupervised fashion by maximizing
the log-likelihood with the approximate contrastive divergence algorithm [24]

lnL(θ|v) = ln
∑
h

exp(−E(v, h))− ln
∑
v,h

exp(−E(v, h)) (16)

where θ is the parameters of the model.

The gradient of the log-likelihood of a single training pattern v are given as:

∂ lnL(θ|v)

∂wij
= p(Hi = 1|v)vj −

∑
v

p(v)p(Hi = 1|v)vj (17)

∂ lnL(θ|v)

∂ai
= p(Hi = 1|v)−

∑
v

p(v)p(Hi = 1|v) (18)

∂ lnL(θ|v)

∂bj
= vj −

∑
v

p(v)vj (19)

In order to train multiple layers, one trains the first layer, freezes it, and uses the con-
ditional expectation of the output as the input to the next layer and continues training
next layers. Hinton and many others have found that initializing MLPs with pretrained
parameters never hurts and often helps [23, 25].

Hidden Layer 3

Hidden Layer 2 Hidden Layer 2

Hidden Layer 1 Hidden Layer 1 Hidden Layer 1

Visible Layer Visible Layer Visible Layer

RBM

RBM

RBM

Figure 4: Flowchart of a Deep Belief Network (DBN)

In this study, DBN is implemented using the same deep learning toolbox as ANN. Two
RBMs are stacked for pre-training with the size of visible and hidden layers as five times
of input dimension, e.g. [55 55] for 11-dimensional surrogates. The learning rate or
momentum is set as 0.3. Then an SLFN with the same parameter settings as in Section 2.2
is used to generate final outputs.
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a a1 a2 a3 ap

h1 h2 h3 · · · hp

wpq

v1 v2 · · · vq

b b1 b2 bq

Figure 5: Schematic Diagram of a Restricted Boltzmann Machine (RBM)

2.5 Random Forests

Random forests, or random decision forests [27, 28], proposed by Breiman [6], is an
ensemble learning method for both of classification and regression problems. Random
forests combine bagging and random subspace method (RSM) by conducting random
feature subspace at each node of the classification and regression tree (CART) [7]. Bag-
ging (bootstrap aggregating), also developed by Breiman [5], is a widely used ensemble
method. In bagging ensemble method, one trains each weak learning machine on boot-
strap samples of the original training samples, then aggregating the outputs. RSM is a
combining method which trains the learning machines on randomly chosen subspaces of
the original input space, and combines the outputs by a majority vote or median [28].
More specifically, at each node of the decision tree in random forest, m features from
total n input features are randomly selected. Then according to an impurity criterion, one
of these features is used to perform a partition along the feature axis [7]. The algorithm
of RF is presented in [48, 49].

In this work, RF is developed using the function “Treebagger” in the classification and re-
gression trees (CART) package in Matlab. We set the parameter “NumPredictorsToSam-
ple” as one third of the number of input features to invoke RF algorithm. The number of
decision trees L is set as 2000.

3 Experimental setup

3.1 Biodiesel plant simulation

Aspen Plus is a process modelling and optimisation software used by the bulk, fine, spe-
cialty, and biochemical industries, as well as the polymer industry for the design, oper-
ation, and optimisation of safe, profitable manufacturing facilities [1]. We simulate the
biodiesel plant process using Aspen Plus v8.6. The process flowsheet model under in-
vestigation considers two steps of the biodiesel production process: a reaction step and
a separation step. Figure 6 shows Aspen Plus process flowsheet model. The final fuel
i.e. fatty acid methyl ester, is produced via trans-esterification where triglycerides react
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with methanol to form methyl ester and glycerin in the presence of an alkaline catalyst.
The flowsheet is based on an existing plant designed by Lurgi GmbH. It consists of the
following units: a continuously stirred tank reactor (CSTR), a flash drum, a decanter, 3
exchangers and 11 material streams. In this process, palm oil is reacted with methanol
in CSTR to produce glycerol and methylpalmitate (biodiesel) and then passed through
a flash drum and a decanter to separate excess methanol and glycerol. The steady-state
simulation provides a wide variety of chemical and physical information ranging from
throughput to heat duties of individual unit.

Figure 6: Graphical representation of the process flow sheet model of a biodiesel produc-
tion line. Adopted from [44].

3.2 Data collection

In this study, the Model Development Suite (MoDS) [2], the custom-made Python 3.4,
and R 3.2.2 scripts are used for data collection, processing and visualisation. MoDS is an
advanced software toolkit designed to analyse black-box models (e.g. executables, batch
scripts). Generation of input-output data is the critical process to ensure high accuracy
of the surrogate model. Therefore, a sufficient number of sample points and a suitable
sampling method are required to describe the input-output relation satisfactorily for a
given number of independent variables and operation range. Sobol sequence, a quasi-
random low discrepancy sampling method, is employed for sampling. To this end, data
samples are generated using the following procedure:

1. Sobol sequence is used to generate input data for user-specified variables.

2. These input data are used to evaluate the simulation and generate corresponding
outputs.

3. MoDS retrieves the user-specified outputs.

4. Input-output data is scanned for errors and necessary corrections are carried out.

5. Machine learning algorithms are used to construct surrogate models using the input-
output datasets.
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The workflow of MoDS is shown in Figure 7. A variety of scenarios are considered:
1, 2, 6 and 11 input variables are changed simultaneously, 3 different domain sizes of the
input variables are considered and 5 different machine learning methods are used. We use
400 points per input variable for evaluating the simulation. These input-output datasets
are subsequently used for fitting surrogates and calculating R2 and R̄2. Additionally, test
sets with 100 points per dimension are generated for computing RMSD and residuals. In
this study, three domain sizes of the input variables are considered in order to assess their
effect on the parametrisation accuracy. The definitions of input and output variables are
summarised in Table 1 and Table 2, respectively.

Figure 7: Model Development Suite work flow. Adopted from [44].

Table 1: Definitions and domain bounds of input variables

Name Lower bounds Upper bounds Operation point
Molar flow of tripalmitine oil (kmol/h) 20, 22.5, 25 40, 37.5, 35 30
Temperature of tripalmitine oil (°C) 20, 22.5, 25 40, 37.5, 35 30
Operation temperature of CSTR 10D01 (°C) 44, 49, 54 64 60
Volume of CSTR 10D01 (m3) 40, 43, 45 50, 49, 47 45
Operation temperature of flash drum 10D02 (°C) 80, 82.5, 85 100, 97.5, 95 90
Operation temperature of heater 10E01 (°C) 60, 62.5, 65 80, 77.5, 75 70
Molar flow of methanol (kmol/h) 150, 160, 170 210, 200, 190 180
Temperature of methanol (°C) 20, 22.5, 25 40, 37.5, 35 30
Operation temperature of decanter 10D02D (°C) 20, 22.5, 25 40, 37.5, 35 30
Operation temperature of heater 10E02 (°C) 80, 82.5, 85 100, 97.5, 95 90
Operation temperature of heater 10E03 (°C) 60, 62.5, 65 80, 77.5, 75 70

3.3 Data normalization

Before the machine learning algorithms being used to construct the surrogate models, all
the training and testing values are linearly scaled to [0, 1]. The scaling formula is:

ȳ(i) =
ymax − y(i)

ymax − ymin
(20)
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Table 2: Definitions of Output variables

Name
Heat duty of heater 10E01 (MW)
Heat duty of heater 10E02 (MW)
Heat duty of heater 10E03 (MW)
Heat duty of reactor 10D01 (MW)
Heat duty of flash drum 10D02 (MW)
Heat duty of decanter 10D02D (MW)

3.4 Performance estimation

A number of error measures are used to evaluate the performance of surrogate models: R2,
root-mean-squared-deviation (RMSD) and residual plots. They are defined as follows:

RMSD =

√√√√ 1

ls

ls∑
j=1

(y′(j) − y(j))2

R2 = 1−
∑l

i=1(y
(i) − y′(i))2∑l

i=1(y
(i) − ȳ)2

ej = yj − y′(j)

(21)

where y′(i) and y′(j) are the predicted values of corresponding training data y(i) and testing
data y(j), respectively; ȳ is the empirical mean of training data points, l is the number of
training data samples, ls is the number of testing data points, e(j) is the residual for jth

testing data point, i = 1, . . . , l and j = 1, . . . , ls.

RMSD is the sample standard deviation of the differences between predicted values and
observed values [30]. It is a good metric for comparing predictive power of different
models for a particular variable, but not between the variables due to scale dependency.
The coefficient of determination, R2, is a measure indicating fit of statistical model to the
data [18]. Moreover, residual plots are more informative than the other error measures
with single number indices.

4 Results and Comparison

4.1 Performance comparison using R2 values for training data

R2 is an error measure which compares the discrepancies between the predicted data
and actual data with the discrepancies between the arithmetic average and actual data.
Figure 8 shows the plots of R2 values for the surrogates constructed for heat duty of
reactor 10D01 with 11 input variables by various machine learning methods. As all the
surrogate models perform quite well and achieve R2 values higher than 0.99, it is very
difficult to differentiate between the models by R2 using training data.
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SVR ANN DBN RVFL RF

surrogate type

0.95

0.96

0.97

0.98

0.99

1

R
2

Figure 8: Plot of R2 for the surrogate models

4.2 Performance comparison using RMSD values for testing data

The RMSD values for different machine learning algorithms are listed in Table 3, and the
optimal parameters selected for surrogate construction are shown in Table 4. A number of
observations and conclusions can be made. Firstly, all the constructed surrogate models
achieve at least a reasonable fit regardless of the domain size and number of dimensions,
showing the effectiveness of the machine learning methods.

Moreover, statistical tests are employed to analyze and rank the performance of the learn-
ing models. The Friedman test ranks the algorithms for each dataset separately, and then
assigns average ranks in case of ties. The null-hypothesis states that all the algorithms
have the same performance. If the null-hypothesis is rejected, the Nemenyi post-hoc test
is applied to compare all the learning models with each other. This tells whether the per-
formances of any two learning models among total k models is significantly different. The
comparative result of statistical test based on RMSD is shown in Figure 9. The methods
are arranged in descending order of the performance from top to bottom. Note that the
models within a vertical line whose length is less than or equal to a critical distance have
statistically the similar performance. The critical distance for Nemenyi test is defined as:

CD = qα

√
k(k + 1)

6N
(22)

where k is the number of algorithms (k = 5 in this experiment), N is the number of data
sets (N = 22 here), and qα is the critical value based on the studentized range statistic
divided by

√
2 [16].

To this end, we make following key inferences. Firstly, SVR-based surrogate model has
achieved the best performance, followed by DBN and ANN. DBS and SFLN performs
equally in the most cases except in some cases the former performs worse than the latter.
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Table 3: Performance evaluation of surrogate models with RMSD

Dimension Output Surrogate model
SVR ANN DBN RVFL RF

11 10E01 2.75E-04 2.10E-03 1.99E-03 5.91E-03 1.69E-02
10E02 1.43E-02 1.07E-02 9.54E-03 3.61E-02 5.27E-02
10E03 1.45E-03 2.26E-03 3.17E-03 6.71E-03 2.15E-02
10D01 2.71E-03 5.63E-03 6.51E-03 1.69E-02 3.16E-02
10D02 1.86E-02 1.64E-02 1.49E-02 4.16E-02 4.17E-02
10D02D 7.17E-03 6.93E-03 6.13E-03 1.18E-02 3.22E-02

6 10E01 1.78E-04 1.56E-03 7.63E-04 4.27E-03 1.42E-02
10E02 1.91E-04 1.68E-03 1.40E-03 1.06E-02 1.35E-02
10E03 2.65E-04 1.26E-03 1.07E-03 1.75E-03 6.64E-03
10D01 2.98E-04 3.10E-03 3.00E-03 1.09E-02 2.35E-02
10D02 4.86E-03 6.62E-03 5.77E-03 2.61E-02 1.80E-02
10D02D 1.02E-03 3.19E-03 3.14E-03 7.71E-03 1.91E-02

2 10E01 8.51E-05 1.10E-03 9.50E-04 1.49E-03 4.83E-03
10E02 2.45E-04 2.36E-03 1.94E-03 5.58E-03 1.13E-02
10E03 9.77E-05 1.16E-03 1.01E-03 1.52E-03 5.25E-03
10D01 2.92E-04 2.46E-03 2.42E-03 2.40E-03 1.48E-02
10D02D 2.62E-04 2.64E-03 2.09E-03 2.44E-03 1.08E-02

1 10E01 9.05E-05 1.15E-03 1.62E-03 1.40E-03 2.24E-04
10E02 1.53E-04 1.18E-03 1.66E-03 4.78E-04 2.50E-04
10E03 1.13E-04 1.27E-03 1.80E-03 1.49E-03 2.39E-04
10D01 3.58E-04 2.86E-03 4.10E-03 1.91E-03 5.96E-04
10D02D 1.88E-04 2.56E-03 3.34E-03 2.87E-03 5.24E-04

Table 4: Optimal parameters selected for surrogate models

Dimension Method Parameter Output
10E01 10E02 10E03 10D01 10D02 10D02D

11 SVR C 32 8 32 8 8 32
ε 0.0001 0.001 0.0001 0.0001 0.001 0.0001

ANN Size of NN [11 22 1]
DBN Size of RBM [55 55]

BP iterations 3000
RF Number of trees 2000

Number of selected features 4
RVFL Number of hidden layer neurons 10000

6 SVR C 22.63 32 11.31 32 32 32
ε 0.0001 0.0001 0.0001 0.0001 0.0032 0.0001

ANN Size of NN [6 12 1]
DBN Size of RBM [30 30]

BP iterations 3000
RF Number of trees 2000

Number of selected features 2
RVFL Number of hidden layer neurons 4000

2 SVR C 22.63 22.63 32 32 N.A. 22.63
ε 0.0001 0.0001 0.0001 0.0001 N.A. 0.0001

ANN Size of NN [2 4 1]
DBN Size of RBM [10 10]

BP iterations 3000
RF Number of trees 2000

Number of selected features 1
RVFL Number of hidden layer neurons 1000

1 SVR C 8 22.63 16 22.63 N.A. 8
ε 0.0001 0.0001 0.0001 0.0001 N.A. 0.0001

ANN Size of NN [1 2 1]
DBN Size of RBM [5 5]

BP iterations 3000
RF Number of trees 2000

Number of selected features 1
RVFL Number of hidden layer neurons 1000
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Friedman p-value: 1.3148e-09 •  Different •  CritDist: 1.3

SVR - 1.27

ANN - 2.95

DBN - 2.68

RVFL - 3.82

RF - 4.27

Figure 9: Nemenyi testing results for surrogate models based on RMSD. The models
within a vertical line whose length is less than or equal to a critical distance
have statistically the similar performance.

This can be understood with the following argument. DBN may have resulted in overfit-
ting with the simulation-based data set due to its simpler nature. Moreover, random forest,
as a decision tree based ensemble method, has the limitation of accuracy for regression
problems due to its dependence on the mean or median of the samples in each leaf node.
It is also worth noting that RVFL, as a non-iterative machine learning model with closed-
form solutions, constructs surrogate models with reasonable accuracy and high efficiency,
which will be showed in Section 4.4.

We use RMSD plots to compare the machine learning surrogates with polynomial and
HDMR fitting discussed in [44]. Figure 10 shows the comparative performance among
various surrogates for heat duty of reactor 10D01 with respect to all 11 inputs. We con-
sider the polynomial surrogate of 3rd order (P3) and HDMR with 2nd order interactions
(H2b) for this comparison [44]. Figure 10 clearly shows that SVR, ANN and DBN out-
perform polynomial and HDMR surrogates, while RVFL performs equally.

4.3 Performance comparison using residual plots

We now illustrate the compare performance using residual plots. Figures 11 and 12 show
the residual plots for 11-dimensional surrogates of heat duties of reactor 10D01 and heater
10E03 respectively. On the other hand, Figure 13 presents the residual plots for simple
1-dimensional surrogates of 10D01. Since the patterns of the residual plots are similar
DBN and ANN, the residual plots only for DBN are shown to simplify the comparison.

From Figures 11 and 12, we can see that all surrogate models do not follow a poly-
nomial relation resulting in non-random distribution of the residuals for 11-dimensional
inputs, which proves the effectiveness of machine learning models for constructing the

16



P3 H2b SVR ANN DBN RVFL RF

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 10: Plots of RMSD values produce by polynomial fitting, HDMR model and ma-
chine learning methods for heat duty of reactor 10D01 with respect to all 11
inputs.

surrogates. However, the plots for RF and RVFL still show some degree of pattern for
the distribution of the residues. Meanwhile, the comparison between Figures 11 and 13
shows that the non-random features are much more difficult to identify for surrogates with
high dimensional input. Magnitude of residuals in all cases are relatively small indicating
strong predictive powers of all the surrogate models. Finally, the residual plots confirm
that SVR is one of the best methods for constructing surrogate models, followed by neural
networks (e.g. ANN and DBN), while RF shows a stable performance ignoring the input
dimension.

4.4 Computation time comparison

Figure 14a shows the computation time of benchmark machine learning methods for con-
structing 11-dimensional surrogates, while the computation time per evaluation is shown
in Figure 14b. Obviously, the computational speed of RVFL is superior than NNs and
SVR. SVR requires a grid search on C and ε, and NNs are iteratively tuned by BP algo-
rithm to convergence to the optimal weights. These repetitive parameter tuning processes
make NNs and SVR less efficient than RVFL that has a closed form solutions. Besides,
the RVFL-based surrogate models can easily update the weights according to new input
samples [10]. Therefore, RVFL is a good choice when the underlying model is not very
complex, and high efficiency is required.
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(a) Plot of residuals for SVR
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(b) Plot of residuals for DBN
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(c) Plot of residuals for RF
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(d) Plot of residuals for RVFL

Figure 11: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10D01 produced for 11 inputs.

5 Conclusions

In this paper, various machine learning techniques were investigated and employed for
constructing surrogate models to analyze the input-output relations within process flow-
sheet of a biodiesel plant. The model under investigation includes a reaction and separa-
tion steps with the auxiliary equipment and is solved for steady-state operation. A variety
of scenarios are considered and 5 different surrogates (support vector regression (SVR),
artificial neural network (ANN), deep belief network (DBN), random forests (RF), and
random vector functional link network (RVFL)) are used. The performance of surrogate
models is evaluated by three error measures: R2, RMSD and residuals. Based on our
analysis and results, following conclusions are made:

1. According to both R2 (≥ 0.99) and RMSD (with very small values from 10−2 to
10−4), all machine learning technique based surrogates achieve a good performance
regardless of the domain size and the number of dimensions.
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(a) Plot of residuals for SVR
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(b) Plot of residuals for DBN
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(c) Plot of residuals for RF
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(d) Plot of residuals for RVFL

Figure 12: Plot of residuals against molar flow of tripalmitin oil for heat duty of heater
10E03 produced for 11 inputs

2. SVR achieves the best performance for constructing surrogate models followed by
DBN and ANN. These methods outperform polynomial and HDMR, and also cap-
tures a random distribution of residuals for multidimensional surrogates.

3. DBN, a deep learning method, has a similar performance as that of ANN, and even
performs worse in some cases.

4. Random Forests, a decision tree based method, has the limitation of accuracy for
regression problems due to its dependence on the mean or median of the samples
in each leaf node. Note that RF achieves relatively random distribution of residuals
even for 1-dimensional surrogate.

5. The surrogate models constructed using RVFL have reasonable accuracy and high
efficiency due to the reason that RVFL is a non-iterative machine learning model
with a closed-form solutions. Hence, RVFL is a good choice for surrogate models
when the underlying model is not very complex, and high efficiency is required.
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(a) Plot of residuals for SVR
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(b) Plot of residuals for DBN
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(c) Plot of residuals for RF
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(d) Plot of residuals for RVFL

Figure 13: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10D01 produced for 1 inputs.

In future, more machine learning algorithms will be investigated for constructing surro-
gates of more complex chemical processes. For example, deep recurrent neural networks
will be employed for constructing surrogate models to approximate a hybrid chemical
model with feedback loops generated by a number of interconnected models. Moreover,
the multi-domain simulations (e.g. a combined chemical and electrical engineering sys-
tem) in the context of the EIPs will also be explored for approximation studies.
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(a) Computation time for training the surrogate
model
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Figure 14: Training and evaluation time of learning models for constructing 11-
dimensional surrogates of heat duties of reactor 10D01.
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Abbreviations

RF: Random Forest
EIP: Eco Industrial Parks
ANN: Artificial Neural Network
SVM: Support Vector Machine
SVR: Support Vector Regression
DBN: Deep Belief Network
RBM: Restricted Boltzmann Machine
SLFN: Single-hidden Layer Feedforward Neural network
RMSD: Root Mean Squared Deviation
RVFL: Random Vector Functional Link
HDMR: High Dimensional Model Representation
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