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Abstract

This paper introduces a new iterative scheme for solving the discrete
Smoluchowski equation and explores the numerical convergence properties of
the method for a range of kernels admitting analytical solutions, in addition to
some more physically realistic kernels typically used in kinetics applications.
The solver is extended to spatially dependent problems with non-uniform ve-
locities and its performance investigated in detail.
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Highlights

• A new iterative scheme for the discrete Smoluchowski equation is presented.

• The numerical properties of the method are explored for a range of kernels.

• The solver is extended to spatially dependent problems with non-uniform ve-
locities.

• It is suggested how the performance of the method could render it useful in
CFD applications to industrial coagulation problems.
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1 Introduction

The modelling of particle size distributions is of central importance in gaining a
detailed understanding of a wide range of scientifically significant processes. Accu-
rate models for the particle process rates are key, but in order to capitalise on this
accuracy, numerically reliable methods to solve the population balance equations
(PBEs) are required. Traditional approaches simplify the equations governing par-
ticle growth by excluding terms for particle transport (so called batch reactors), or
assume the reactor model represents an axial streamline through the system (plug
flow reactor) [10, 30, 31]. However, there are a great many systems where advective
or diffusive particle transport is important [25, 32], necessitating the use of efficient
population balance solvers which can be coupled to computational fluid dynamics
(CFD) codes in order to accurately capture the particle dynamics.

An approach used frequently for the numerical solution to the partial integro-
differential PBE is the method of classes (CM) of Valentas and Amundson [38].
The most widely used numerical schemes for CM are those of Hounslow et al. [22]
and Kumar and Ramkrishna [26, 27]. Both of these schemes conserve only two mo-
ments in the discretised solution, generally particle number and volume (for coales-
cence/fragmentation problems). For this reason, in many applications this method
is considered to be of low order and the accuracy of the solution improves only
slowly with increasing number of classes. The use of such a method for detailed
modelling requires a very large number of classes and is thus quite computation-
ally intensive, especially if the solution is to be used in a wider computational fluid
dynamics (CFD) framework or for a parameter fitting study.

Alternative methods for solving the coupled equations include monodisperse [11, 23]
and moment [3, 5, 20, 28] methods. These methods lead to a system of ODEs which
are solved within the CFD framework [25]. They are included in many commercial
packages, for example STAR-CCM+ [12] and Fluent [7]. However, such approaches
do not resolve the full particle size distribution, in many cases rendering them of
limited use for detailed particle modelling applications.

The purpose of this paper is to develop a method for steady-state problems in
a low number of dimensions, which has higher order accuracy, and has improved
computational efficiency. The method relies upon the fact that in steady-state, the
number density can be factorised, suggesting an iterative scheme for each particle
size, the convergence of which can be enhanced by employing a number of numer-
ical acceleration techniques. It is shown how the approach can be extended to one
dimensional geometries by linking a sequence of (zero dimensional) cells together.
Furthermore, the same methodology can be used to solve transient problems by ob-
serving the invariance of the underlying equation under a space-time transformation
with a constant unit background velocity.

The structure of the paper is as follows. In §2 we introduce the fundamental PBE
studied in this work, followed in §3 by a detailed description of an iterative algorithm
to solve this equation and discussion of a number of improvements to enhance its
computational efficiency. In §4, the detailed properties of the solver are analysed and
its performance studied by comparison with a kernel admitting an analytic solution.
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The remainder of this section extends the method to spatially dependent problems
with non-uniform flows, and demonstrates how the method can be used to calculate
the time evolution of the full particle size distribution. In §5 the solver is applied to
a range of physically realistic kernels typically encountered in molecular dynamics
applications. The numerical behaviour and performance of the algorithm is studied
by comparison with an existing moment method.

2 The Smoluchowski Equation

Consider some domain Ω of volume V . Let nin(x) denote the number of particles of
size x ∈ R+ entering Ω every α > 0 units of time, and β(x) > 0 denote their size-
dependent residence time. The number density of particles of size x at time t > 0,
n(x, t), obeys a more general form of the coagulation equation first introduced by
Smoluchowski [36] (which we shall hereafter refer to as the Smoluchowski equation)

∂n(x, t)

∂t
=

1

2

∫ x

0

K(x− y, y)n(y, t)n(x− y, t) dy +
nin(x)

αV

−
∫ ∞

0

K(x, y)n(y, t)n(x, t) dy − n(x, t)

β(x)
, (1)

where K : R×R→ R is the symmetric coagulation kernel, and the probability that
two particles of sizes x and y coalesce during a small time interval dt and volume
dV is proportional to K(x, y) dt/ dV (note that K is not a pure rate because it has
dimensions of volume/time rather than 1/time). In this same time interval, a particle
can leave Ω with probability proportional to dt/β(x), or a new particle can enter Ω
with probability proportional to dt/α. This equation is a fundamental mean-field
model for cluster growth and arises in a diverse range of fields including physical
chemistry, astrophysics, meteorology and the dynamics of biological systems. Aldous
[6] gives a comprehensive general survey of existing literature in coalescence theory
and discusses many of the applications of this equation, in addition to a number of
interesting open problems. Pego [34] gives a review of some of the more recent work
in the field. Melzak [29] discusses the local existence and uniqueness of solutions in
general terms.

According to (1), the particle concentration n(x, t) can increase either by the co-
agulation of particles of sizes y < x and x − y (first term) or simply by a particle
of size x being incepted into Ω (second term), and can decrease by the coagulation
of a particle of size x with any other particle of size y (third term) or simply by a
particle of size x leaving the system after a size dependent time β(x) (last term).

The discrete form of (1) is given by

dni(t)

dt
=
nin
i

αV
+

1

2

i−1∑
j=1

βi−j,jni−j(t)nj(t)−
N∑
j=1

βi,jni(t)nj(t)−
ni(t)

βi
, (2)

where ni(t) describes the number density of particles of size i ∈ N at time t, βi,j
is the discrete form of the collision kernel, describing the probability of clusters of
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size i and j colliding and coagulating and N is the maximum cluster size in the
system. The discrete and continuous cases can be analysed in the same framework
by constructing the weak formulation of the equation [15, 16].

3 The Algorithm

3.1 Essential Idea

If we assume that there is a steady-state solution to (2), then as t → ∞, we have
dni(t)/dt → 0 and we can rearrange (2) in terms of ni. This defines a map F :
RN → RN given by

ni 7→ F(ni) =
1
2

∑i−1
j=1 βi−j,jni−jnj + nin

i /αV∑N
j=1 βi,jnj + 1/βi

, (3)

and a sequence of iterates for each cluster size i ∈ N, which completely describe the
discrete space. We assume monodispersed initial conditions, with all clusters having
size 1, so ni(0) = δi1. The simulations performed in this paper are all with constant
particle residence time βi = β, ∀i ∈ N and we choose units in which V = 1.

This suggests an iterative method, Algorithm 1, in which we iterate to convergence
(3) for each i ∈ N. It should be noted that the only changes required to this algorithm
when switching from a number density to a mass density representation of particles,
is that the factor of 1/2 disappears from the Bi term and n′j is replaced by n′j/j
in both the Di and Bi terms, with the appropriate re-interpretation of inflowing
distribution.

Under appropriate conditions on the structure and behaviour of βi,j, it may be pos-
sible to prove rigorously convergence of the method for specific coagulation kernels.
However, in this paper, we are more interested in the speed and numerical properties
of the scheme for specific classes of kernel.

3.2 Accelerating Convergence

It should be noted that it is straightforward to calculate the Jacobian of (3), which

we can use to Taylor expand F about the point n
(p)
i ∈ RN

F(n
(p+1)
i ) ∼ F(n

(p)
i ) + JF(n

(p)
i )(n

(p+1)
i − n(p)

i ).

Solving this for the fixed point suggests the Newton scheme

n
(p+1)
i =

[
JF(n

(p)
i )
]−1

F(n
(p)
i ),
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Algorithm 1: Steady-State Iterative Population Balance Solver

input : Maximum cluster size N
Initial number density ni
Inflowing number density nin

i ←− δi1
α−1 and β−1 (the in and outflow rates respectively)
Number of moments K + 1
Maximum residual tolerance for first K + 1 moments rmax

output : Steady-state number density ni
First K + 1 moments mk

update : δmmax ←− rmax + 1
update : m′k ←− 0
while δmmax > rmax do

for i←− 1 to N do
update : n′i ←− ni
calculate:

Di ←−
N∑
j=1

βi,jn
′
j

calculate:

Bi ←−
1

2

i−1∑
j=1

βi−j,jn
′
i−jn

′
j

update :

ni ←−
nin
i /α +Bi

1/β +Di

for k ←− 0 to K do

calculate: mk ←−
∑N

i=1 i
kni

update : δmmax ←− max06k6K |mk −m′k|
update : m′k ←− mk

6



which was found to have strikingly fast convergence, but unfortunately when N
is large the calculation of the inverse can be expensive and the Jacobian is often
singular without very restrictive conditions on ni(0).

Therefore, we instead adopt an acceleration strategy known as Aitken’s delta-squared

process [2]. The method is as follows. Given a sequence
(
n

(p)
i

)
p∈Z

, we associate a

new sequence

A(n
(p)
i ) = n

(p)
i −

(∆n
(p)
i )2

∆2n
(p)
i

,

where
∆n

(p)
i = n

(p+1)
i − n(p)

i ,

and
∆2n

(p)
i = n

(p)
i − 2n

(p+1)
i + n

(p+2)
i ,

where p ∈ {0} ∪ N. The sequence is well-defined provided ∆2n
(p)
i 6= 0. Assuming

∆2n
(p)
i = 0 for only a finite number of indices p, we consider the sequence A(n

(p)
i )

restricted to indices p > p0 with a sufficiently large p0. We must be careful to
stop the calculation when rounding errors become too large in the denominator,
i.e., when too many significant digits cancel in the calculation of ∆2, leading to a
loss of precision upon division. We modify the updating of the number density in
Algorithm 1 using Algorithm 21.

Algorithm 2: Aitken’s Delta-Squared Process

for i←− 1 to N do
calculate:

n
(1)
i ←− Fn(0)

i

calculate:
n

(2)
i ←− Fn(1)

i

update :
∆2n

(2)
i ←− n

(2)
i − 2n

(1)
i + n

(0)
i

if
∣∣∣∆2n

(2)
i

∣∣∣ < εmachine then

Warning: denominator is too small
No solution found!
halt

update :

n
(0)
i ←− n

(2)
i −

(
n

(2)
i − n(1)

i

)2

∆2n
(2)
i

1Whilst this method is most applicable to linearly convergent processes, it nevertheless seems
to afford us modest increase in the speed of convergence.
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3.3 Implementation

We can further enhance the speed of the algorithm by exploiting the symmetry of
the kernel βi,j = βj,i∀i, j ∈ N and, particularly in those cases where the kernel has
a complicated structure, significant computational speed increases can be realised
by pre-computing the values of the kernel, a variation of an optimisation technique
known as memoization [1]. Calculation of the birth and death terms then requires
a table lookup rather than a calculation which is quadratic in the cluster sizes and
would have to be performed many times per iteration.

In addition to this, when the number density of clusters of a given size is very small,
the contribution to the sum in the birth and death terms will be small, so we can
skip over these values when looping over all cluster sizes, in some cases affording a
significant increase in computational speed, at the expense of only a moderate loss
of precision.

The algorithm was implemented in C++ using all of the enhancements mentioned.

4 Analytical & Numerical Solutions

4.1 Multiplicative Kernel

It is known that at least three particular classes of kernel are analytically soluble: the
constant, additive and multiplicative. Calculations were conducted for all of these
kernels, and the behaviour of the solutions and the properties of the iterative solver
studied in detail. However, of these, we present only results for the multiplicative
kernel, not only because the behaviour of the solver for this class is entirely indicative
of the others, but also because it has the additional property of being a gelling kernel
[6, 14, 39], so offers a slightly more challenging numerical experiment than the others.

The multiplicative kernel takes the form βi,j = Kij, for some constant K ∈ R+

(which we can always take to be 1 by rescaling time). For a coagulation process
with both in and outflow, the discrete Smoluchowski equation (2) for the number
density ni takes the form

dni
dt

=
nin
i

α
+
K

2

i−1∑
j=1

(i− j)jni−jnj −Kinim1 −
ni
β
, (4)

where m1 is the first moment, which we calculate from the general definition of the
kth moment

mk(t) =
∞∑
i=1

ikni(t). (5)

Multiplying (4) by ik and summing over all i ∈ N furnishes us with a differential
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equation for the moments

dmk

dt
=
min
k

α
+
K

2

k−1∑
p=1

(
k

p

)
mp+1mk−p+1 −

mk

β
. (6)

The equation for k = 1 decouples from the equations for all other k, hence we first
solve (6) for k = 1. We find

m1(t) = γ + (1− γ)e−t/β,

and so m1(t) = 1 ∀t ∈ R when γ = α/β = 1.

Equipped with knowledge of the first moment, we are able to calculate the steady-
state2 number density

ñi =
K
2

∑i−1
j=1(i− j)jñi−jñj
iKm̃1 + 1/β

=
K
2

∑i−1
j=1(i− j)jñi−jñj
iK + 1/β

,

and similarly the zeroth moment. We find

m0(t) = m̃0 + (m0(0)− m̃0) e−t/β,

where the steady-state of the zeroth moment is given by m̃0 = γ −Kβ/2.
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(b) Relative error in number density.

Figure 1: Comparison between values of number density calculated using iterative solver
with analytical solution when βi,j = ij and α = 1

10 = β.

Numerical simulations with α = 1
10

= β and βi,j = ij, and with a maximum cluster
size of N = 216 were performed. The comparison between the analytical expressions
for the number density with the steady-state values (we plot only the number density
of clusters up to size 10, because the number density very rapidly diminishes with

2We use tildes over variables to denote their steady-state values.
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increasing cluster size) obtained by the iterative solver are given in Figure 1a.
Figure 1b shows the relative error in approximating the steady-state analytical
solution for clusters up to size 100.

The first four moments of number density are plotted along with the solutions ob-
tained from the iterative solver in Figure 2a. Figure 2b shows the error in esti-
mating the steady-state moments of number density for each iteration of the solver.
We see that 14 iterations are required for the error in the first 4 moments to be less
than 10−5, and a further 4 for the error to be less than 10−6.
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(b) Error in estimating the steady-state moments
of number density3.

Figure 2: Comparison between moments calculated using iterative solver with analytical
solution when βij = ij and α = 1

10 = β.

4.2 Computational Efficiency

In order to establish the computational efficiency of the algorithm, we defined a
maximum residual error over all moments and recorded the CPU times required for
the solver to be within this tolerance of the true solutions, in addition to the number
of iterations required to achieve this. We used the same parameters and initial
conditions as those used in the simulations of the previous section. All calculations
where performed on a single core of an Intel R© Xeon R© X5472 CPU with a clockspeed
of 3.00 GHz and 12 Mb of L2 cache.

The results of the simulations are plotted in Figure 3. This figure shows, for
example, that to achieve a maximum residual of 10−8 requires approximately 30
iterations of the solver (green solid curve), which requires around 1 s of CPU time
(blue dashed curve).

3N.B., the initial condition for the first moment is the steady-state solution, so the error is zero
and therefore does not appear on the logarithmic scale.
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Figure 3: Computational efficiency of iterative solver. Maximum residual error and num-
ber of iterations against CPU time required.

It should be noted that the steady-state equation system can, in principle, also
be solved using a general purpose nonlinear solver, such as Matlab’s fsolve, and
indeed the performance of the iterative solver was found to be similar to this solver
when N is small. However, for larger cluster sizes (N � 28), the system becomes
intractable with fsolve, whereas the iterative approach remains practicable, even
for the maximum cluster sizes far exceeding 216.

Using the refinements of §3.3, the iterative population balance solver is shown to be
rather efficient in its domain of application.

4.3 Spatially Inhomogeneous Geometries

In the previous section we did not account for any spatial variation, considering
only the evolution to steady-state. This is equivalent to the assumption of spatial
homogeneity, i.e., a zero-dimensional system. However, we can consider these zero-
dimensional systems to be cells, Ωj, which we can network together to form a quasi-
one dimensional geometry, the inflowing distribution of particles being given by the
steady-state distribution of particles in the previous cell. This will afford us full spa-
tial resolution in (at least) one dimension. The construction of this one-dimensional
geometry from a string of zero-dimensional cells is illustrated in Figure 4.

We have two viable iterative strategies: (i) we can iterate to steady-state in each cell
before transporting to the next, the distribution of inflowing particles in the next
cell being given by the steady-state distribution in the previous cell; or (ii) we can
transport the particles from each cell and iterate until we have global convergence
across the entire domain. Both of these strategies were tested, and it was found
that strategy (i) (cell-wise convergence), with the obvious cell ordering was more
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Ω1 Ωj−1 Ωj Ωj+1 ΩJ

x1 xj−1 xj xj+1 xJ

δxj = xj − xj−1

u1 uj−1 uj uj+1

Figure 4: One-dimensional geometry. The geometry is constructed by linking J cells Ωj,
with the inflow rate of each cell determined by the local velocity in that cell
along with its grid spacing. The first cell, Ω1, gives the boundary condition,
and is equivalent to the distribution of inflowing particles, nin, in the zero-
dimensional case.

computationally efficient, at least when the velocity is positive, so it is this approach
that we adopt throughout this study. It should, however, be noted that in more
complex system with negative or variable velocities in each cell, that strategy (ii)
(global convergence), might be required.

Stategy (i) leads to Algorithm 3.

Algorithm 3: Quasi-One Dimensional Iterative Population Balance Solver

input : Maximum cluster size N
Initial condition: ni(x, 0)∀x
Boundary condition: ni(0, t) = δi1∀t > 0
Grid (Ωj, xj, uj), 1 6 j 6 J ,
(cell numbers, centres and velocity of fluid in cell Ωj)
Number of moments K
Maximum residual tolerance for first K moments rmax

output : Spatially resolved steady-state number density ñi(x)
First K spatially resolved, steady-state moments m̃k(x)

j ←− 1;
while j 6 J do

if j = 1 then
nin
i ←− ni(0, t);

else
nin
i ←− ñi(xj−1) (where ñi(x) = limt→∞ ni(x, t));

δxj ←− xj − xj−1;

α←− δxj

uj
;

β ←− δxj

uj
;

Call 0D solver (Algorithm 1+2) with inputs (nin
i , α, β);

j ←− j + 1;

12



Recall that we have been solving the Smoluchowski equation (2) for the number
density ni(t), of particles of size i at time t. We now consider the number density
ni(xj, t), of particles of size i at time t and position xj (the centroid of cell Ωj). (2)
now becomes a partial differential equation

∂ni(xj, t)

∂t
=
ni(xj−1, t)

α
+

1

2

i−1∑
`=1

βi−`,`ni−`n` −
N∑
`=1

βi,`nin` −
ni(xj, t)

α
, (7)

where we now have the inflowing distribution given by ni(xj−1, t), the (steady-state)
distribution of particles in cell Ωj−1 (the previous spatial discretisation step), and
the inflow rate α−1 is fixed by β−1, the outflow rate in the previous cell.

Now, given that α−1 is a rate, we take

α−1 =
u

δx
,

where u is the uniform background velocity in all cells, and δx = xj −xj−1 (uniform
spacing), we find that

ni(xj−1, t)

α
− ni(xj, t)

α
= −uni(xj, t)− ni(xj−1, t)

δx
→ −u∂ni(x, t)

∂x

as δx → 0. We thus find that as we pass to the limit in (7), ni(x, t) satisfies the
advection equation

∂ni(x, t)

∂t
+ u

∂ni(x, t)

∂x
=

1

2

i−1∑
`=1

βi−`,jni−`n` −
N∑
`=1

βi,`nin`. (8)

Multiplying by ik and summing over all i in the usual way, furnishes us with the
equation for the moments of number density.

∂mk(x, t)

∂t
+ u

∂mk(x, t)

∂x
=

k−1∑
p=1

(
k

p

) N∑
`=1

N∑
j=1

`k−pjp−1β`,jn`nj. (9)

This is the general transport equation for the moments of number density for an
arbitrary coagulation kernel. It is a one dimensional linear partial differential equa-
tion, so, in order to solve it we must specify both initial conditions and boundary
conditions: mk(x, 0) and mk(x, t)|∂Ω. Note that, in the 1D case, the boundary con-
dition is equivalent to the inflowing distribution of particles in the 0D case, i.e.,
mk(x, t)|∂Ω = min

k .

We shall now investigate the performance of this 1D iterative solver for the multi-
plicative kernel, βi,j = Kij. We again choose mono-dispersed boundary conditions
(i.e., delta distributed) ni(0, t) = δia, so the boundary conditions for the moments are
mk(0, t) = ak,∀t. We assume mono-dispersed initial conditions, mk(x, 0) = 1,∀x.

In this case, (9) reduces to

∂mk(x, t)

∂t
+ u

∂mk(x, t)

∂x
=
K

2

k−1∑
p=1

(
k

p

)
mp+1mk−p+1. (10)
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In steady-state, the time derivative drops out, so this reduces to a simple set of
ODEs for the moments, which are solved trivially:

m0(x) = 1− Ka2

2u
x, m1(x) = a, m2(x) =

a2

1−Ka2x/u
, m3(x) =

a3

(1−Ka2x/u)3 .

Notice that we have a potential problem in that the higher moments blow up at a
finite position, when x = u/(Ka2). Therefore, we will find the solution breaks down
if we attempt to simulate the coagulation process in a geometry of length exceeding
this. In such cases the iterative solver will be unable to resolve the solution near
the discontinuity. In particular, we found that m0 loses accuracy from this point
onwards, and the solver in some sense attempts to smooth over the discontinuity in
the higher order moments. This is because the multiplicative kernel is gelling [6].

In general, care is therefore needed to ensure that the particular choice of constants
does not lead to singular solutions. The multiplicative coagulation process was sim-
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Figure 5: Comparison between distribution of steady-state values for moments of number
density for iterative solver with analytical solution in a 1D geometry of length
2 (discretised into 1000 cells) with βi,j = Kij in a uniform background velocity
field of u = 1 with K = 1/16 and a = 2.

ulated in a geometry of length 2 units (discretised into 1000 cells), with coagulation
constant K = 1/16, with mono-dispersed inflowing particles of size a = 2, and with
a maximum cluster size of N = 216. This gives rise to the steady-state distribution
of moments shown in Figure 5.

4.4 Non-Uniform Velocity Fields

The method can also be used to solve the coagulation equation describing particles
flowing in a non-uniform velocity field, for example, particles entrained in a fluid,
by reading in a grid containing the velocities in each cell, along with the centroid
to centroid cell spacing (not necessarily uniform). Consider the simple case of fluid
flowing with a constant acceleration, g, with the particle coagulation process de-
scribed by the multiplicative kernel, βi,j = Kij. The velocity at a point x will then
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be given by u(x) = gx+ u0, and the steady-state transport equation for the zeroth
moment becomes

(gx+ u0)
dm0

dx
= −K

2
m2

1.

This has solution

m0(x) = 1 +
Ka2

2g
log

(
1

1 + gx/u0

)
,

since, as usual, we have m1(x) = m1(0) = a,∀x. Similarly, it can be shown that the
second and third moments are given by

m2(x) =
a2

2m0(x)− 1
, and m3(x) =

(
a

2m0(x)− 1

)3

.

These solutions are compared with those from the iterative solver for a geometry of
length 2 units in Figure 6
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Figure 6: Comparison between distribution of steady-state values for moments of number
density for iterative solver with analytical solution in a 1D geometry of length
2 units (discritisied into 1000 cells) with βi,j = Kij in a background velocity
field of u = 1

2 (x+ 1) with K = 1/16 and a = 2.

4.5 Time-Dependent Case

Notice that if we solve (9) in a uniform background velocity of u = 1, then under the
interchange of space and time coordinates, the equation describes moment transport
in a time-dependent zero-dimensional system

∂mk(x, t)

∂t
=

k−1∑
p=1

(
k

p

) N∑
`=1

N∑
j=1

`k−pjp−1β`,jµ`µj,

so we may use our quasi-one dimensional steady-state solver to resolve the time
evolution in a zero-dimensional system, no longer being confined to steady-state.
Essentially, we are considering our grid to discretise physical time, and we reach a
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steady-state in “pseudo time” at each physical time step. This idea could be very
useful in coupling to CFD, for example, it could be used to solve particle dynamics
in a complex geometries by post-processing streamlines calculated in CFD [5, 9].
The particle size distributions in a full three-dimensional geometry could then by
reconstructed using statistical techniques, for example, kernel density estimation.
This method will be employed in the next section.

5 Application to Kinetics: Physically Realistic

Kernels

In this section we shall study the convergence behaviour of the iterative solver for a
number of more physically realistic kernels, typically arising in kinetics applications.
We will compare the solutions with those calculated using a well known quadrature
moment method [18, 28], combined with an interpolative closure treatment of the
fractional order moments [3–5, 19, 20].

The form of the kernel is dictated by the physics of the interactions of pairs of par-
ticles. The chief drivers of particle transport are Brownian motion, turbulence and
gravitational settling. Different kernel types can be classified for different pressure
regimes on the basis of the Knudsen number, Kn = 2λ/d, where λ is the mean free
path of the fluid and d is a characteristic particle diameter. For Kn 6 0.1, the
particles are said to be in the continuum regime. For 0.1 < Kn 6 1, they are in
the slip-flow regime, and for Kn > 10, they are in the free-molecular regime. The
remaining case 1 < Kn 6 10 is the transition regime.

5.1 Continuum Kernel

The continuum kernel becomes applicable when the particle size is large relative to
the mean free path of the fluid molecules and hence the particles act as a continuum,
particle transport being dictated by diffusion processes. The particles, typically
smaller than 1µm, will collide as a result of Brownian motion.

The form of this kernel can be established by solving the 1D diffusion equation
in spherical coordinates and applying the Stokes-Einstein relation for the diffusion
coefficient [17, 37], which is valid when the particle diameters are much larger than
the mean free path. This gives the continuum regime kernel :

βc(vi, vj) = K0

(
1

v
1/3
i

+
1

v
1/3
j

)(
v

1/3
i + v

1/3
j

)
, (11)

where K0 = 2kBT/3µ, with kB the Boltzmann constant, T the temperature and µ
the absolute viscosity of the fluid. It is assumed that the diffusion coefficients do
not change as the particles approach each other.

The iterative solver was used to simulate the dynamics of particles undergoing coag-
ulation in this regime in a geometry of length 1 unit (1000 cells), using the technique

16



10-2 100

Time/s

0.7

0.8

0.9

1
m0

10-2 100

Time/s

20

25

30
m2

10-2 100

Time/s

100

150

200

250

300
m3

MoMIC
Iterative solver

(a) Continuum kernel: βi,j = K0

(
i
1
3 + j

1
3

)(
i−

1
3 + j−

1
3

)
.

10-2 100

Time/s

0.7

0.8

0.9

1
m0

10-2 100

Time/s

20

25

30
m2

10-2 100

Time/s

100

150

200

250

300
m3

MoMIC
Iterative solver

(b) Freemolecular kernel: βi,j = Kf

√
i−1 + j−1

(
i
1
3 + j

1
3

)2
.

10-5 100

Time/s

0.7

0.8

0.9

1
m0

10-5 100

Time/s

20

25

30
m2

10-5 100

Time/s

100

150

200

250

300
m3

MoMIC
Iterative solver

(c) Transition kernel: (14).

Figure 7: Comparison between moments of number density for iterative solver with mo-
ment method solution for 0 6 t 6 1 s (discretised into 1000 cells).
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of §4.5. The properties of a test fluid were chosen in units such that the coagulation
constant was given by K0 = 1 and the inflowing particles were mono-dispersed with
a size of a = 4 units. The evolution of the (nontrivial) moments are compared with
the moment method solutions in Figure 7a. Figures 8a & 9a show the relative
errors in calculating these moments and the residuals at each time step respectively.
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Figure 8: Relative error in calculating moments of number density using the iterative
solver.

5.2 Slip Flow Kernel

The diffusion model can be extended up to Kn = 1 by modifying Stokes’ law using
the Cunningham correction factor [13], Ci = 1 + 1.257 Kni, where the particle de-
pendent Knudsen number is given by Kni = 2λ/di, with di the diameter of a particle
containing i atoms. For spherical particles this gives [24]

βsf(vi, vj) = βc(vi, vj) +K0K
′
0

(
v
− 2

3

i + v
− 2

3

j

)(
v

1

3

i + v
1

3

j

)
, (12)

where K ′0 = 2.514λ (6ρs/πm1)1/3, m1 is the mass of the smallest particle and ρs is
the particle density.

We do not simulate coagulation in the slip-flow regime in this work, but instead use
it to construct the transition kernel in §5.4.

5.3 Free-Molecular Kernel

For particles much smaller than the mean free path, the collision frequency is ob-
tained from an expression derived in the kinetic theory of gases for collisions among
molecules which behave like rigid elastic spheres. It can be shown that

βfm(vi, vj) = Kf

(
v−1
i + v−1

j

) 1

2

(
v

1/3
i + v

1/3
j

)2

, (13)

where Kf = εij (3m1/4πρs)
1

6 (6kBT/ρs)
1

2 , where εij is a size-dependent coagulation
enhancement factor due to attractive or repulsive inter-particle forces, which for
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Figure 9: Cell-wise residuals in moments of number density.

uncharged particles, following Balthasar [8], we set to 2.2. This is the free-molecular
regime kernel.

Once again, the properties of a test fluid were chosen in units such that the coagula-
tion constant was given by Kf = 1 and the inflowing particles were mono-dispersed
with a size of a = 4 units. The calculation for the evolution of particles using the
iterative solver in the same geometry as the previous section are compared with the
moment method solutions in Figure 7b. The relative errors in the moments are
shown in Figure 8b. The errors show a similar pattern to the continuum case,
though they are a little larger and the error in the third moment remains larger
than the other two. The residuals are shown in Figure 9b. Notice how the residu-
als increase slightly with increasing time. This is because the time resolution comes
from solving the 1D case, and so the variance in predicting the inflowing distribution
slightly increases as we progress along the geometry.

5.4 Transition Kernel

The final kernel we will consider deals with the regime where 1 < Kn 6 10. Fuchs
[21] proposed a general interpolation formula for β for the transition from (13)
to (11) and from this Pratsinis [35] developed an approximate transition kernel
based on a harmonic mean, which is valid across a wide range of Knudsen numbers.
Kazakov and Frenklach [24], Patterson et al. [33] increased the efficiency of the rate
calculation by taking half of the harmonic mean of the slip flow and free-molecular
kernels (which is distinct from the harmonic mean kernel). This kernel is given by

βtr(vi, vj) = βsf(vi, vj)

(
1 +

βsf(vi, vj)

βfm(vi, vj)

)−1

. (14)

The results of the numerical simulations with this kernel are presented in Figure 7c.
The corresponding relative error and residual plots are given in Figures 8c & 9c
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6 Conclusions

This paper introduced a new iterative algorithm for solving population balance equa-
tions and studied its mathematical and numerical properties under a range of con-
ditions. The algorithm relies on the fact that in steady-state, the number density
can be factorised from the population balance equation, enabling an iterative map
to be defined for each cluster size.

The solver was found to perform very well even when considering the complex colli-
sion kernels typically encountered in physical systems. In particular, the method was
shown to offer accurate resolution of the moments of the number density with mini-
mal computational effort, in contrast to many existing class based solution schemes
for population balance equations.

The algorithm was extended to one dimensional geometries with non-uniform flow
fields, and found to compare favourably with a conventional moment method. Using
a space-time correspondence under a constant background velocity, it was shown that
the method could be extended from a steady-state solver to a full transient solver.

The computational efficiency of the method may render it suitable for coupling to
CFD, and as such this method for solving population balance equations may play
a key role in detailed particle modelling applications. For example, it could be
used to calculate particle properties along streamlines in a complex geometry (e.g.,
nanoparticle formation in an industrial reactor). This work has contributed to the
understanding of the numerical aspects of such an approach.
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