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Abstract

In this article, we present a detailed overview of the literature on design of com-
puter experiments. We classify the existing literature broadly into two categories viz.
static and adaptive design of experiments (DoE). We discuss the abundant literature
available on static DoE, their chronological evolution, and their pros and cons. Our
numerical and visual analyses reveal the excellent performance of Sobol sampling
based on recent work of Joe and Kuo (SOB3) at higher dimensions while showing
that Hammersley (HAM) and Halton (HAL) sampling are suited for lower dimen-
sions. Our investigation of these techniques highlight the vital challenges that are
dealt by adaptive DoE techniques, an upcoming class of modern DoE. They employ
intelligent and iterative strategies that combine system knowledge and space-filling
for sample placement. Adaptive DoE literature is critically analyzed based on the
key features of their placement strategies. Finally, we provide several potential op-
portunities for future modern DoE research.

Highlights:

• Modern DoE techniques are comprehensively reviewed.

• A detailed classification and chronological evolution of modern DoE research
is presented.

• Our numerical and visual analyses revealed the excellent high dimensional per-
formance of SOB3.

• Rapidly growing class of adaptive DoE is critically discussed.

• Several potential opportunities for future research in modern DoE are dis-
cussed.
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1 Introduction

The earliest footprints of design of experiments (DoE), a procedure to plan and define the
conditions for carrying out controlled experimental trials, can be traced back to the era of
the Old Testament. The first known example of DoE predates to 2nd century B.C. in the
first chapter of the Book of Daniel [156]. In this text, Daniel showed the superiority of his
diet while using king’s servants as a control group. In 150 A.D., Galen [170] discussed the
importance and effect of sample size for medical studies. In this work, Galen presented
a debate between an empiricist and a dogmatist discussing the experience and theory of
medical research. Avicenna, the eminent Arabic researcher and philosopher, formally
proposed many principles for designing the trials in the 2nd volume of Canon of Medicine
predating to the 11th century [30]. These earlier efforts stemmed various theories and
applications of DoE during the mid 17th and late 18th centuries [39, 68, 127]. In spite
of these primal contributions, the work of Sir R. A. Fisher [57] on designing agricultural
experiments is widely recognized as the first milestone in the field of DoE. Moreover, he
proposed the “Fisher Information Matrix” [2, 56] which is used to reduce variance via
the development of alphabetical optimal DoE [3]. Subsequently, various designs such as
Full and Half Factorial [58], Central Composite, Plackett Burman [129], and Box Behken
[15] were developed for real/physical experiments. These designs are commonly known
as classical designs. While the classical DoE (a branch of DoE) essentially caters to
physical experiments, the advent of computers has spawned a new branch of DoE, namely
the modern DoE.

Researchers are increasingly replacing time-consuming and monetarily expensive phys-
ical experiments by faster and cheaper computer simulations. Often, computers enable
experimentation that is not feasible in practice. In this paradigm, a computer code, com-
monly a high-fidelity simulator, generates data in lieu of real, physical systems. The
primary aim of DoE in such cases is to decide the points at which the system behavior
should be simulated. Although the classical DoE methods are well studied in the litera-
ture, their straightforward application to computer experiments is not appropriate due to
the fundamental differences between physical and computer experiments. Most physical
experiments are stochastic in nature due to a variety of unknown (hidden) and/or uncon-
trolled variables resulting in random errors. Thus, the classical DoE methods incur un-
avoidable randomness. On the other hand, computer experiments involving deterministic
models are free of randomness. In addition, the most classical DoE methods typically as-
sume a linear/quadratic approximation for the system response. To understand the impact
of random errors in physical experiments, consider the following. The measured/observed
response y(x) in an experiment can be modeled as y(x) = yt(x) + ε where yt is the true
response, and ε represents random error. The primary aim of DoE is to derive the best
possible approximation ŷ(x) for yt(x) in spite of random error. Typically, when a lin-
ear/quadratic response model is assumed for a physical experiment, the vertices or points
on the faces of the domain are the best sample points as explained by [69] and [117]. This
can be directly inferred from the fundamental assumptions of the classical DoE. On the
other hand, the modern DoE does not assume a linear/quadratic response. In this case,
as explained by Giunta et al. [69] and Myers and Montgomery [117] the best sample
points are those that are distributed within the domain. In other words, space-filling be-
comes a primary consideration for the modern DoE. This is also made necessary due to
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the inherent mismatch between true and an approximate model. Hereafter, the term DoE
implies the modern DoE unless explicitly mentioned. Besides classical and modern DoE,
many researchers study complex systems based on semi-empirical models involving an
amalgamation of computer and physical experiments. Such experimental designs are not
considered in this article, however, interested readers can refer to [13, 112, 113, 115].

In 1996, Kohler and Owen published a chapter [96] that thoroughly reviewed DoE. Sub-
sequently, Giunta et al. briefly introduced common DoE techniques in [69], however, it
lacked a thorough discussion of these techniques and several of their variants. An article
by Chen et al. [23] reviewed designs and modeling techniques for computer experiments
in a statistical point of view. Levy and Steinberg presented a brief review on computer
experiments, however, they devoted a very short section on DoE. Recently, Pronzato and
Müller published a review article [130] aiming to detail advances beyond Kohler and
Owen [96] and Chen et al. [23]. Although they discussed space filling techniques, they
did not discuss the upcoming field of adaptive sampling (discussed later in Section 5).
With this motivation, we capture the following key aspects in this article:

1. Elaborate classification and chronological evolution of DoE (see Section 3).

2. Comprehensive overview of research in DoE (see Sections 4 and 5).

3. Literature as well as numerical and visual analyses of the prominent DoE techniques
(see Section 4.3).

4. Thorough discussion on adaptive sampling techniques (see Section 5).

5. Potential opportunities for further developments and the future of DoE (see Section
6).

This article is organized as follows. Section 2 presents the definitions and notations fol-
lowed by various metrics to quantify space-filling. Section 3 presents a detailed classifica-
tion and chronological evolution of DoE. Sections 4 and 5 discuss the static and adaptive
DoE techniques respectively. Finally, in section 6, we conclude our discussion with future
directions followed by a list of possible opportunities and unexplored fields of DoE.

2 Background

2.1 Definitions and Notations

Experiments, whether physical or computer, involve attributes and parameters that are
varied to study the system response. These are called design/input variables or factors
(commonly used by statisticians). Let x = {xn |n = 1, 2, ..., N} ∈ RN denote the N -
dimensional vector of design variables. Typically, each design variable has user-specified
bounds: xLn ≤ xn ≤ xUn . The space defined by these bounds, namely D : xL ≤ x ≤ xU ,
is called the domain. This is typically scaled as [−1, 1]N or [0, 1]N to avoid numerical
ill-conditioning [141]. Throughout this article, we use [0, 1]N normalized domain space.
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A sample or sample point is a specific instance of x in the domain. The collection of
sample points, X (K)

N = {x(k) | k = 1, 2, ..., K} is a sample set of size K. Let the system
response at x(k) be described by M output variables as y = {ys | s = 1, 2, ..., S}. The col-
lection of all such responses is a response set, Y(K)

S = {y(k) | k = 1, 2, ..., K}. K samples
and the respective responses are subsequently used to build an approximation, f̃ (K)(x),
f̃ (K) : D → RS for the system response surface. This is called as surrogate/meta model.
The literature has various surrogate modeling techniques like Polynomial, Kriging, Ra-
dial Basis Functions (RBF), Artificial Neural Networks (ANN), Support Vector Machine
(SVM) etc. [145, 149].

2.2 Space-Filling Criteria

As discussed earlier in Section 1, the key aim of the DoE is to generate sample points for
filling the domain. This requires metrics that can quantify the space-filling ability of any
given sample set. Several space-filling criteria (SFC) have been proposed in the literature
and there are two broad categories viz. (a) uniformity-based (b) distance-based.

2.2.1 Uniformity-based SFC

Discrepancy quantifies the departure of a given sample set/design from a uniform design.
For this, a uniform design is defined as the one where the number of sample points in a
subspace ∆D of the domain D is proportional to the hyper-volume V (∆D) = ∆x1 ×
∆x2 × ...×∆xN of the subspace [78].

A discrepancy that measures the maximum departure for this number for a given sample
set is known as Star discrepancy given as follows.

D∗(X (K)
N ) = sup

x∈D

∣∣∣∣∣ 1

K
#{x(k) ∈ ∆D} −

N∏
n=1

∆xj

∣∣∣∣∣ (1)

where xᵀ = (x1, x2, ..., xN) and #{x(k) ∈ ∆D} is the number of samples in ∆D. A
modification of star discrepancy is L2 discrepancy where L2 norm of the departure is used
instead of the absolute departure (L∞ norm) [53, 103] as shown below.

D∗2(X
(K)
N ) =


∫
D

[
1

K
#{x(k) ∈ D} −

N∏
n=1

xj

]2
dx


1
2

(2)

The discrepancies based on L2 norm are very popular due to ease of calculations and
the availability of their closed form expressions. Two commonly used variations of L2

5



discrepancy are Centered L2 (Eq. (3)) and Wrap-around L2 (Eq. (4)) [78, 79].

C2(X (K)
N ) =

(
13

12

)N
− 2

K

K∑
k=1

N∏
n=1

(
1 +

1

2
|x(k)n − 0.5| − 1

2
|x(k)n − 0.5|2

)
+

1

K2

K∑
j,k=1

N∏
n=1

(
1 +

1

2
|x(k)n − 0.5|+ 1

2
|x(j)n − 0.5| − 1

2
|x(k)n − x(j)n |

)
(3)

W2(X (K)
N ) =

(
4

3

)N
− 1

K2

K∑
j,k=1

N∏
n=1

(
3

2
+ |x(k)n − x(j)n | × (1− |x(k)n − x(j)n |)

)
(4)

These are a few commonly used types of discrepancies, however, the literature discusses
a variety of discrepancies and their properties in terms of uniformity and projections of
samples [52, 53, 83].

In information theory, Kullback-Leibler information (Eq. (5)) quantifies the difference
between two density functions f and g [100, 101]. Consider x(1), x(2), ..., x(K) as K inde-
pendent observations of the random x with density function f over the unit cube [0, 1]N .
In this case, we call f as “design” density while g as “target” density.

IKL(f, g) =

∫
E

f(x) ln

(
f(x)

g(x)

)
dx (5)

When target density, g, is uniform, Eq. (5) reduces to Eq. (6).

IKL(f) =

∫
E

f(x) ln (f(x))dx (6)

Minimizing IKL(f) in Eq. (6) gives a design that is close to uniform. While the discrep-
ancies and information theory mainly focus on the distribution of sample points within
a domain, the distance-based criteria consider the inter-point or inter-sample distances to
quantify space-filling as discussed next.

2.2.2 Distance-based SFC

Audze and Eglajs proposed a distance based criterion for space filling [43] which is also
known as potential energy criterion given in Eq. (7).

PE(X (K)
N ) =

K∑
k=1

K∑
j=k+1

1

d(x(k), x(j))2
(7)

where d(x(k), x(j)) is the Euclidean distance between points x(k) and x(j). By minimizing
PE an evenly spread design can be obtained. This criterion has been widely used for con-
structing space-filling designs especially the optimal Latin Hypercube Designs (LHDs)
discussed later.
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Minimum Spanning Tree (MST) was proposed by Dussert et al. for studying orders and
disorders [40]. MST uses samples as vertices to construct a tree by connecting them
and minimizing the sum of edge lengths. Once the MST-based design is developed, the
mean edge-length µe and standard deviation σe are computed. The designs with large
µe and small σe, known as quasi-periodic designs, perform well in terms of space-filling
since large µe implies large inter-point distance and small σe means low variations in
inter-sample distances. Therefore, MST-based designs, say D1 and D2, can be partially
ordered as follows: if µe(D1) > µe(D2) and σe(D1) < σe(D2), then D1 may be better
than D2 in terms of space-filling.

Johnson et al. [88] proposed the two distance-based criteria, namely maximin (Mm) and
minimax (mM) to spread sample points within the domain. The maximin criterion max-
imizes the minimum distance between two sample points. This can be given mathemati-
cally as shown in Eq. (8).

Mm(X (K)
N ) = max

x∈D

[
min
j 6=k

[
d(x(j), x(k))

]]
(8)

On the other hand, the minimax criterion minimizes the maximin distance between two

Figure 1: Illustration of Voronoi diagram in 2 dimensional domain for K = 10. (Devel-
oped in Matlab using in built Voronoi function)
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points and can be given by Eq. (9).

mM(X (K)
N ) = min

[
max
x∈D

[
min
j 6=k

[
d(x(j), x(k))

]]]
(9)

Strictly speaking, Eq. (9) denotes “minimaximin” design. However, for the sake of con-
venience, it is generally called as just minimax.

Morris and Mitchell proposed φp criterion [111] that has become a popular space-filling
criterion.

φp(X (K)
N ) =

[
K−1∑
k=1

K∑
j=k+1

(d(x(j), x(k)))
−p
] 1

p

(10)

Minimizing the φp maximizes the point-to-point distance, hence, the better sample spread-
ing.

Apart from the SFCs discussed above, there are space-filling criteria like Delaunay Tri-
angulation [37] and Voronoi Tessellations/Diagram [168] which are geometrical in na-
ture, however, they implicitly incorporate Euclidean distance in their definition as fol-
lows. Consider a set of points X (K)

N =
{
x(1), x(2), ..., x(K)

}
. For every sample x(k), k =

Figure 2: Illustration of Delaunay triangulation in 2 dimensional domain for K = 10.
(Developed in Matlab using in built Delaunay function)
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1, 2, ..., K, it has a corresponding Voronoi cell V (k) given as shown in Eq. (11).

V (k) = {x(k) ∈ X (K)
N |d(x, x(k)) ≤ d(x, x(j))∀ j 6= k} (11)

Figure 1 illustrates a simple Voronoi diagram construction based on 10 randomly gener-
ated sample points in 2 dimensional domain shown with black dots. Each sample point
has a surrounding cell (Vk) bounded by the boundary shown with the solid black line
in Figure 1. Qualitatively, Voronoi diagram aims to fill the space uniformly by placing
samples based on cell (V (k)) size [41, 167]. The larger the Voronoi cell size, the more
unexplored the region. Hence, samples can be placed in large Voronoi cells to enhance
homogeneity of the sample spreading.

Delaunay triangulation is the dual of Voronoi diagram. Delaunay triangulation in 2 di-
mensional domain for a set of K points X (K)

N is a triangulation DT (X (K)
N ) such that no

point in X (K)
N is inside the circumcirle of any triangle formed by points in X (K)

N . In other
words, this aims to minimize the maximum angle for all triangles in the triangulation.
Figure 2 shows an illustration of Delaunay triangulation in 2 dimensional domain for 10
points P1,P2, ...,P10. This can be generalized to N dimensional case by generalizing the
concept of triangle to simplex and circumcircle of a triangle to circum-hypersphere of a
simplex [37]. For further details on Voronoi Diagram and Delaunay triangulation, readers
may refer to Aurenhammer et al. [7]. Most of these criteria are often used to analyze as
well as enhance the performance of various DoE techniques.

3 Evolution and Classification of DoE

Revolutionary developments in the fields of computers and associated technologies have
motivated both academic scholars and industrial personnel to opt for computer experi-

Figure 3: Number of articles published on DoE over the years. (Retrieved from Scopus on
31 January 2017; Search: “design of experiments” OR “experimental design”
OR sampling AND computer)
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Figure 4: Geographical distribution of articles published on DoE. (Retrieved from Sco-
pus on 31 January 2017; Search: “design of experiments” OR “experimental
design” OR sampling AND computer. Countries colored in black do not have
any contribution.)

ments. Computer experiments have proven to be essential for a variety of applications in
the fields of molecular physics, product design, electronics and communications, process
design and operation, automobiles, aeronautics, structures, and so on. Moreover, the scale
of applications ranges widely from nano (molecular simulations) to mega scale (structural
analysis of buildings and bridges). This inspired various researchers to work on the design
of computer experiments and its applications which is evident from Figure 3. It shows the
trend of approximate number of articles published in the field of design of experiment
over the years. Though the earliest research in the field of modern DoE can be traced
back to late 1940s, it attracted significant attention in late 1970s. Hence, Figure 3 pro-
vides a trend of number of articles published (> 100) from 1970 onwards. Thenceforth,
the field is booming which is evident from a strong growth trend in Figure 3.

Figure 4 describes the overview of DoE research in the different parts of the world.
The highest contribution is by the United States of America (33.8%) followed by China
(13.9%), the United Kingdom (7.0%), Germany (5.7%) and Canada (5.1%). All the other
countries contribute less than 5%. The literature consists of approximately 149, 000 arti-
cles that can be further categorized based on the fields of publication shown in Figure 5.
Out of the total literature on DoE, engineering contributes 34%, computer science con-
tributes 31%, medicine contributes 17%, mathematics contributes 14%, and rest of the
fields contribute 10% or less.

Regardless of the field of application, any DoE technique is employed for one or more of
the following four major objectives [96]:
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Figure 5: Distribution of articles published on DoE in various fields. (Retrieved from
Scopus on 31 January 2017; Search: “design of experiments” OR “experi-
mental design” OR sampling AND computer. Others include Chemical En-
gineering, Decision Sciences, Energy, Neuroscience, Pharmacology, Toxicol-
ogy and Pharmaceutics, Health Professions, Psychology, Business, Manage-
ment and Accounting, Immunology and Microbiology, Arts and Humanities,
Nursing, Multidisciplinary, Economics, Econometrics and Finance, Veterinary,
Dentistry, and Undefined)

1. System Approximation/Prediction

2. System Optimization

3. System Visualization

4. Numerical Integration

The historical development of the DoE points to a natural evolution with two major cat-
egories, namely Static and Adaptive. The earliest DoE techniques ignored the system
under study, and focused on the spatial distribution of sample points in a domain (D).
In that sense, these designs were generic and fixed. Once generated, they could be re-
peatedly used for any system. Such techniques come under a subcategory of system-free
techniques. Over time, researchers realized the obvious shortcomings of this generic ap-
proach, and began incorporating system knowledge to tailor the DoE for a given system.
These techniques were also static and come under a subcategory of system-aided tech-
niques. Recent research focus has moved towards a more flexible and dynamic approach
in which system knowledge is integrated and used in an incremental or progressive man-
ner during sample generation. This is called adaptive or sequential approach and offers
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Figure 6: Flowchart describing the classification of DoE.

the hope of getting the best design with the smallest sample set. Figure 6 shows the
classification chart of DoE and we now discuss each class in detail.

4 Static DoE

4.1 System-Free DoE

The early DoE methods were largely inspired by the classical DoE literature. Since the
latter dealt with experimental systems whose characteristics were unknown and complex,
they neglected the system knowledge altogether. Therefore, early DoE merely aimed to
fill the domain as uniformly as possible. This is most easily achieved by randomly placing
sample points in the domain. Thus, the Monte Carlo sampling was the first formal method
for the DoE.

4.1.1 Monte Carlo and Stratified Monte Carlo Sampling

Classical Monte Carlo Sampling simply known as Monte Carlo Sampling (MCS) or
pseudo-random sampling was proposed by Metropolis and Ulam in 1949 [110]. MCS
uses pseudo-random numbers to generate K sample points hoping that its random actions
will result in space-filling. This has motivated efforts to develop a variety of pseudo-
random number generators [66]. The finite sample size and the shortcomings of pseudo-
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random number generators may result in clustering and unrepresented regions within
the domain. To overcome these difficulties, researchers proposed the idea of Stratified
Monte Carlo Sampling (SMCS) where the space-filling is achieved by dividing the do-
main space into non-random strata and employing MCS for each stratum. Note that,
although MCS and SMCS were initially developed for multidimensional numerical inte-
gration, they have a wide range of applications in designing computer experiments [108].
MCS and SMCS have been studied thoroughly by various researchers from the fields of
mathematics, statistics, sciences, and engineering. This has resulted in an abundant liter-
ature [44, 66, 67, 94, 108, 136, 137, 154]. It is clear that SMCS, by introducing strata,
attempts to infuse an element of deterministic design in the purely chaotic MCS frame-
work. Subsequent DoE techniques exploited this idea further which will be evident in the
following sections.

4.1.2 Quasi-Monte Carlo Sampling

Quasi-Monte Carlo Sampling (QMCS) uses a quasi-random low discrepancy (QRLD) se-
quence for sample generation. The term quasi-random implies a deterministic nature of
the sequence, while the term low discrepancy implies its nearness to a uniform distribution
of sample points in the domain. According to the Koksma-Hlawka inequality [80, 118],
the approximation error is upper-bounded by the star discrepancy discussed earlier (Eq.
1). Moreover, this error bound is valid independent of the dimensions (N ) of the under-
lying domain. Hence, deterministic sequences with low star discrepancy are attractive for
sampling. Several QRLD sequences like Halton, Hammersley, Sobol, and their variations
exist in the literature. We now discuss these sequences, their implementations and their
key features.

QRLD sequences use the concepts of inverse radix number and prime numbers to generate
a deterministic sequence. For this, let us first understand inverse radix number. Any given
integer I can be written in radix (base) R (where R is an positive integer) as follows:

I = I0 + I1R + I2R
2 + ...+ IQR

Q (12)

where I ≡ IQIQ−1...I1I0, Q = {1, 2, ..., Q} and Q ⊆ N. Then a unique fraction between
0 and 1 is called the inverse radix number and can be generated by reversing the order of
the digits of I as follows:

θR(I) = .I0I1I2...Iq (13)

θR(I) = I0R
−1 + I1R

−2 + ...+ IqR
−q−1 (14)

In 1935, van Der Corput proposed the following 1-D sequence [163]:

S = {θR(k) | k = 1, 2, ..., K} (15)

Thus, for R = 10 (decimal base), Eq. (15) gives

S =

{
1

10
,

2

10
,

3

10
,

4

10
,

5

10
,

6

10
,

7

10
,

8

10
,

9

10
,

1

100
,

11

100
,

21

100
, ...

}
(16)
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This sequence generation philosophy inspired scholars like Hammersley, Halton and Sobol
to propose more elegant QRLDs.

In 1960, J. M. Hammersley proposed a set of sample points called Hammersley points,
also known as Hammersley sequence, to solve multidimensional Monte Carlo integration
[74]. This is one of the first high dimensional QRLD sequences proposed to tackle the
issues associated with MCS and SMCS. The Hammersley points/samples in an N dimen-
sional space are given by following sequence:

z
(k)
N =

(
k

K
, θ2(k), θ3(k), ..., θRN−1

(k)

)
, k = 1, 2, ..., K (17)

where 2, 3, ..., RN−1 are the first N − 1 prime numbers. The Hammersley points are
x
(k)
N = 1− z(k)N [91].

Hammersley sequence has been employed by many scholars [32, 38, 61, 76, 91, 93, 102,
119, 171, 172] for a variety of applications. In spite of the popularity, it has some lim-
itations when it comes to implementation flexibility. A user need to specify the sample
size (K) a priori in order to generate a Hammersley sequence (Eq. (17)). Moreover, as
the dimensions of the domain increase, the largest base (RN−1) used for sequence gen-
eration increases, resulting in slower space filling in some dimensions. Thus, for high
dimensional domains Hammersley sequence does not fill the space homogeneously in all
the dimensions.

Inspired by Hammersley sequence, Halton proposed a QRLD sequence that can also be
viewed as an N dimensional generalization of van Der Coput sequence. He suggested
various modifications to the Hammersley sequence to ameliorate its demerits. First, he
removed the dependence on sample sizeK (Eq. (17)) by rewriting the sequence as follows
[19].

S = {(θR1(k), θR2(k), ..., θRN
(k)) | k = 1, 2, ..., K} (18)

Second, he showed that radices should only be mutually prime or co-prime in contrast to
Hammersley sequence where radices are strictly prime numbers. Thus, Halton sequence
tries avoid large bases and hence, slow space-filling. For further details on Halton se-
quence readers may refer to [73, 120].

Although Halton sequence is easy to construct and practically implementable, it faces
serious limitations for N ≥ 14. Thus, in practice Halton sequence is avoided for N ≥
8. Moreover, in some cases there might be a linear correlation between the generated
samples of the sequence [99]. Thus, it is a common practice to drop the first K∗ samples
from the sequence to assure uncorrelated samples [62]. To address these issues with
Halton sequence, researchers like Braaten and Weller [17], Hellekalek [77], Faure [55],
Krommer and Ueberhuber [98], and Kocis and Whiten [95] proposed several variations
and modifications of them. Many researchers have employed Halton sequence in a variety
of studies [33, 59, 60, 72, 121, 161].

In 1967, Sobol proposed a QRLD sequence to approximate high dimensional integrals
[152]. It employs radix 2 to form finer partitions and achieves faster space-filling over
other sequences. Moreover, it uses a concept of direction numbers to generate a se-
quence. Sobol sequence is a vast and very well studied topic [18, 86, 120] and we do
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not discuss the sequence generation here, however, reader can refer to [18, 86] for un-
derstanding algorithm implementation. Apart from fast and better space-filling, Sobol
introduced additional conditions for the uniformity of sample distribution (properties A
and A’) [153]. Thus, Sobol sequence can be constructed to satisfy either one or both of
these properties along with the discrepancy criterion giving them an edge over the other
QRLD sequences. The literature is replete with the articles that employ Sobol sequence
for various applications [9, 20, 63, 114, 148].

Note that although these methods inherently aim to space-fill, they do not incorporate
formal quantification of space-filling during the placement. Thus, various deterministic
methods based on a variety of space-filling criteria (discussed in Sections 2.2.1 and 2.2.2)
have been proposed to complement QMCS. They typically use a space-filling criterion as
an objective function in their placement optimization problem.

4.1.3 SFC-based Sampling

The simplest method in this category constructs a fully deterministic, symmetric and sys-
tematic grid of sample points using the Cartesian co-ordinate system. The sample size
is manageable for small N values (typically ≤ 3) but it explodes exponentially as N in-
creases. Consider anN dimensional grid design withK sample points in each dimension.
This amounts to KN samples. When this grid is projected on to any one of the dimen-
sions, it results in a grid of (N − 1) dimensions with K sample points in each dimension.

(a) 3 dimensional grid with 3 sample points per dimension.

Figure 7: Illustration of grid design in 3 dimensional domain and its projections in 2
dimensional plane. (Figure 7a shows 27 sample points in 3 dimensional space
and Figure 7b shows a 2 dimensional projection of Figure 7a on xt plane for
r = {1, 2, 3}, s = {2, 3, 1}, and t = {3, 1, 2})
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(b) 2 dimensional projection on xt.

Figure 7: Illustration of grid design in 3 dimensional domain and its projections in 2
dimensional plane. (Figure 7a shows 27 sample points in 3 dimensional space
and Figure 7b shows a 2 dimensional projection of Figure 7a on xt plane for
r = {1, 2, 3}, s = {2, 3, 1}, and t = {3, 1, 2})

This can be viewed as KN − KN−1 wasteful computations due to the assumption of
equi-spaced samples. Let us understand this with a simple illustration shown in Figure 7.
Figure 7a shows a 3× 3× 3 grid design. This amounts to 33 i.e. 27 samples points.

Figures 7b shows the projection of this 3 dimensional grid on xt plane for t = {3, 1, 2}.
In each case, it results in 9 sample points. This clearly shows 18 wasteful sample points
in each case. The projection property is a key aspect of DoE and its importance will be
clearer in the discussion of LHDs in Section 4.1.4. This realization led to a series of meth-
ods that aimed to avoid such duplication namely, Latin Hypercube Designs, Good Lattice
Sampling, etc. The simplest modification of grid that overcomes the above discussed is-
sue is good lattice point sampling (GLS). For the N dimensional space, the good lattice
points are given by

x(k)n =

{
2k(n+ hn)− 1

2K

}
n = 1, 2, ..., N and k = 1, 2, ..., K (19)

where hn is any integer between 0 and K − N and {x} is a fractional part of x. Thus,
(K −N + 1)N distinct GLS designs are possible with K −N + 1 values of hn for every
n. For hn = N − n, GLS results in a uniform grid. The GLS corresponding to N = 2,
K = 34, h1 = 0, and h2 = 19 is known as Fibonacci lattice [151]. Several complex
GLS designs can be found in [50]. Although the GLS works better than a Cartesian
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grid, it still suffers from the curse of dimensionality. These two sampling methods do
not explicitly incorporate space-filling criterion, however, they implicitly consider space-
filling by placing geometrically equi-distant samples.

In 1990, Johnson et al. proposed two distance-based designs namely maximin and mini-
max [88]. In case of the maximin design, the smallest distance between any two samples
is maximized as shown in Eq.(8). In 3 dimensional space, this can be viewed as fill-
ing the unit cube (D) with K non-intersecting rigid spheres with centers as sample sites
located within D [65]. Similarly, minimax designs minimize the maximin criterion for
sample placement as given in Eq.(9). Figure 8a shows the maximin design (obtained from
http://www.packomania.com/) and figure 8b shows the minimax design [88] for
the 2 dimensional case.

These designs can be qualitatively explained by using an interesting practical example
given by Pronzato and Müller [130]. A maximin design can be viewed as a placement of
tables in a restaurant such that chance of hearing the talks from the neighboring table by
a party at a given table is minimal. On the other hand, a minimax design can be viewed
as a placement of tables in a restaurant such that a waiter is as close as possible to a
table when he is in the restaurant. A large compilation of maximin and minimax designs
for various settings can be found at http://www.packomania.com/. Moreover,
interested reader may refer to [4, 36, 70, 126, 142, 143, 157, 160] for further insights and
applications.

Since 1980s uniform design (UD) i.e. design based on sample placements over the do-
main minimizing the uniformity criterion, has become very popular [45]. Typically, UD
is constructed using star discrepancy (Eq.(1)) discussed earlier in section 2.2.1. Gen-
eration of UD based on D∗ for 1-D case is straight forward and is given as X (K)

1 ={
1
2K
, 3
2K
, ..., 2K−1

2K

}
[50]. However, this paradigm becomes arduous as the dimensions

increase [51]. Although D∗ is a very commonly used discrepancy (uniformity measure),

(a) Maximin Design (b) Minimax Design

Figure 8: Illustration of Maximin and Minimax Designs in 2 dimensional domain.
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there are various designs that uses variation of star discrepancy such as D∗2 (Eq.(2)), C2

(Eq.(3)) and W2 (Eq.(4)). For further details, reader can refer to [46–49, 52].

4.1.4 Latin Hypercube Design

Latin Hypercube Design (LHD) also known as Latin Hypercube Sampling (LHS) devel-
oped by McKay et al. [109] is one of the most popular DoE techniques to overcome the
issues associated with the MCS and its variations. Although the article by McKay et al.
is considered as a milestone in the field of DoE, its underlying concepts were existing for
a long time. It is an extension of the quota sampling proposed by Steinberg in 1963 [155]
and a work inspired by Latin Square Sampling [133]. Let us look at the LHD construc-
tion. Consider an N -dimensional design space [0, 1]N . Divide each dimension into K
equal bins of edge length 1

K
. This results in KN hypercubes. Arrange K sample points

as a K × N matrix L = [x(1), x(2), ..., x(K)]>, where each column represents a variable
and each row represents a sample point. Then, L is an N dimensional LHD of size K, if
for each column of L, no two elements in that column fall in the same bin. For instance,
consider an LHD for N = 2 and K = 10 as shown in Figure 9. Both dimensions have
10 equal bins. It is clear that the samples are placed such that no row or column has more
than one sample point. The above condition on the placement of elements in each column
of L is also known as non-collapsing design condition. This condition gives LHD the
following special characteristics. First, any LHD in N dimensional domain reduces to an
LHD in N −N ′ dimensions when N ′ dimensions are removed from the former. Second,
this also allows LHD to perform uniformly well over a range of dimensions. However, the
LHD configuration and the sample placement within bins are still random. This is pre-
cisely the reason why LHD may not guarantee adequate space-filling. For instance, Figure
10 is a well-known example of the worst possible LHD. This necessitates enhancing the
ability of LHD for space-filling. Therefore, researchers in early 1990s began optimiz-

Figure 9: Illustration of LHD for K = 10
and N = 2.

Figure 10: Worst case of LHD for K = 10
and N = 2.
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ing LHDs for space-filling. This is a computationally challenging task since (K!)N−1

configurations are possible for K sample points and N dimensional domain. Moreover,
a variety of space-filling metrics are available in the literature. Hence, the literature on
LHD optimization can be classified primarily based on space-filling criteria.

Table 1: Overview LHD optimization literature based on space-filling criteria and opti-
mization algorithms. (IMSE: Integrated Mean Squared Error, ME: Maximum
Entropy, OA: Optimization Algorithms, SA: Simulated Annealing, RCE: Row
Column Exchange, QN: Quasi Newton search, CP: Columnwise-Pairwise, TA:
Threshold Accepting based global search, PerGA: Permuted Genetic Algorithm,
ESE: Enhanced Stochastic Evolutionary, BB: Branch and Bound, ILS: Itera-
tive Local Search, TP: Translational Propagation, QLHD: Quasi-LHD, PSO:
Particle Swarm Optimization, AMPSO: Adaptive Memetic Particle Swarm Op-
timization, SOBSA: Sequencing Optimization based on Simulated Annealing)

Author/s OA PE MST Mm φp D∗2 C2 IMSE ME
Morris and Mitchell [111] SA X

Park [125] RCE, QNS X X
Ye et al. [92] CP X X

Fang et al. [52] TA-GS X
Bates et al. [11] PerGA X

Jin et al. [83] ESE X X X
Liefvendahl and Stocki [105] CP X X

van Dam et al. [162] BB X
Grosso et al. [71] ILS X X
Viana et al. [166] TP X
Xiong et al. [174] QLHD X

Hussalage et al. [81] ESE X X
Zhu et al. [178] SLE X
Chen et al. [22] PSO X

Damblin et al. [34] ESE, SA X
Pan et al. [124] TP-SLE X X X X
Aziz et al. [10] AMPSO X

Pholdee et al. [128] SOBSA X
Long et al. [107] S-SLE X

Table 1 presents a chronological list of the efforts on LHD optimization along with the
respective space-filling criteria and optimization algorithms. Clearly, there is no ba-
sis/recommendation for selecting one criterion over the other, since there seems no way
to compare one criterion with another. Of the 14 space-filling criteria known in the litera-
ture (discussed in Sections 2.2.1 and 2.2.2), only 8 have been used as objectives for LHD
optimization. To the best of our knowledge, no work has used KL information, star dis-
crepancy, wrap around discrepancy, minimax, Delaunay triangulation, and Voronoi tessel-
lations for optimizing LHDs. φp,Mm and PE have been widely studied. The most works
have focused on developing/comparing algorithms for LHD optimization. Evolutionary
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algorithms such as SA, GA, ESE and their variants have received the most attention due to
their simplicity and ease of application. Van Dam et al. [162] are the only one who have
employed branch and bound algorithm for LHD optimization. Their optimal designs are
archived online and freely available at http://www.spacefillingdesigns.nl.
Most of the works in the literature have done selective comparison of their proposed al-
gorithm with existing algorithm/s. Though there is no thorough comparison of designs in
the literature, articles by Pan et al. [124] and Jin et al. [83] attempt to be comprehensive.

Note that an optimized LHD for a given dimension remains an LHD for reduced dimen-
sion but it loses optimality.

4.1.5 Orthogonal Array Sampling

Fundamentally, orthogonal array sampling (OAS) shares many similarities with LHD.
While it retains the basic idea of random placement within bins as in LHD, it results in
uniform sampling in any T dimensional projection (T < N ) of anN dimensional domain.
In case of LHD, T = 1 and hence, OAS can be viewed as a generalization of LHD. OAS
employs four parametric integers: the number of sample points (K), the dimensions of
the domain (N ), the number of bins per dimension (B), and the strength of the OAS (T ).
Then the array index (λ) is given as λ = K×B−T . The index λ denotes the sample points
per bin after projection. Note that the term orthogonal array is not related to the notion of
orthogonality in linear algebra [69].

Let us understand OAS construction with a simple illustrative example of OAS(4, 3, 2, 2)
i.e. 4 sample points in 3 dimensional space with 2 bins per dimension resulting in an
OAS of strength 2. Clearly, λ = 1. Thus, the domain is a cube where each dimension is
divided into two equal sized bins resulting in 8 bins. Four samples are placed in diagonally
opposite bins so that after projecting them into any 2 dimensions, each bin will have only
one sample point. Readers can refer to [75, 122, 123, 158, 159] for further details on the
construction and properties of OAS.

Although OAS is a generalization of LHD in some sense, it still has a few practical dis-
advantages [69]. One primary disadvantage is that its construction depends on four care-
fully chosen parametric integers. This makes OAS less flexible than the other system-free
designs. Moreover, OAS construction is a nontrivial task as there are many possible per-
mutations in choosing bins and then for placements of samples within each bin. These
limitations have severely impacted the OAS literature over the years as discussed by Viana
[165].

4.2 System-Aided DoE

From late 1940s till mid 1980s researchers strived to develop generic system-free designs.
The lack of fast computing made those designs attractive. However, several researchers
(like Shewry, Wynn, Currin etc.) realized the vital importance of incorporating system
information while generating experimental designs. As system specific designs typically
perform better than the generic space-filling designs, in late 1980s, many scholars and
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researchers proposed model based designs that incorporated system information in various
ways.

4.2.1 Maximum Entropy Sampling

Lindley [106] proposed a measure to quantify information provided by an experiment
based on the concept of Shannon’s entropy [146]. This entropy criterion was first em-
ployed by Shewry and Wynn [147] and subsequently by Currin et al. [31] to construct
system-based experimental designs. Consider a sample set X (K) of size K over a domain
D. Let Y(K) be the response set for X (K) and Y(ζ) for X (ζ). Then, for any random Y and
its p.d.f. (probability distribution function) ψ(.), H(Y) denotes the entropy of ψ. Thus,

H(Y(K)) = H(Y(ζ)) +H(Y(K\ζ)|Y(ζ)) (20)

and H(Y(K\ζ)|Y(ζ)) denotes the conditional entropy given as follows:

H(Y(K\ζ)|Y(ζ)) = −
∫
ψ
(
Y(ζ)

)(∫
ψ(Y(K\ζ)|Y(ζ)) log[ψ(Y(K\ζ)|Y(ζ))]dY(ζ)

)
dY(ζ)

(21)
Readers may refer to [6] for detailed a discussion and proofs. To this end, Shewry and
Wynn argued as follows: since H(Y(K)) in Eq. (20) is fixed, the objective is to minimize
H(Y(K\ζ)|Y(ζ)) or maximize H(Y(ζ)), hence the name maximum entropy sampling. In
case of a Gaussian process model or Kriging, this results in a D-optimal design [144, 173].
Thus, it is commonly employed with Kriging [96].

4.2.2 MSE (Mean Squared Error)-based Designs

The prediction accuracy of a surrogate (predictor) can be improved by minimizing its
integrated mean squared error (IMSE Eq.(23)) over D [16]. This is employed by Sacks
and Schiller [138] and Sacks et al. [139] in case of Kriging. They formulated a problem
of finding X (K)

N,IMSE, IMSE based optimal design, that is given as follows:

J(X (K)
N,IMSE) = min

X (K)
N

J(X (K)
N ) (22)

where
J(X (K)

N ) =
1

σ2

∫
RN

E[y(x)− ŷ(x)]2dx (23)

The minimization problem in Eq. (22) is solved by Sacks and Schiller [138] with the help
of simulated annealing while Sacks et al. [139] used a quasi-Newton optimizer. Although
IMSE based designs are optimized using system information, their performance still de-
pends on the parameters associated with surrogate modeling techniques. For example, in
case of Kriging it depends on θ, a spatial correlation parameter. Koehler and Owen [96]
discussed this with various designs as illustrations.

Sacks et al. [140] discusses the use of maximum mean squared error (MMSE) instead of
IMSE for generating designs. Such designs can be generated by minimizing MMSE (Eq.
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(24)).
X (K)
N,MMSE = min

[
max
D

MSE
]

(24)

where MSE is a mean squared error of the predictor. Sacks and Schiller [138] compared
the performance of IMSE and MMSE for the discrete designs spaces. However, MMSE
designs become computationally intensive for the continuous spaces, especially for higher
dimensional cases as the resulting objective function turns out to be multimodal with
numerous local minima.

4.3 Comparative Analysis

Thus far, we discussed various static DoE techniques developed over the last six decades
and their key features. We now use literature statistics to understand the evolution of
each of these techniques and identify the prominent techniques. Furthermore, we perform
numerical analyses to formulate recommendations on their usage.

4.3.1 Literature Statistics

We now consider five static DoE techniques namely, MCS, QMCS, LHD, OAS and Max-
imum Entropy and trace their evolution over the years and across various fields (Figures

Figure 11: Literature statistics on number of articles published for various DoE tech-
niques over the years. (QMCS consists of Hammersley, Halton, and Sobol
sampling) (Retrieved from Scopus on 1st Feb. 2017 with following search
across title, abstract and keywords: “design of experiment” OR “experimen-
tal design” OR sampling AND “ST”, ST: Name of Sampling Technique)
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11 and 12). We use this literature analysis as a qualitative indicator of popularity of these
techniques. Figure 11 shows the trend of number of articles published on each of these
techniques over the years. Though the earliest examples of DoE appeared first in late
1940s, they did not receive significant attention from research community until late 1970s
(discussed earlier in Section 3). Thus, Figure 11 considers the literature from 1981 to
2016. It is clear that the literature has seen large number of articles for MCS and LHD
followed by QMCS and OAS. Maximum Entropy sampling has seen the least number of
articles over the years. This clearly indicates that system-free techniques are more popular
than system-aided ones. This is mainly due to the generic nature and wide applicability of
the system-free techniques. On the other hand, system-aided techniques are not flexible as
they are mainly available for Kriging models. Furthermore, system-free techniques have
become easily accessible to users through various DoE software tools. This highlights the
necessity of DoE techniques that have wide range applicability while integrating system
information in sample placement paradigm. This thought-process led to the birth of a new
class of sampling viz. adaptive sampling (Section 5).

Figure 12: Distribution of the DoE literature over the various fields. (QMCS consists
of Hammersley, Halton, and Sobol sampling; ENG: Engineering, COM:
Computer Science, MAT: Mathematics, PHY: Physics and Astronomy, CHE:
Chemistry, ENV: Environmental Science, BIO: Biochemistry, Genetics and
Molecular Biology, EAR: Earth and Planetary Sciences, DEC: Decision Sci-
ences, MED: Medicine, MAT: Material Science, AGR: Agricultural and Bio-
logical Sciences, ENE: Energy, CHN: Chemical Engineering) (Retrieved from
Scopus on 1st Feb. 2017 with following search across title, abstract and key-
words: “design of experiment” OR “experimental design” OR sampling AND
“ST”, ST: Name of Sampling Technique)
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4.3.2 Numerical Analysis

Though the literature statistics qualitatively ranked the popularity of various static tech-
niques, we now present a quantitative comparison of sampling techniques like MCS,
HAM (Hammersley sampling), HAL (Halton sampling), SOB (Sobol sampling), and
LHD. We use three variations of Sobol sampling viz. SOB1, SOB2, and SOB3. SOB1
and SOB2 are based on [86] while SOB3 is based on a recently proposed Sobol imple-
mentation [87]. We use Matlab for generating MCS, HAM, HAL, and SOB1 while Model
Development Suite (MoDS) [1] for generating SOB2 and SOB3. Curse of dimensionality

(a) N = 5, m = 1 (b) N = 5, m = 5

(c) N = 25, m = 1 (d) N = 25, m = 5

(e) N = 50, m = 1 (f) N = 50, m = 5
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(g) N = 75, m = 1 (h) N = 75, m = 5

(i) N = 100, m = 1 (j) N = 100, m = 5

Figure 13: Error analysis accessing effects of dimensions (N ), sample sizes (K), and
moments (m) on various sampling techniques. (MCS: Monte Carlo Sampling,
SOB1: Sobol Sampling type 1, SOB2: Sobol Sampling type 2, SOB3: Sobol
Sampling type 3, HAM:Hammersley Sampling, HAL: Halton Sampling, LHD:
Latin Hypercube Design)

is a fundamental challenge faced by all the techniques, especially the static system-free
techniques. Thus, robustness to the effects of dimensionality is a desirable feature in a
DoE technique. Robustness of the static system-free DoE techniques can be tested based
on their ability to fill space in higher dimensions. For this, we perform three analyses viz.
distribution based error analysis, visualization analysis, and distance based space-filling
(Section 2.2.2) analysis. Let us discuss them one by one.

In distribution based error analysis, we access the performance of various techniques
based on a error metric that quantifies the departure of a given sample distribution from
the uniform sample distribution. This metric is based on covariance matrix and Appendix
A provides a detailed development of this metric. The larger the error metric, the larger
the departure, hence, the poorer the space-filling ability. Figure 13 shows the error metric
ξ(t) (Eq. (A.8)) computed for a sample set X (K)

N for K = {100, 1000, 10000, 100000},
and N = {5, 25, 50, 75, 100} using t = {MCS,SOB1,SOB2,SOB3,HAM,HAL,LHD}.
Order of magnitude of ξ(MCS) decreases linearly with increasing sample size (logK) and is
independent of dimensions (N ). This follows the expected theoretical trend where order
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Table 2: Correlation analysis of various sampling techniques using ρ
(t)
max and m = 1.

(MCS: Monte Carlo Sampling, SOB1: Sobol Sampling type 1, SOB2: Sobol
Sampling type 2, SOB3: Sobol Sampling type 3, HAM:Hammersley Sampling,
HAL: Halton Sampling, LHD: Latin Hypercube Design)

N = 5
K MCS SOB1 SOB2 SOB3 HAL HAM LHD

100 0.1264 0.0444 0.0421 0.0504 0.0299 0.1260 0.1353
1000 0.0862 0.0068 0.0058 0.0093 0.0050 0.0162 0.0511
10000 0.0240 0.0012 0.0003 0.0005 0.0004 0.0023 0.0195

100000 0.0060 0.0000 0.0000 0.0001 0.0000 0.0003 0.0055
N = 25

100 0.4156 0.7525 0.2797 0.3657 0.8824 0.8824 0.3363
1000 0.1218 0.0201 0.0878 0.0255 0.1465 0.1465 0.0962
10000 0.0249 0.0180 0.0074 0.0048 0.0211 0.0211 0.0261

100000 0.0095 0.0026 0.0007 0.0005 0.0012 0.0012 0.0113
N = 50

100 0.3336 0.9497 0.8524 0.7499 1.0000 1.0000 0.8098
1000 0.1254 0.7494 0.3545 0.0449 0.8852 0.8335 0.1199
10000 0.0328 0.1196 0.0429 0.0082 0.1441 0.1195 0.0355

100000 0.0127 0.0033 0.0043 0.0009 0.0234 0.0152 0.0109
N = 75

100 0.3486 0.9497 0.8524 0.9336 1.0000 1.0000 0.9305
1000 0.1147 0.7532 0.7515 0.0500 0.9618 0.9618 0.1107
10000 0.0358 0.4788 0.4356 0.0094 0.5621 0.5621 0.0364

100000 0.0124 0.0127 0.1399 0.0009 0.0417 0.0417 0.0105
N = 100

100 0.3649 0.9497 0.8524 0.9336 1.0000 1.0000 0.9659
1000 0.1161 0.7532 0.7704 0.2012 0.9871 0.9871 0.1254
10000 0.0406 0.4788 0.4356 0.0116 0.7859 0.7859 0.0336

100000 0.0113 0.0127 0.1399 0.0009 0.1250 0.1250 0.0119

of magnitude of error is proportional to 1√
K

. LHD shows the performance trend similar
to MCS since LHD places sample points randomly within each bin. For N ≥ 50, MCS
and LHD performs better than all the techniques except for SOB3 in some cases. For
N ≥ 25 and K ≥ 1000, SOB3 outperforms all the other techniques making it the most
robust technique to the effects of dimensionality. However, SOB1 and SOB2 are moder-
ate performers and their performance worsens compared to MCS, LHD, and SOB3 with
increasing N and m. HAL is the best performer for N = 5 and K ≤ 1000, however, its
performance steadily drops with increasing dimensions. HAM follows the similar perfor-
mance trend that of HAL. HAM and HAL are the worst performers for N ≥ 50 and for
N = 25, K ≤ 1000.

Apart from ξ(t), we use Pearson coefficient based metric ρ(t)max (Eq. (A.10)) to quantify
the maximum correlation in the samples generated using various sampling techniques.
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Table 3: Correlation analysis of various sampling techniques using ρ
(t)
max and m = 5.

(MCS: Monte Carlo Sampling, SOB1: Sobol Sampling type 1, SOB2: Sobol
Sampling type 2, SOB3: Sobol Sampling type 3, HAM:Hammersley Sampling,
HAL: Halton Sampling, LHD: Latin Hypercube Design)

N = 5
K MCS SOB1 SOB2 SOB3 HAL HAM LHD

100 0.1661 0.0588 0.0522 0.0783 0.0636 0.1467 0.1295
1000 0.0520 0.0060 0.0070 0.0059 0.0074 0.0175 0.0639

10000 0.0174 0.0005 0.0010 0.0008 0.0009 0.0025 0.0199
100000 0.0077 0.0000 0.0001 0.0001 0.0001 0.0003 0.0031

N = 25
100 0.2954 0.4492 0.3090 0.3738 0.8172 0.8172 0.3802

1000 0.0816 0.2741 0.1321 0.0339 0.1991 0.1991 0.0983
10000 0.0274 0.0178 0.0093 0.0069 0.0221 0.0221 0.0311
100000 0.0096 0.0018 0.0014 0.0008 0.0021 0.0021 0.0091

N = 50
100 0.3872 0.8361 0.4910 0.4230 1.0000 1.0000 0.9998

1000 0.0993 0.4151 0.2727 0.1002 0.8427 0.7806 0.1352
10000 0.0365 0.1477 0.0637 0.0101 0.1364 0.1364 0.0370
100000 0.0125 0.0046 0.0091 0.0011 0.0215 0.0126 0.0103

N = 75
100 0.3896 0.8361 0.4910 0.7782 1.0000 1.0000 1.0000

1000 0.1154 0.4162 0.4128 0.1011 0.9411 0.9411 0.2256
10000 0.0338 0.2634 0.2401 0.0257 0.4835 0.4835 0.0385
100000 0.0098 0.0068 0.0771 0.0021 0.0343 0.0343 0.0100

N = 100
100 0.4041 0.8361 0.5473 0.7782 1.0000 1.0000 1.0000

1000 0.1181 0.4172 0.4614 0.2146 0.9784 0.9784 0.3428
10000 0.0461 0.2634 0.2764 0.0278 0.7294 0.7294 0.0376
100000 0.0122 0.0131 0.1169 0.0023 0.1038 0.1038 0.0127

Appendix A discusses a detailed development of ρ(t)max. The lower the metric value, the
lesser the correlation, the better the sampling technique. Tables 2 and 3 enlist the metric
values computed for m = 1 and m = 5 respectively, and the least correlated sample sets
are highlighted with boldface. SOB3 is the best performer for N ≥ 25 and K ≥ 10000.
On the other hand, MCS performs the best for N ≥ 50 and K ≤ 1000. LHD follows
similar performance trend as that of MCS. SOB1, SOB2, HAM, and HAL results in highly
correlated samples with increasing N . Overall, SOB3 is the most prominent choice of
sampling technique for high dimensional cases followed MCS and LHD, while HAL and
HAM are limited to lower dimensions.

Apart from distribution based metrics like ξ(t) and ρ(t)max, we use distance based SFC like
MST and Mm to analyze the performance of various sampling techniques. MST is em-
ployed to quantify the overall space-filling ability of a technique while Mm (Eq. (8)) is
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used to identify the maximum of minmum inter-sample distance. We normalize MST and
Mm so that 1 ≤ MST < ∞ and 1 ≤ Mm < ∞. We follow the normalization procedure
described in [12, 64].

MST criterion quantifies the spreading of the sample points by generating a tree and taking
average value of the edge lengths (Section 2.2.2). The larger the MST value, the better
the space-filling. Here, we compute MST for the seven equal sized (K = 1000) sample
sets generated using seven different techniques. We choose 2 ≤ N ≤ 40. Figure 14
shows that for N ≤ 8, HAM, HAL, and variants of SOB perform better than MCS and
LHD. On the other hand, for N ≥ 10, MST values for HAM and HAL drop consistently,
worsening their performance. For 10 ≤ N ≤ 23, SOB3 shows the best performance,
however, for N > 23, SOB2 steadily outperforms rest of the techniques. MCS and LHD
follow a steadily increasing trend similar to SOB3 (for N ≥ 10). For N ≥ 33, MCS and
LHD consistently outperform all the techniques except SOB2.

Figure 14: Effects of dimensionality on the space-filling ability of various techniques
based on normalized MST. (MCS: Monte Carlo Sampling, SOB1: Sobol Sam-
pling type 1, SOB2: Sobol Sampling type 2, SOB3: Sobol Sampling type 3,
HAM:Hammersley Sampling, HAL: Halton Sampling, LHD: Latin Hypercube
Design)
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Table 4: Numerical Analysis of various sampling techniques based on normalized MST
criteria. (MCS: Monte Carlo Sampling, SOB1: Sobol Sampling type 1, SOB2:
Sobol Sampling type 2, SOB3: Sobol Sampling type 3, HAM:Hammersley Sam-
pling, HAL: Halton Sampling, LHD: Latin Hypercube Design)

N
MST

MCS SOB1 SOB2 SOB3 HAM HAL LHD
3 1.00 1.13 1.15 1.13 1.28 1.12 1.01
5 1.00 1.09 1.06 1.10 1.11 1.09 1.00
8 1.00 1.03 1.01 1.08 1.03 1.10 1.00

10 1.00 1.03 1.03 1.05 1.06 1.04 1.00
13 1.05 1.07 1.06 1.05 1.03 1.00 1.05
15 1.08 1.10 1.07 1.11 1.00 1.02 1.09
18 1.12 1.10 1.10 1.15 1.00 1.00 1.12
20 1.15 1.12 1.17 1.18 1.00 1.00 1.16
23 1.21 1.20 1.23 1.23 1.00 1.00 1.21
25 1.25 1.25 1.27 1.26 1.00 1.00 1.26
27 1.30 1.30 1.33 1.31 1.00 1.00 1.31
30 1.38 1.37 1.41 1.39 1.00 1.00 1.38
33 1.46 1.45 1.48 1.45 1.00 1.00 1.46
36 1.53 1.51 1.55 1.51 1.00 1.00 1.53
40 1.63 1.58 1.64 1.59 1.00 1.00 1.63

Unlike MST, Mm criterion only quantifies the maximin inter-sample distance. Thus, the
larger the Mm value, the better the space-filling potential of a technique. For 3 ≤ N < 13,
HAM and HAL show the best performance, however, their performance drop severely and
become the worst with increasing dimensions. For N ≥ 15, variants of SOB, especially
SOB2, exhibit the best performance. MCS and LHD are moderate performers and they
show steadily increasing performance trend with increasing dimensions. Tables 4 and 5
summarize the normalized MST and Mm values for selected sampling techniques over the
range of dimensions. The best performer for a given dimension is denoted with boldface.
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Table 5: Numerical Analysis of various sampling techniques based on normalized Mm
criteria. (MCS: Monte Carlo Sampling, SOB1: Sobol Sampling type 1, SOB2:
Sobol Sampling type 2, SOB3: Sobol Sampling type 3, HAM:Hammersley Sam-
pling, HAL: Halton Sampling, LHD: Latin Hypercube Design)

N
Mm

MCS SOB1 SOB2 SOB3 HAM HAL LHD
3 1.00 4.14 4.77 4.14 4.96 3.11 1.45
5 1.00 1.88 1.79 2.28 2.75 2.24 1.05
8 1.00 1.36 1.32 1.39 1.72 1.84 1.03

10 1.14 1.29 1.00 1.52 1.92 1.84 1.05
13 1.00 1.07 1.00 1.22 1.38 1.31 1.04
15 1.01 1.24 1.13 1.15 1.07 1.07 1.00
18 1.16 1.29 1.38 1.39 1.00 1.00 1.23
20 1.35 1.37 1.54 1.41 1.00 1.00 1.38
23 1.62 1.62 1.74 1.70 1.00 1.00 1.57
25 1.78 1.67 1.80 1.97 1.00 1.00 1.73
27 1.89 1.87 1.88 2.06 1.00 1.00 1.89
30 2.17 2.12 2.31 2.22 1.00 1.00 2.10
33 2.33 2.36 2.64 2.39 1.00 1.00 2.35
36 2.55 2.51 2.73 2.49 1.00 1.00 2.48
40 2.79 2.78 2.84 2.67 1.00 1.00 2.79

Apart from the SFC, we use 2-D projection plots (Figures 15-17) to visualize space-filling
abilities of various techniques. For this, we use N = 40 dimensional domain and gen-
erate K = 500 sample points. Although

(
40
2

)
different 2 dimensional projection plots

are possible for every DoE technique, we have chosen only three of them for illustration
purposes. We can qualitatively judge robustness of a DoE technique based on the extent
of clustering. The lesser the clustering, the more robust the DoE technique to the ef-
fects of dimensionality. Figures 15e, 16e, 17e, 15f, 16f, and 17f clearly show the linearly
correlated samples generated by HAM and HAL respectively. This subsequently leads to
severe clustering at higher dimensions for HAM and correlated clusters for HAL. Variants
of SOB exhibit clustering in some cases (Figures 15d, 16f, 17c, 17b, 17d). Though MCS
and LHD face certain amount clustering, they neither present massive unexplored regions
like in HAM nor have correlated samples like in HAL.
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(a) MCS (b) SOB1 (c) SOB2

(d) SOB3 (e) HAM (f) HAL

(g) LHD

Figure 15: 2 dimensional projection plots (x15 vs. x16) illustrating clustering in various
sampling techniques for K = 500 in [0, 1]40. (MCS: Monte Carlo Sampling,
SOB1: Sobol Sampling type 1, SOB2: Sobol Sampling type 2, SOB3: Sobol
Sampling type 3, HAM:Hammersley Sampling, HAL: Halton Sampling, LHD:
Latin Hypercube Design)
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(a) MCS (b) SOB1 (c) SOB2

(d) SOB3 (e) HAM (f) HAL

(g) LHD

Figure 16: 2 dimensional projection plots (x29 vs. x30) illustrating clustering in various
sampling techniques for K = 500 in [0, 1]40. (MCS: Monte Carlo Sampling,
SOB1: Sobol Sampling type 1, SOB2: Sobol Sampling type 2, SOB3: Sobol
Sampling type 3, HAM:Hammersley Sampling, HAL: Halton Sampling, LHD:
Latin Hypercube Design)
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(a) MCS (b) SOB1 (c) SOB2

(d) SOB3 (e) HAM (f) HAL

(g) LHD

Figure 17: 2 dimensional projection plots (x38 vs. x39) illustrating clustering in various
sampling techniques for K = 500 in [0, 1]40. (MCS: Monte Carlo Sampling,
SOB1: Sobol Sampling type 1, SOB2: Sobol Sampling type 2, SOB3: Sobol
Sampling type 3, HAM:Hammersley Sampling, HAL: Halton Sampling, LHD:
Latin Hypercube Design)
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5 Adaptive DoE/Sampling

Sampling techniques discussed so far are one-shot or static in nature where all sample
points are generated at once. Although these techniques are very popular, they can result
in under/oversampling and thus, poor system approximation [28, 64]. In order to tackle
these issues, a dynamic class of DoE called adaptive sampling (also known as sequential
sampling) has attracted attention from research community. Adaptive sampling has two
major advantages over one shot techniques viz. low computational expenses and better
approximations [28, 29]. The adaptive sampling techniques discussed here aim to enhance
surrogate quality globally. Thus, they are different from adaptive sampling techniques for
surrogate assisted optimization [14, 35, 84, 89, 90, 131, 134, 135, 169].

Exploration and exploitation are the two basic concepts underlying adaptive sampling.
Exploration of the design space during sample placement aims to cover poorly-represented
or under-sampled sub-spaces. In other words, exploration aims for homogeneous sample
placement via space-filling. On the other hand, exploitation aims to place sample points
in the complex/highly nonlinear regions. While pure exploitation may result in local
oversampling, pure exploration may cause under-sampling in complex/nonlinear regions
and/or oversampling in simple/linear regions. Adaptive sampling may solely target ex-
ploration only or a balance between exploration and exploitation. The number of sample
points that an adaptive sampling algorithm generates at each iteration is called its granu-
larity. Fine grained algorithms are preferred over coarse grained as they completely avoid
any oversampling [29].

5.1 Adaptive Exploratory Sampling

The simplest case of adaptive exploratory sampling (AES) is adaptive grid. Consider a
2 dimensional grid of size 3 × 3 . If these 9 points are insufficient for constructing an
acceptable approximation, then we can add additional points (e.g. at midpoints) between
the existing grid points. Although this is the easiest AES, it may typically be coarse
grained and it rapidly faces curse of dimensionality. The term adaptive in AES suggests
incorporation of system information, however, they are just sequential/iterative space-
filling techniques. Thus, any space-filling technique can be made adaptive. Crombecq et
al. [29] proposed various AES techniques based on nested LHD and MCS by optimizing
the inter-sample distances and projected inter-site distances. Their numerical comparison
showed that the adaptive techniques outperformed the conventional one shot techniques
like LHD, Sobol, Halton [26].

5.2 Adaptive Hybrid Sampling

Though adaptive exploratory designs do perform better than the existing one-shot space-
filling designs, they still do not incorporate system information in sample placement.
Thus, over the last decade, researchers have shifted their focus to adaptive hybrid sam-
pling (AHS) techniques that exploit the system information for sample placement in an
intelligent and adaptive manner.
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In 2002, Jin et al. [82] proposed two approaches namely the Maximin Scaled Distance
(MSD) and the Cross Validation (CV). The former is a modification of maximin distance
based sampling that utilizes system information by assigning weights to important vari-
ables. On the other hand, the latter uses CV error [97] to direct exploitation, and maximin
distance to direct exploration. Their analyses showed that an MSD approach with Krig-
ing performed better than a CV approach with Radial Basis Function (RBF) when the
underlying systems are not excessively nonlinear. In contrast, their CV approach with
RBF outperformed their MSD approach with Kriging when the underlying system was
highly nonlinear or wavy. Farhang-Mehr and Azarm [54] proposed an adaptive variation
of maximum entropy sampling, which aims to place samples in irregular regions of the
response. Although their work lacked a thorough numerical comparison, they showed that
the adaptive version performed better than the one-shot versions. Busby et al. [21] pro-
posed a Kriging based hierarchical nonlinear approximation that employs adaptive grids
and considers entropy minimization. Their hierarchical approach outperforms the con-
ventional one-shot approach. Li et al. [104] proposed an adaptive design for Kriging
approximation based on prediction error. Their algorithm places new samples in CAMM
i.e. continuous and multi-modal region with the hope to improve poorly approximated
parts of the response. While they impose a clustering constraint to avoid local oversam-
pling, they do not use any explicit exploration criterion. Their approach performed better
than the MSD approach. Aute et al. [8] extended this further and employed it for heat
exchanger design optimization. Though all of the techniques discussed are adaptive in
nature, they are mainly suited for Kriging due to easy access to prediction errors. Thus,
all these techniques are surrogate specific. Moreover, Kriging performance drops, and
it becomes computationally costly with increase in dimensions and non-linearity of the
problem [116]. Hence, such techniques may not be viable for a wide range of problems.

In 2009, Crombecq et al. [27, 28] proposed a generic, robust and reliable adaptive sam-
pling strategy to overcome some shortcomings of the literature discussed above. Their
strategy, namely LOLA-Voronoi involves a combination of Voronoi tessellations and lo-
cal linear approximation (LOLA). Voronoi tessellations target domain exploration while
LOLA guides local exploitation. Their algorithm outperformed the static techniques for
all surrogate model types [26]. Singh et al. [150] proposed three trade-off schemes to
balance exploration versus exploitation for LOLA-Voronoi strategy. Although LOLA-
Voronoi strategy has shown promising results, it has some drawbacks. Its major drawback
is its compute-intensive nature due to Voronoi tessellations and LOLA computations.
Voronoi tessellations become computationally costly as dimensions increase. Further-
more, LOLA requires estimation of local derivatives which is computationally expensive
and becomes further complex with increasing N . Van der Herten et al. [164] attempted
to tackle these issues with a fuzzy variation of LOLA called as FLOLA. This provides the
benefits of the original algorithm and reduces computational burden significantly.

Xu et al. [175] employed Voronoi tessellations for dividing the domain into smaller re-
gions and then placed samples based on cross validation errors (exploitation). Zhou et
al. employed a similar concept using support vector machines [176, 177]. Eason and
Cremaschi [42] employed an adaptive strategy based on some scores for ANN surrogates.
This score consists of the normalized nearest neighbor distance of a new potential sample
and its normalized expected variance based on jackknifing [132]. Though their sample
placement is systematic, the sample points are still generated randomly similar to LOLA-
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Voronoi. Jin et al. [85] essentially extended the work of Eason and Cremaschi [42] with
two modifications. First, they enhanced ANN modelling with auto-node selection, and
second, they used maximum predicted error instead of expected variance. Ajdari and
Mahlooji proposed Delaunay-Hybrid Adaptive Sequential Design (DHASD) [5] which
can be viewed as a variation of [175]. It employs Delaunay triangulation which is a dual
of Voronoi tessellations (discussed in Section 2.2.2) for exploration and cross validation
error for exploitation. Their algorithm outperformed LOLA-Voronoi. Though most of
the adaptive sampling techniques discussed so far place sample points systematically, the
placement is still random.

On the other hand, works by Cozad et al. [24, 25] and Garud et al. [63, 64] formulated
optimization problems to place new samples. Cozad et al. proposed adaptive sampling
for their surrogate modeling tool called ALAMO [24, 25]. They add sample points one
at a time to an initial sample set. For each sample point, they solve a derivative-free
optimization problem to maximize the deviation of the surrogate from the real function.
This can become compute-intensive, as it requires the evaluation of the real function dur-
ing optimization. Garud et al. presented an adaptive sampling strategy based on point
placement optimization [64]. They formulated a nonlinear programming problem (NLP)
based on crowding distance metric for exploration and departure function for exploita-
tion. Table 6 summarizes distinguished adaptive sampling strategies in the literature, key
characteristics of their strategies, and their dependence on type of surrogate models.

Table 6: Adaptive hybrid sampling techniques in the literature. (Mm: Maximin Distance,
CVE: Cross Validation Error, MD: Mahalanobis Distance, ME: Maximum En-
tropy, VT: Voronoi Tessellation, LOLA: Local Linear Approximation, CC: Clus-
tering Constraint, EE: Expected Error, NN: Nearest Neighbor, JK: Jackknifing,
DT: Delaunay Triangulation, MSE: Maximum Sampling Error, CDM: Crowding
Distance Metric, DF: Departure Function)

Author Exploration Exploitation
Surrogate

Dependence
Approach

Jin et al. [82] Mm CVE × Optimization
Busby et al. [21] MD ME X(Kriging) Score

Crombecq et al. [27, 28] VT LOLA × Score
Li et al. [104] CC EE X(Kriging) Optimization
Xu et al. [175] VT CVE × Optimization

Eason and Cremaschi [42] NN JK × Score
Ajdari and Mahlooji [5] DT CVE × Score

Cozad et al. [24] - MSE × Optimization
Garud et al. [64] CDM DF × Optimization
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6 Conclusions and Future Prospects

Historically, DoE literature began with system-free approaches, and gradually evolved
into system-aided techniques. Recently, adaptive techniques are receiving much atten-
tion. In this comprehensive review, we critically classified the DoE literature following
its natural evolution and described key developments within respective sub-classes.

System-free techniques are the most popular to date due to their simplicity, easy commer-
cial availability, and flexibility across applications. Our numerical analysis using distance
based SFC and distribution error metrics highlighted the excellent space-filling abilities
of SOB3 for RN ∀N > 16. In contrast, QMCS techniques such as HAL and HAM are
well suited for low dimensional systems (N ≤ 8). Moreover, our visualization analysis
revealed that they face a massive clustering and/or correlated samples resulting in a very
poor space-filling for large N . Overall, SOB3 performs the best for RN ∀N > 16, and
large K while MCS and LHD tend to perform better for RN ∀N > 16, and smaller K.
HAM and HAL perform well for RN ∀N ≤ 8.

System-aided techniques have received limited attention due to three major reasons. First,
although they employ system information using surrogates to enhance performance, their
availability in commonly used software tools has been limited. Second, their reliance
on one-shot surrogates limits their scalability across a range of dimensions. Finally and
most importantly, their growth was prematurely halted by the more attractive and rapidly
advancing science of adaptive techniques. The idea of enhancing system-free techniques
via optimization understandably and quickly evolved into sequential DoE aided by system
information. By promoting the idea of using system knowledge to improve DoE, these
techniques laid the foundation for the modern adaptive approaches.

The current DoE research focuses largely on adaptive techniques that generate samples
intelligently by incorporating exploration and exploitation in a sequential manner. The
earlier techniques were surrogate dependent. However, researchers soon realized the im-
portance of generic and surrogate-independent strategies. This resulted in many generic
sequential techniques mostly based on some scores, while maintaining the conventional
idea of random placement. Recent works [24, 25, 64] have strived to use optimization
strategies to achieve sample placement. The class of adaptive techniques is still in infancy
and holds much promise for the future.

Our work has identified several key gaps in DoE research and suggests various opportu-
nities for further developments. The literature has a variety of space-filling criteria, but it
lacks clear guidelines on their usage or merits. This has resulted in a plethora of works ex-
ploring various combinations of these criteria. The consistency in the performance of SFC
across a range of dimensions remains unclear. Thus, analyzing existing SFC and making
recommendations on their usage can be a useful contribution. Novel comprehensive SFC
can play a vital role in making better sense of system-free DoE techniques.

While several advanced variants of system-free techniques exist in the literature, very
few of them have found their way into commercial tools or user-friendly avenues. An
exhaustive benchmarking of these techniques over ranges of dimensions, sample sizes,
and test beds (function sets) will help streamline the DoE literature. The same holds for
the rapidly growing adaptive DoE.
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Though optimization-based adaptive sampling strategies hold much promise, several vital
research topics need attention. First, efficient methods for placement optimization and
obtaining globally optimal solutions for multi-modal objective functions (due to nonlin-
ear surrogates) is a clear challenge. Second, minimizing the computational burden of
executing adaptive strategies, especially for solving point placement optimization prob-
lems and surrogate refitting, is another challenge. Third, there is a need for strategies
that are flexible with respect to surrogates and are scalable to higher dimensions. Fourth,
optimization-based sample placement strategies for multiple/hybrid surrogates would be
useful. Finally, the inclusion of these methods into commercial tools remains a concern
that will hopefully be resolved with time and technological advances. As the current
computational research moves towards modeling, simulation, analysis, and visualization
of complex interdisciplinary systems, the application of adaptive DoE techniques to high
dimensional systems needs much attention. Here, machine or active learning can play a
significant role.

Apart from system approximation and prediction, optimization becomes paramount in
system design and operation. Hence, surrogate-based optimization of complex systems is
a growing area where adaptive sampling can play a principal role.
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Nomenclature

Abbreviations

AES: Adaptive Exploratory Sampling
AHS: Adaptive Hybrid Sampling
AMPSO: Adaptive Memetic Particle Swarm Optimization
ANN: Artificial Neural Networks
BB: Branch and Bound
CAMM: Continuous and Multi-Modal
CC: Clustering Constraint
CDM: Crowding Distance Metric
CP: Columnwise-Pairwise
CV: Cross Validation
CVE: Cross Validation Error
DF: Departure Function
DHASD: Delaunay Hybrid Adaptive Sequential Design
DoE: Design of Experiments
DT: Delaunay Triangulation
EE: Expected Error
ESE: Enhanced Stochastic Evolutionary
FLOLA: Fuzzy Local Linear Approximation
GLS: Good Lattice Sampling
HAL: Halton sampling
HAM: Hammersley sampling
ILS: Iterative Local Search
IMSE: Integrated Mean Squared Error
JK: Jackknifing
KL: Kullback-Leibler
LHD: Latin Hypercube Designs
LHS: Latin Hypercube Sampling
LOLA: Local Linear Approximation
MCS: Monte Carlo Sampling
MD: Mahalanobis Distance
ME: Maximum Entropy
Mm: Maximin distance
mM: miniMax distance
MMSE: Maximum Mean Squared Error

39



MSD: Maximin Scaled Distance
MSE: Mean Squared Error
MSE: Maximum Sampling Error
MST: Minimum Spanning Tree
NLP: Nonlinear Programming
NN: Nearest Neighbor
OA: Optimization Algorithms
OAS: Orthogonal Array Sampling
PerGA: Permuted Genetic Algorithm
PE: Potential Energy
PSO: Particle Swarm Optimization
QLHD: Quasi Latin Hypercube Design
QMCS: Quasi-Monte Carlo Sampling
QNS: Quasi Newton Search
QRLD: Quasi-Random Low Discrepancy
RBF: Radial Basis Functions
RCE: Row Column Exchange
SA: Simulated Annealing
SFC: Space-Filling Criteria
SMCS: Stratified Monte Carlo Sampling
SOB1: Sobol sampling in Matlab (based on [86])
SOB2: Sobol Sampling in MoDS (based on [86])
SOB3: Sobol Sampling in MoDS (based on [87])
SOBSA: Sequencing Optimization Based on Simulated Annealing
SVM: Support Vector Machines
TA: Threshold Accepting based global search
TP: Translational Propagation
UD: Uniform Designs
VT: Voronoi Tessellation

Notations

Subscripts

n: Index for elements of design/input variables’ vector
s: Index for elements of response/output variables’ vector
R: Radix or base

Superscripts

j: Index for elements of set
k: Index for elements of set
t: Index for elements in set of sampling techniques
L: Lower bound
U : Upper bound
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Parameters

m: Moment of x
p: ordering parameter in φp
B: Number of bins in orthogonal array
K: Total number of sample points in a sample set
N : Total number of input domain dimensions
S: Total number of output domain dimensions
T : Strength of orthogonal array
λ: Orthogonal array index

Continuous Variables

x: Vector of input/design variables
y: Vector of output/response variables

Symbols

d: Euclidean distance
DT : Delaunay Triangulation
f̃ : Surrogate model form
H: Entropy
L: K ×N matrix
1[0,1]N : Indicator function
D: Real bounded domain
E: Expectation
N: Set of natural numbers
Q: Set of integers
R: Real space
S: Sequence of numbers
U[0,1]N : Uniform distribution over [0, 1]N domain
V : Voronoi cell
X : Sample set
Y: Response set
L2: Order 2 norm
D∗: Star discrepancy
D∗2: L2 discrepancy
C2: Centered L2 discrepancy
W2: Wrap-around L2 discrepancy
IKL: Kullback-Leibler information
ε: Random error
ξ: Covariance based error metric
ρ: Pearson correlation coefficient
Σ: Variance-Covariance matrix
σe: Standard deviation in edge length for MST
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σ2
n: Variance of nth component of x
σnp: Covariance between nth and pth component of x
θ: Inverse radix number
µe: Mean edge length for MST
ψ: Probability distribution function
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A Distribution based Error Metrics

Consider x ∈ RN , Ψ(x); Ψ : RN → RN , and x ∼ U[0,1]N . Without loss of generality, let
us assume the domain of x as follows, x ∈ D and D : [0, 1]N . Then, expectation of Ψ(x)
is given as follows.

E(Ψ(x)) =

∫
D

1

K

K∑
k=1

Ψ(x)δx(k)(dx)

=

∫
D

Ψ(x)1[0,1]N (x)dx

(A.1)

For Ψ(x) = xm, Eq. (A.1) results in expectation of mth moment of x,

E(xm) =

∫
D
xm1[0,1]N (x)dx (A.2)

Note that x is aN dimensional vector and hence, the integral in Eq. (A.2) can be expanded
to N integrals in each dimension n = {1, 2, ..., N}.

E(xm) =

∫ 1

0

∫ 1

0

...

∫ 1

0

xmdx1dx2...dxN

=

[[
1

m+ 1
xm+1
1 ,

1

m+ 1
xm+1
2 , ...,

1

m+ 1
xm+1
N

]1
0

]ᵀ
=

[
1

m+ 1
,

1

m+ 1
, ...,

1

m+ 1

]ᵀ
(A.3)

Variance σ2
n of any xmn ∀n = {1, 2, ..., N} is as,

σ2
n = E((xmn )2)− (E(xmn ))2

= E((x2mn )− (E(xmn ))2

=
1

1 + 2m
− 1

(1 +m)2

=
m2

(1 + 2m)(1 +m)2

(A.4)

Covariance σnp between xmn andxmp ∀n, p = {1, 2, ..., N} andn 6= p can be written as,

σnp = E((xmn − E(xmn ))((xmp − E(xmp )))

= E(xmn x
m
p )− E(xmn )E(xmp )

= 0

(A.5)
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A covariance matrix consisting of variances and covariances of components of xm is given
in Eq. A.6. For uniform distributions xn and xp are uncorrelated and hence, σnp = 0 (Eq.
(A.5)) reducing Σ to a diagonal matrix given in Eq. (A.7).

Σ =


σ2
1 σ12 . . . σ1N

σ21 σ2
2 . . . σ2N

...
... . . . ...

σN1 σN2 . . . σ2
N

 (A.6)

=


σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
... . . . ...

0 0 . . . σ2
N

 (A.7)

To this end, we define error metric ξ(t) for a given sample set X (K)
N generated using tech-

nique t = {MCS,SOB1,SOB2,SOB2,HAM,HAL,LHD} as the maximum absolute de-
parture of its covariances from that of the uniform distribution (given in Eq. (A.7)). In
other words, we characterize the potential correlation based on covariance of the samples
that can be given as follows.

ξ(t) = max
n, p∈N ,n 6=p

|σ(t)
np − σnp|

= max
n, p∈N ,n 6=p

|σ(t)
np − 0|

= max
n, p∈N ,n 6=p

|σ(t)
np |

(A.8)

where N = {1, 2, ..., N} and t = {MCS,SOB1,SOB2,HAM,HAL,LHD}.
Moreover, we define coefficient of correlation also known as Pearson coefficient as shown
in Eq. (A.9) and−1 ≤ ρ

(t)
np ≤ 1. ρ(t)np = 0 denotes uncorrelated samples while positive and

negative values of ρ(t)np imply positively and negatively correlated samples respectively.

ρ(t)np =
σ
(t)
np

σ
(t)
n σ

(t)
p

(A.9)

We use this coefficient to compare the correlations between sample sets generated by var-
ious techniques. For this, we compute ρ(t)max (Eq. (A.9)) for a sample set X (K)

N generated
using t = {MCS,SOB1,SOB2,SOB2,HAM,HAL,LHD}.

ρ(t)max = max
n, p∈N ,n6=p

|ρ(t)np| (A.10)

The larger the value of ρ(t)max, the greater the correlation (0 ≤ ρ
(t)
max ≤ 1).
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B Computational Tools

Tables 7 and 8 provide a list of tools available for design and analysis of computer experi-
ments. Note that this list is just a indicator of available resources for users and is far from
complete.

Table 7: Open source computational tools for design and analysis of computer experi-
ments and their fields of applicability.

Software/Tool Fields of Application

Advanced Simulation Library (ASL)
Transport Phenomenon, Chemical Reactions,

Elasticity, Interface tracking

FreeMat
Rapid Engineering, Scietific prototyping,

Data processing
GNU Octave Numerical Computations

SageMath
Algebra, Combinatorics, Numerical

mathematics, Number theory, Calculus
Scilab Cross Platform Numerical Computations

SU2
Computational Fluid Dynamics,

Aerodynamics optimization

Table 8: Proprietary computational tools for design and analysis of computer experi-
ments and their fields of applicability.

Software/Tool Fields of Application
GoldSim Decision and Risk analysis

HyperWorks Product design and development, Engineering
LMS Imagine.Lab Amesim Multidomain Mechatronic Systems

Maple Symbolic and Numeric Computing
Mathematica Mathematical Symbolic Computing

MATLAB Multi-paradigm Numerical Computing
Model Development Suite (MoDS) Computer Aided Engineering

ModelCenter System Design and Optimization
Plant Simulation Production Systems and Process Operations
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http://asl.org.il/
http://freemat.sourceforge.net/#home
https://www.gnu.org/software/octave/
http://www.sagemath.org/
http://www.scilab.org/
http://su2.stanford.edu/
http://www.goldsim.com/Home/
http://www.altair.com/
http://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/amesim/index.shtml
http://www.maplesoft.com/products/maple/
http://www.wolfram.com/mathematica/
https://www.mathworks.com/products/matlab.html
http://www.cmclinnovations.com/mods/
http://www.phoenix-int.com/modelcenter/integrate.php
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/manufacturing-simulation/material-flow/plant-simulation.shtml
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[41] R. Dyer, H. Zhang, and T. Möller. Surface sampling and the intrinsic Voronoi dia-
gram. In Computer Graphics Forum, volume 27, pages 1393–1402. Wiley Online
Library, 2008. doi:10.1111/j.1467-8659.2008.01279.x.

[42] J. Eason and S. Cremaschi. Adaptive sequential sampling for surrogate model
generation with artificial neural networks. Computers & Chemical Engineering,
68:220–232, 2014. doi:10.1016/j.compchemeng.2014.05.021.

[43] V. Eglajs and P. Audze. New approach to the design of multifactor experiments.
Problems of Dynamics and Strengths, 35:104–107, 1977.

[44] M. Evans and T. Swartz. Approximating integrals via Monte Carlo and determin-
istic methods, volume 20. OUP Oxford, 2000.

[45] K.-T. Fang. The uniform design: application of number-theoretic methods in ex-
perimental design. Acta Math. Appl. Sinica, 3(4):363–372, 1980.

[46] K. T. Fang. Theory, method and applications of the uniform design. Interna-
tional journal of reliability, quality and safety engineering, 9(04):305–315, 2002.
doi:10.1142/S0218539302000858.

[47] K. T. Fang and D. K. Lin. Ch. 4. uniform experimental designs and their applica-
tions in industry. Handbook of statistics, 22:131–170, 2003. doi:10.1016/S0169-
7161(03)22006-X.

[48] K. T. Fang and C. X. Ma. Wrap-around L2-discrepancy of random sampling,
Latin hypercube and uniform designs. journal of complexity, 17(4):608–624, 2001.
doi:10.1006/jcom.2001.0589.

[49] K. T. Fang and H. Qin. A note on construction of nearly uniform designs with
large number of runs. Statistics & probability letters, 61(2):215–224, 2003.
doi:10.1016/S0169-7161(03)22006-X.

[50] K. T. Fang, Y. Wang, and P. M. Bentler. Some applications of number-
theoretic methods in statistics. Statistical Science, pages 416–428, 1994.
doi:10.2307/2246355.

[51] K. T. Fang, D. K. Lin, P. Winker, and Y. Zhang. Uniform de-
sign: Theory and Application. Technometrics, 42(3):237–248, 2000.
doi:10.1080/00401706.2000.10486045.

[52] K. T. Fang, C.-X. Ma, and P. Winker. Centered L2-discrepancy of random sampling
and Latin hypercube design, and construction of uniform designs. Mathematics of
Computation, 71(237):275–296, 2002. doi:10.1090/S0025-5718-00-01281-3.

[53] K. T. Fang, R. Li, and A. Sudjianto. Design and modeling for computer experi-
ments. CRC Press, 2005.

49

http://dx.doi.org/10.1103/PhysRevB.34.3528
http://dx.doi.org/10.1111/j.1467-8659.2008.01279.x
http://dx.doi.org/10.1016/j.compchemeng.2014.05.021
http://dx.doi.org/10.1142/S0218539302000858
http://dx.doi.org/10.1016/S0169-7161(03)22006-X
http://dx.doi.org/10.1016/S0169-7161(03)22006-X
http://dx.doi.org/10.1006/jcom.2001.0589
http://dx.doi.org/10.1016/S0169-7161(03)22006-X
http://dx.doi.org/10.2307/2246355
http://dx.doi.org/10.1080/00401706.2000.10486045
http://dx.doi.org/10.1090/S0025-5718-00-01281-3


[54] A. Farhang-Mehr and S. Azarm. Bayesian meta-modelling of engineering design
simulations: a sequential approach with adaptation to irregularities in the response
behaviour. International Journal for Numerical Methods in Engineering, 62(15):
2104–2126, 2005. doi:10.1002/nme.1261.

[55] H. Faure. On the star-discrepancy of generalized Hammersley sequences
in two dimensions. Monatshefte für Mathematik, 101(4):291–300, 1986.
doi:10.1007/BF01559392.

[56] V. V. Fedorov. Theory of optimal experiments. Elsevier, 1972.

[57] R. Fisher. The design of experiments. Oliver and Boyd, Edinburgh, 1935.

[58] R. A. Fisher. The arrangement of field experiments. Journal of the Ministry of
Agriculture of Great Britain, 33(4):503–513, 1926. doi:10.1002/9781118763667.

[59] G. S. Fishman. Estimating network characteristics in stochastic activity networks.
Management Science, 31(5):579–593, 1985. doi:10.1287/mnsc.31.5.579.

[60] K. Forsberg, N. He, and A. Massih. Probabilistic analysis of nuclear fuel rod be-
havior using a quasi-Monte Carlo method. Nuclear science and engineering, 122
(1):142–150, 1996.

[61] Y. Fu and U. M. Diwekar. An efficient sampling approach to multiobjec-
tive optimization. Annals of Operations Research, 132(1-4):109–134, 2004.
doi:10.1023/B:ANOR.0000045279.46948.dd.

[62] S. Galanti and A. Jung. Low-discrepancy sequences: Monte Carlo sim-
ulation of option prices. The Journal of Derivatives, 5(1):63–83, 1997.
doi:10.3905/jod.1997.407985.

[63] S. Garud, I. Karimi, and M. Kraft. Smart adaptive sampling for surro-
gate modelling. Computer Aided Chemical Engineering, 38:631–636, 2016.
doi:10.1016/B978-0-444-63428-3.50110-7.

[64] S. S. Garud, I. Karimi, and M. Kraft. Smart sampling algorithm for surrogate
model development. Computers & Chemical Engineering, 96:103–114, 2017.
doi:10.1016/j.compchemeng.2016.10.006.

[65] T. Gensane. Dense packings of equal spheres in a cube. the electronic journal of
combinatorics, 11(1):R33, 2004.

[66] J. E. Gentle. Random number generation and Monte Carlo methods. Springer
Science & Business Media, 2006. doi:10.1007/b97336.
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