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Highlights

• Numerical scheme for the one-dimensional time-dependent Schrödinger equation.

• Random Cloud Model in particle number formulation.

• Modification of the RCM to bounded domains.

• Analysis of the RCM processes for a particle in a potential well.

Abstract

In this paper we present a numerical scheme for the Random Cloud Model (RCM)
on a bounded domain which approximates the solution of the time-dependent Schrödinger
equation. The RCM is formulated as a Markov jump process on a particle number
state space. Based on this process a stochastic algorithm is developed. It is shown
that the algorithm reproduces the dynamics of the time-dependent Schrödinger equa-
tion for exact initial conditions on a bounded domain. The algorithm is then tested
for two different cases. First, it is shown that the RCM reproduces the analytic solu-
tion for a particle in a potential well with infinite potential. Second, the RCM is used
to study three cases with finite potential walls. It is found that the potential triggers
processes, which produces RCM particles at a high rate that annihilate each other.
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1 Introduction

This paper is concerned with the numerical implementation and analysis of the Ran-
dom Cloud Model (RCM) which provides an approximation to the solution of the time-
dependent one-dimensional Schrödinger equation

ı~
∂

∂t
Ψ(t, x) = − ~2

2m

∂2

∂x2
Ψ(t, x)− qV (x)Ψ(t, x), (1)

on the domain Ω = [0, T ]× [0, L] with some appropriate initial conditions

Ψ(0, x) = Ψ0(x) (2)

and boundary conditions

Ψ(t, 0) = Ψ(t, L) = 0. (3)

Equation (1) describes the time evolution of the wave function Ψ(t, x) of a single electron
of mass m and charge q at position x at time t, where V (x) is the potential, ~ is the Dirac
constant and ı is the imaginary unit. The length of the computational domain and the
stopping time are denoted L and T , respectively.

The RCM has been proposed in [6] and in a more general version in [7]. The RCM
is a Markov jump process which provides an approximation of Ψ in terms of a two-
coloured signed-particle cloud on a grid. It can be shown that the RCM converges to (1)
on unbounded domains [6]. However, no information on the numerical behaviour of the
RCM exists and the extension of the RCM to bounded domains remains an open question.

The purpose of this paper is to study the numerical behaviour of the RCM. We propose
an algorithm which is based on a particle number formulation of the RCM process on
bounded domains and study its numerical properties for a simple test case of one particle
in a potential well. We also investigate the behaviour of the algorithm at the boundary of
the well for finite and infinite potentials.

2 Random cloud model

We introduce a spacial grid

Rε = {x = εj, j = 0, ..., Nx} (4)

with grid size ε. The left boundary of the computational domain x = 0 is obtained for
j = 0 and the right boundary x = L is obtained for j = Nx. For functions f on Rε we
define the discrete Laplacian

∆(ε)
x f =

f(x+ ε)− 2f(x) + f(x− ε)
ε2

ε > 0 (5)

with appropriate modification at the grid boundary.
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The discretised one-dimensional Schrödinger equation is then given

ı~
∂

∂t
Ψ(ε)(t, x) = − ~2

2m
∆(ε)
x Ψ(ε)(t, x)− qV (ε)(x)Ψ(ε)(t, x), (6)

with initial conditions

Ψ(ε)(0, x) = Ψ
(ε)
0 (x) (7)

and boundary conditions

Ψ(ε)(t, 0) = Ψ(ε)(t, L) = 0. (8)

The RCM consists of a particle system

(uj(t), xj(t), yj(t)) j = 1, ..., N(t), (9)

where uj(t) = ±1 is the sign, xj(t) ∈ Rε is the position and yj(t) = 1, 2 is the type
(real/red or imaginary/blue) of the particle. N(t) is the number of particles at time t.
Figure 1 shows examples of specific particle configurations. In a Markov jump process

+

‐ +

‐
+

Figure 1: Examples of simple particle configuration in the RCM state space.

particles, independently of each other, create “offspring” that are added to the system (9).
The jumps and rates of the corresponding process are depicted in Figures 2 to 5. Figures
2(a) to 2(d) show left creation events for all particle types including their rate. Figures 3,
4, and 5 show mid, right, and potential creation events, respectively.
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+ +

+

(a) Red positive left (1pl)

‐ ‐

‐

(b) Red negative left (1nl)

+

‐ +

(c) Blue positive left (2pl)

‐

+ ‐

(d) Blue negative left (2nl)

Figure 2: Left creation jumps (1pl,1nl,2pl,2nl).

‐
+

+

(a) Red positive mid (1pm)

+
‐

‐

(b) Red negative mid (1nm)

+
+

+

(c) Blue positive mid (2pm)

‐
‐

‐

(d) Blue negative mid (2nm)

Figure 3: Mid creation jumps (1pm,1nm,2pm,2nm).
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(a) Red positive right (1pr)

‐

‐

‐

(b) Red negative right (1nr)

+

+ ‐

(c) Blue positive right (2pr)

‐

‐ +

(d) Blue negative right (2nr)

Figure 4: Right creation (1pr,1nr,2pr,2nr) .

++

++
+ ‐

(a) Red positive potential (1pp)

‐‐

‐‐
‐ +

(b) Red negative potential (1np)

+‐
+ +

+ +

(c) Blue positive potential (2pp)

‐+
‐ ‐

‐ ‐

(d) Blue negative potential (2np)

Figure 5: Potential creation jumps (1pp,1np,2pp,2np).

3 A particle number system

In this section we construct a particle number representation [4, 5] of the Markov jump
process described in [6].
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We denote N (ε)
j,k (t) ∈ Z the number of particles of type k = 1, 2 located at position

xj = εj with j = 0, ..., Nx at time t, that is

N
(ε)
j,k (t) = η

(ε)
+,k(t, j · ε)− η

(ε)
−,k(t, j · ε) (10)

where
η(ε)u,y(t, x) = # {j = 1, ..., N(t) : (uj(t), xj(t), yj(t)) = (u, x, y)}

and n, denoting the number of particles at time zero

n =
Nx∑
j=0

∣∣∣N (ε)
j,1 (0)

∣∣∣+
∣∣∣N (ε)

j,2 (0)
∣∣∣ .

In the following we drop the superscript ε. Consider the Markov process of the form

Z(t) =
(
N0,1(t), N0,2(t), N1,1(t), N1,2(t), ..., NNx,1(t), NNx,2(t)

)
. (11)

The total number of particles at time t is

N(t) =
Nx∑
j=0

|Nj,1(t)|+ |Nj,2(t)| .

We construct Nj,k(0) such that

Ψj,1(0) = ENj,1(0), Ψj,2(0) = ENj,2(0).

The dynamics of the Markov process Z(t) (11) is determined by jumps Jj,k,β(z) that
occur at rate Rj,k,β(z), with j = 1, ..., Nx, k = 1, 2, β = pl, nl, pm, nm, pr, nr, pp, np and
z ∈ Z2(Nx+1). For convenience we define

c1 =
~

2mε2
, c2,j =

q

~
Vj.

with Vj = V (j · ε) and the rate constants

λj,k,pl(z) = λj,k,pr(z) = 1(zj,k>0)(z) c1

λj,k,nl(z) = λj,k,nr(z) = 1(zj,k<0)(z) c1

λj,k,pm(z) = 1(zj,k>0)(z) 2c1

λj,k,nm(z) = 1(zj,k<0)(z) 2c1

λj,k,pp(z) = 1(zj,k>0)(z) |c2,j|
λj,k,np(z) = 1(zj,k<0)(z) |c2,j|

with

λj(z) =
∑
k,β

λk,β,j(z) = 4c1 + |c2,j| =
2~
mε2

+
q

~
|Vj|.
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The rate functions of the process (11) are then

Rj,k,β(z) = |zj,k|λj,k,β(z). (12)

The overall rate function is

R(z) =
∑

j,k,β |zj,k|λj,k,β(z). (13)

We also define the rate function

Rj(z) =
∑

k,β |zj,k|λj,k,β(z), (14)

for fixed j0

Rj0,k(z) = |zj0,k|
∑

β λj0,k,β(z), (15)

and for fixed j0, k0

Rj0,k0,β(z) = |zj0,k0|λj0,k0,β(z). (16)

For “red” or real “k = 1” type particles the jumps are

Jj,1,pl(z) =

{
(..., zj−1,1, zj−1,2 + 1, zj,1, zj,2, ...) : j = 2, ..., Nx

z : j = 0, 1

Jj,1,nl(z) =

{
(..., zj−1,1, zj−1,2 − 1, zj,1, zj,2, ...) : j = 2, ..., Nx

z : j = 0, 1

Jj,1,pm(z) =

{
(..., zj,1, zj,2 − 1, ...) : j = 1, ..., Nx − 1

z : j = 0, Nx

Jj,1,nm(z) =

{
(..., zj,1, zj,2 + 1, ...) : j = 1, ..., Nx − 1

z : j = 0, Nx

Jj,1,pr(z) =

{
(..., zj,1, zj,2, zj+1,1, zj+1,2 + 1, ...) : j = 0, ..., Nx − 2

z : j = Nx − 1, Nx

Jj,1,nr(z) =

{
(..., zj,1, zj,2, zj+1,1, zj+1,2 − 1, ...) : j = 0, ..., Nx − 2

z : j = Nx − 1, Nx

Jj,1,pp(z) =

{
(..., zj,1, zj,2 + sign(Vj), ...) : j = 1, ..., Nx − 1

z : j = 0, Nx
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Jj,1,np(z) =

{
(..., zj,1, zj,2 − sign(Vj), ...) : j = 1, ..., Nx − 1

z : j = 0, Nx

For “blue” or imaginary “k = 2” type particles the jumps are

Jj,2,pl(z) =

{
(..., zj−1,1 − 1, zj−1,2, zj,1, zj,2, ...) : j = 2, ..., Nx

z : j = 0, 1

Jj,2,nl(z) =

{
(..., zj−1,1 + 1, zj−1,2, zj,1, zj,2, ...) : j = 2, ..., Nx

z : j = 0, 1

Jj,2,pm(z) =

{
(..., zj,1 + 1, zj,2, ...) : j = 1, ..., Nx − 1

z : j = 0, Nx

Jj,2,nm(z) =

{
(..., zj,1 − 1, zj,2, ...) : j = 1, ..., Nx − 1

z : j = 0, Nx

Jj,2,pr(z) =

{
(..., zj,1, zj,2, zj+1,1 − 1, zj+1,2, ...) : j = 0, ..., Nx − 2

z : j = Nx − 1, Nx

Jj,2,nr(z) =

{
(..., zj,1, zj,2, zj+1,1 + 1, zj+1,2, ...) : j = 0, ..., Nx − 2

z : j = Nx − 1, Nx

Jj,2,pp(z) =

{
(..., zj,1 − sign(Vj), zj,2, ...) : j = 1, ..., Nx − 1

z : j = 0, Nx

Jj,2,np(z) =

{
(..., zj,1 + sign(Vj), zj,2, ...) : j = 1, ..., Nx − 1

z : j = 0, Nx

Note, the jumps are constructed such that the boundary conditions hold for all t ≤ T ,

z0,k(t) = zNx,k(t) = 0.
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3.1 Process dynamics

The dynamics of the processZ(t) is governed by the ratesRj,k,β(z) and the jumps Jj,k,β(Z(t))
as described above. Using Dynkin’s formula (cf. [2], p.380) we can write

d

dt
EZ(t) = E

∑
j,k,β

Rj,k,β(Z(t)) [Jj,k,β(Z(t))− Z(t)] . (17)

Consider j = 1, ..., Nx − 1, k = 2, and β = pl,

Rj+1,2,pl(z) [Jj+1,2,pl(z)− z]

=λj+1,2,pl(z)|zj+1,2| [(..., zj−1,1, zj−1,2, zj,1 − 1, zj,2, ...)− (..., zj−1,1, zj−1,2, zj,1, zj,2, ...)]

=λj+1,2,pl(z)|zj+1,2| [(...0,−1j,1, 0, ...)]

=
(
...0, [−1(zj+1,2>0)(z)c1|zj+1,2|]j,1, 0, ...

)
= −c1zj+1,2|+j,1.

Similarly,

Rj+1,2,pl(z) [Jj+1,2,pl(z)− z] = −c1zj+1,2|+j,1 Rj+1,2,nl(z) [Jj+1,2,nl(z)− z] = +c1zj+1,2|−j,1
Rj,2,pm(z) [Jj,2,pm(z)− z] = +2c1zj,2|+j,1 Rj,2,nm(z) [Jj,2,nm(z)− z] = −2c1zj,2|−j,1

Rj−1,2,pr(z) [Jj−1,2,pr(z)− z] = −c1zj−1,2|+j,1 Rj−1,2,nr(z) [Jj−1,2,nr(z)− z] = +c1zj−1,2|−j,1
Rj,2,pp(z) [Jj,2,pp(z)− z] = − sign(Vj)|c2,j|zj,2|+j,1 Rj,2,np(z) [Jj,2,np(z)− z] = + sign(Vj)|c2,j|zj,2|−j,1.

Consider the change in number of red (type 1) particles at position j with contribu-
tions of the creation processes (j + 1, 2, pl), (j, 2, pm), (j − 1, 2, pr), (j, 2, pp) and (j +
1, 2, nl),(j, 2, nm),(j − 1, 2, nr),(j, 2, np) then

d

dt
EZj,1 = −c1EZj+1,2|+j,1 + 2c1EZj,2|+j,1 − c1EZj−1,2|+j,1 − sign(Vj)|c2,j|EZj,2|+j,1

+c1EZj+1,2|−j,1 − 2c1EZj,2|−j,1 + c1EZj−1,2|−j,1 + sign(Vj)|c2,j|EZj,2|−j,1.

Using z.,.|j,1 = z.,.|+j,1 − z.,.|−j,1 and c2,j = sign(Vj)|c2,j| gives, e.g.

Rj+1,2,pl(z) [Jj+1,2,pl(z)− z] +Rj+1,2,nl(z) [Jj+1,2,nl(z)− z]

= −c1zj+1,2|+j,1 + c1zj+1,2|−j,1
= −c1zj+1,2|j,1.

Therefore,

d

dt
EZj,1 = −c1EZj+1,2 + 2c1EZj,2 − c1EZj−1,2 − c2,jEZj,2.
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Evaluating equation (17) now yields

d

dt
EN0,1(t) = 0

d

dt
EN0,2(t) = 0

d

dt
ENj,1(t) = −c1 [ENj+1,2(t)− 2ENj,2(t) + ENj−1,2(t)]− c2,jENj,2(t)

d

dt
ENj,2(t) = +c1 [ENj+1,1(t)− 2ENj,1(t) + ENj−1,1(t)] + c2,jENj,1(t)

d

dt
ENNx,1(t) = 0

d

dt
ENNx,2(t) = 0

recalling (3)

ENj,1(0) = Ψj,1(0), ENj,2(0) = Ψj,2(0)

and noting

EN0,1(t) = EN0,2(t) = ENNx,2(t) = ENNx,2(t) = 0,

the wave function Ψj,k(t)

Ψj,1(t) = ENj,1(t)

Ψj,2(t) = ENj,2(t),

solves (6) subject to initial and boundary conditions equations (7) and (8), respectively.
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4 Numerical algorithm

Algorithm 1: Particle Number Algorithm for the Random Cloud Model
Data: Physical constants, Initial conditions, Boundary condition, Numerical constants
Initialise physical, numerical, output variables;
z = (Nj,1(0), Nj,2(0));
Calculate R(z), viz.(13);
Calculate waiting time τ ;

P(τ ≥ t) = exp(−R(z)t), t ≥ 0;

t = t+ τ ;
while t < T do

Calculate Rj(z), viz.(14);
Choose position j0 ∈ {0, 1, 2, ..., Nx} with probability

P(j) =
Rj(z)

R(z)
;

Calculate Rj0,k(z), viz.(15);
Choose red or blue particle, i.e. an index k0 ∈ {1, 2} with probability

P(k) =
Rj0,k(z)

Rj0,1(z) +Rj0,2(z)
=

zj0,k
zj0,1 + zj0,2

;

Calculate Rj0,k0,β(z), viz.(16);
Choose jump type β0 ∈ {pl, nl, pm, nm, pr, nr, pp, np} with probability

P(β) =
Rj0,k0,β(z)∑
αRj0,k0,α(z)

=
λj0,k0,β
λj0

;

Perform jump

z := Jj0,k0,β0(z);

Calculate R(z), viz.(13);
Calculate waiting time τ ;

P(τ ≥ t) = exp(−R(z)t), t ≥ 0;

t = t+ τ ;
end
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5 Test case: particle in a potential well

Following, for example, chapter 2 of [3] we consider the test case of a particle of energy
E trapped in a one-dimensional potential well with infinitely high sides and V (x) = 0
inside the well as depicted in figure 6.

Figure 6: A square potential with infinite high sides. The potential energy is zero inside
the box and infinite outside.

The energy of the particle inside the box is given by

E =
~2l2

8mL2
=

~2π2l2

2mL2
l = 1, 2, 3, ...

with l ∈ N the quantum number. The energy of the case l = 1 is the state with the lowest
energy and is called zero point energy,

E =
~2

8mL2
.

Figure 7 displays the time-independent wave functions for the energy levels l = 1, ..., 4.

For this case, as the potential V (x) is not dependent on time, the solution of the Schrödinger
equation 6 can be separated into a time-independent and time-dependent part,

Ψ(t, x) = φ(x)χ(t),

the time-independent part φ(x) being

φ(x) =

√
2

L
sin

(
lπx

L

)
(18)

with

x = 0 : φ(0) = 0

x = L : φ(L) =

√
2

L
sin (lπ) = 0

at the boundaries of the domain.
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Figure 7: Wave functions and probability distributions of a particle in a box for quantum
numbers l = 1, 2, 3, 4 for t = 0.

The time-dependent part of the solution χ(t) is

χ(t) = cos
( ~π2l2

2mL2
t
)
− ı sin

( ~π2l2

2mL2
t
)
.

For ease of computation we choose L = 1,m = 1, q = 1, ~ = 1 and obtain

Ψ(t, x) = φ(x)χ(t)

=
√

2 sin(lπx)
(

cos
(π2l2

2
t
)
− ı sin

(π2l2

2
t
))

with boundary conditions Ψ(t, 0) = Ψ(t, 1) = 0.

14



Denoting Ψ1 and Ψ2 the real and imaginary parts of Ψ respectively as the solution to (6)

Ψ1(t, x) =
√

2 sin(lπx) cos
(π2l2

2
t
)

(19)

Ψ2(t, x) = −
√

2 sin(lπx) sin
(π2l2

2
t
)
. (20)

6 Numerical results

In this section we apply Algorithm 1 to two settings. First, we compare the RCM to the
analytic solution for a particle in a box with infinite potential walls as an example of a test
case with finite spacial domain. We also use this example to validate a finite difference
method [1, 8] we use for comparison in cases when no analytic solution is available.
Secondly, we shall investigate three cases where the potential of the walls varies from a
finite value to zero to understand the particle dynamics inside and outside the potential
well. For this we analyse the number of individual events at two different grid points, one
close to the boundary and one in the middle of the well.

6.1 Case 1: Infinite potential well

We study the test case for a particle in a well with infinite potential walls for the quantum
number l = 2. The boundary conditions require both real and imaginary parts of the
wave function to be zero at the boundary. The corresponding analytic solution is given by
equations (19) and (20). The length of the domain is L = 1, the mass and charge is set
to m = 1 and q = 1, the spacial discretisation parameter ε = 0.05 and the simulation
time is T = 0.27. The RCM model is run with n = 1000000. Figure 8 shows the
real and imaginary parts of the wave function Ψ1 and Ψ2 at 10 different times. The well-
known oscillation for l = 2 is recovered. The numerical results confirm that both the
finite difference scheme and the RCM approximate the analytic solution well for all times
displayed.

6.2 Case 2: Finite potential well

We consider three cases of a particle in a box with finite potential walls for potentials
V = 1000, V = 10 and V = 0. For these cases we use the finite difference method
for comparison to the RCM. The computational domain is split into three parts of equal
length. One well region of length Lw = 1 in the middle of two potential walls also of
length Lp = 1. The total length of the domain is L = 3. For all simulations we choose
numerical parameters n = 1000000, ε = 0.2 and T = 1.1466. At time t = 0 we set the
wave function Ψ1 and Ψ2 to zero in the potential wall region and to the analytic solution,
given by equations (19) and (20) at t = 0 in the well region. We set the quantum number
l = 1 and m = q = 1.

Figures 9, 12 and 15 show the time evolution of the real and imaginary parts of the wave
function Ψ1 and Ψ2 for 10 points in time. The vertical lines in figures 9 and 12 indicate the

15



0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.03

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.06

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.09

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.12

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.15

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.18

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.21

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.24

x

P
si

(x
,t)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

t= 0.27

x

P
si

(x
,t)

Figure 8: Time evolution of the real (red) and imaginary (blue) parts of the wave function
Ψ of a particle in a box with infinite potential walls for n = 1000000 and
simulation time T = 0.27. The lines show the analytical solution, big empty
circles represent the result obtained by the finite difference scheme and the
crosses represent the RCM results.

presence of a potential. In figure 15 the potential is zero. The boundary in all cases is zero
for both real and imaginary parts of the wave function. In all cases the results obtained
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from RCM and finite differences are consistent. For V = 1000 we recover the behaviour
of a particle in a box with infinite walls. The symbols are on top of the analytic solution
for infinite walls displayed by the lines as in figure 8. There is no noticeable movement
of the wave function in the potential region. This situation changes significantly when the
wall potential is lowered to V = 10. In figure 12 we can see that the solution remains
symmetric at all times. The wave travels through the potential region and gets reflected at
the boundaries. This behaviour is similar for V = 0 as displayed in figure 15. However
the solution for V = 0 is smoother and, unlike in the case for V = 10, there is no specific
disturbance through the potential outside the middle region.

Figures 10, 13, and 16 show all events that lead to creation and deletion of red and blue,
i.e. type one and type two particles at grid point 2 which is well in the potential region.
Figures 11, 14, and 17 show the same for grid point 8 which is in the middle of the
well. It is interesting to see in the case of a high potential well, V = 1000, the birth
and deletion of type one and type two particles almost exclusively take place by potential
events. Although the particle number is close to zero, birth and deletion events are still of
the order of one million. Looking at the rates of the potential events this is not surprising as
the rate constant is proportional to the magnitude of the potential. Yet, the potential events
cancel each other out which leads to the low particle number in the potential region. In
the well region roughly 14 times as many events take place. As the rate constants suggest,
potential events do not play a role and for each left and right event there are around two
middle events. As the potential becomes lower, displayed in figures 13 and 14, the role of
the potential is not as prominent any more and left, right and middle events also play an
important role. The number of events at the two different grid points is now much closer
in magnitude. This trend continues for V = 0 in figures 16 and 17. It is interesting to
note that the solution for V = 0 seems to be much smoother that for V = 10. The specific
choice of initial conditions leads to an overall access of type 2 particle events in the middle
of the well for V = 10 and V = 0; type 1 particle events depend on the imaginary part of
the wave function which is 0 at t = 0. As the information is travelling from the centre to
the boundary we note that at grid point 2 only left and middle events are important.

7 Conclusion

In this paper we have presented a numerical algorithm for the implementation of the Ran-
dom Cloud Model for the solution of the one-dimensional time-dependent Schrödinger
equation on a bounded domain with boundary conditions of zero. We have presented an
algorithm in the form of a particle number representation of a Markov process and were
able to show that the process dynamics coincides with the solution of the Schrödinger
equation on a spacial grid. We demonstrated this numerically by studying a particle in
a well with walls of infinite potential. We also studied numerically how the stochastic
process works in a well with walls of finite potential for analysing the number of events
of each sub-process at typical grid points. We found that at grid points where the absolute
value of the potential is high almost all events that take place are potential events that
create and delete offspring.

The beauty of the RCM is its simplicity and the fact that it is a particle approximation of
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Figure 9: Time evolution of a particle in a potential well for V = 1000, n = 1000000
and T = 1.1466

a wave function. The “quantum particles”, i.e. the elements of the random cloud, create
offspring and by this process spread information and interact with other members of the
random cloud. It is of course intriguing to speculate whether these particles have a real
physical meaning. To shed light on this question the RCM has to be extended to more
realistic systems.
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Figure 10: Analysis of birth and deletion events at grid point 2 for V = 1000, n =
1000000 and T = 1.1466
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Figure 11: Analysis of birth and deletion events at grid point 8 for V = 1000, n =
1000000 and T = 1.1466

Acknowledgements

This research is supported by the National Research Foundation, Prime Ministers Office,
Singapore under its CREATE programme. MK gratefully acknowledges the support of

19



0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0.637

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0.1274

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0.2548

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0.3822

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0.5096

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0.7644

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 0.8918

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 1.0192

x

P
si

(x
,t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

t= 1.1466

x

P
si

(x
,t)

Figure 12: Time evolution of a particle in a potential well for V = 10, n = 1000000 and
T = 1.1466
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Figure 13: Analysis of birth and deletion events at grid point 2 for V = 10, n = 1000000
and T = 1.1466
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Figure 14: Analysis of birth and deletion events at grid point 8 for V = 10, n = 1000000
and T = 1.1466
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Figure 15: Time evolution of a particle in a potential well for V = 0, n = 1000000 and
T = 1.1466
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Figure 16: Analysis of birth and deletion events at grid point 2 for V = 0, n = 1000000
and T = 1.1466
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Figure 17: Analysis of birth and deletion events at grid point 8 for V = 0, n = 1000000
and T = 1.1466
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Nomenclature

Upper-case Roman
E Energy [J]
J Jump
L Computational domain [m]
N Particle number as function of colour [#]
R Rate [#/s]
T Stopping time [s]
V Potential [J/C]
Z State space

Lower-case Roman
c Notational convenience variable for jump rate λ [#/s]
l Quantum number
m Particle/electron mass [kg]
n Particle number as function of colour at time 0 [#]
q Electron charge [C]
t Time [s]
u Sign
x x-coordinate [m]
y Particle type
z Element of state space

Upper-case Greek
∆ Discrete Laplacian [1/m2]
Ψ Solution to the Schrödinger equation
Ω Domain

Lower-case Greek
α Type of jump index
β Type of jump index
ε Grid spacing [m]
η Particle number as function of colour and sign [#]
λ Jump rate [#/s]
τ Waiting time [s]
φ Space-dependent part of the solution to the Schrödinger equation
χ Time-dependent part of the solution to the Schrödinger equation

Subscripts
j Spatial index
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k Type index, k = 1:real (Red), k = 2:imaginary (Blue)

Symbols
~ Dirac constant or reduced Planck constant [Js]
ı Imaginary unit
E Mathematical expectation
P Mathematical probability
R Set of real numbers
Z Set of all integers

Abbreviations
RCM Random Cloud Model
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A Appendix: A simple explicit finite difference scheme

We want to obtain a numerical solution for the Schrödinger equation (6,7,8) on the domain
Ω = [0, L]× [0, T ].

We introduce a spacial grid

Rε = {εj, j = 0, ..., Nx}

for j = 0 : x = 0 and j = Nx : x = L denote the left and the right boundary of the
computational domain respectively. The time grid is given by

Rδt = {δt · l, l = 0, 1, ..., Nt}

where j = 0 : t = 0 is the start and l = Nt : Nt · δt = T denotes simulation time.

The diffusion operator in equation (6) is approximated by a first order central difference

∆(ε)
x f =

f(x+ ε)− 2f(x) + f(x− ε)
ε2

ε > 0

and the time operator in (6) is approximated by a first order forward difference

∆
(δt)
t f =

f(t+ δt)− f(t)

δt
δt > 0

where f is a suitable function on the grid.

Replacing the differential operators with their discrete counter parts we obtain a Forward
Time, Centered Space or FTCS approximation to the Schrödinger equation (6). Denoting
Ψl,j

1/2 = Ψ
(δt,ε)(n)
1/2 (l · δt, j · ε), V j = V (j · ε) and

r =
~

2m

δt

ε2
= c1δt

and c2,j = qVj/~ we write the finite difference scheme for j = 1, ..., Nx − 1 and l =
0, ..., Nt,

Ψl+1,j
1 = Ψl,j

1 + (2r − δtc2,j) Ψl,j
2 − r

(
Ψl,j+1

2 + Ψl,j−1
2

)
Ψl+1,j

2 = Ψl,j
2 − (2r − δtc2,j) Ψl,j

1 + r
(

Ψl,j+1
1 + Ψl,j−1

1

)
,

and at the boundary for l = 0, 1, ..., Nt,

Ψl,0
1 = Ψl,Nx

1 = 0

Ψl,0
2 = Ψl,Nx

2 = 0,

and initial conditions for j = 0, ..., Nx,

Ψ
(n)
1 (0, j · ε) = Ψ0,j

1

Ψ
(n)
2 (0, j · ε) = Ψ0,j

2 .

Note that δt and ε have to be chosen such that r <
1

2
to ensure stability of the numerical

scheme.
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