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Highlights

• The moment projection method (MPM) is extended to include the fragmentation
process

• MPM is tested for symmetric fragmentation and erosion fragment distribution func-
tions and shows high accuracy

• MPM is also able to accurately simulate the combined processes of inception,
growth, shrinkage, coagulation and fragmentation

Abstract

The method of moments is a simple but efficient method of solving the popu-
lation balance equation which describes particle dynamics. Recently, the moment
projection method (MPM) was proposed and validated for particle inception, coag-
ulation, growth and, more importantly, shrinkage; here the method is extended to
include the fragmentation process. The performance of MPM is tested for 13 differ-
ent test cases for different fragmentation kernels, fragment distribution functions and
initial conditions. Comparisons are made with the quadrature method of moments,
hybrid method of moments and a high-precision stochastic solution calculated using
the established direct simulation algorithm and advantages of MPM are drawn.
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1 Introduction

Fragmentation (also referred to as breakage) is a process by which particles break into
two or more fragments leading to an increase in the number of particles [22]. For this
reason it plays an important role in a number of chemical processes [8]. In fluidised-
bed combustion, the rate of fragmentation during particle burnout influences the overall
burning rate of single coal particles [39]. Arguably, in practical combustion systems,
predicting particle destruction can be as important as predicting particle formation and
growth. Harris and Maricq [15] found that the inclusion of fragmentation improved model
predictions of soot particle size distributions (PSDs) from a diesel engine.

The evolution of the PSD with time is described by the population balance equation (PBE)
with mechanisms which modify the particles such as inception, coagulation (otherwise
known as aggregation), growth, and shrinkage where particles reduce in mass and are
eventually removed from the system [34, 35, 40]. Peterson [37] studied the PBE for a
particulate system undergoing fragmentation and found that the PSD obeys a first-order
linear ordinary integro-differential equation. The complexity of the equation depends on
the fragmentation kernel and fragment distribution function, and analytical solutions only
exist for certain restrictive cases.

A number of methods have been proposed to solve these types of equations which can be
broadly classified as: method of moments (MOM) (see, e.g., Refs. [1, 4, 7, 8, 11, 14, 15,
18, 26–31, 33–35, 40]), sectional method (see, e.g., Refs. [2, 7, 9, 13, 16, 17, 22–24, 38])
and stochastic method (see, e.g., Refs. [6, 10, 14, 21, 25, 36, 41]). These methods of-
ten encompass a trade-off between physical detail and computational efficiency. In the
stochastic method the particle population is represented by an ensemble of stochastic par-
ticles and the particle processes are treated probabilistically [3]. The stochastic solution
has been proven to converge to the deterministic solution of the PBE [10]. The method
easily allows a highly detailed particle description; however, under certain conditions, the
computational time [6] and memory requirement [41] can be intractable. Sectional meth-
ods divide the mass range into a finite number of sections [13]. The PSD within each
section evolves according to a ordinary differential equation which can be solved by stan-
dard solvers (see, e.g., Refs. [2, 16, 17, 38]). The computational time rapidly scales with
the number of internal coordinates tracked and the number of sections required to achieve
convergence [9].

When the PBE is written in terms of one or two internal coordinates, MOM is a particu-
larly attractive option for its computational efficiency [1, 4]. The PBE is rewritten in terms
of moments and one solves for just the first few moments which is usually sufficient for
most practical applications [12]. Development of MOM for the fragmentation/breakage
process is a particularly active field of research (see, e.g., Refs. [11, 35]). Mueller et al.
[35] extended the hybrid method of moments (HMOM) [34] to model the fragmenta-
tion of soot aggregates in laminar flames. HMOM combines the numerical ease of the
method of moments with interpolative closure (MOMIC) [12] and the accuracy of the di-
rect quadrature method of moments (DQMOM) [28] with a source term for the smallest
particles based on the negative infinity moment. The production of the smallest particles
was assumed to be proportional to the mass lost from the large particles; and symmet-
ric fragmentation was assumed where one particle fragments into two identical particles.
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In this paper we test HMOM, albeit a spherical particle description, for both symmetric
fragmentation and erosion distribution functions.

Another widely used moment method that has been used to address breakage is the
quadrature method of moments (QMOM) [29–31, 33] where the PSD is approximated
by a weighted summation of Dirac delta functions. Marchisio et al. [29] investigated the
performance of QMOM for simultaneous aggregation and breakage problems with dif-
ferent combinations of aggregation and breakage kernels, fragment distribution functions
and initial conditions. A quadrature approximation with two nodes was found to be suffi-
ciently accurate for most cases except for symmetric fragmentation with a constant kernel
and erosion with a size-dependent kernel. Increasing the number of nodes did not help in
decreasing the error in some cases. However, across all cases aggregation was dominant.
The accuracy of QMOM in treating pure breakage problems or where breakage is the
dominant process has not been addressed yet. This paper will be a step in this direction.

Recently, a moment projection method (MPM) [40] was developed to address the shrink-
age of particles. It directly solves the moment transport equation and tracks the number
of the smallest particles using the algorithm by Blumstein and Wheeler [5]. The abil-
ity of MPM to simulate shrinkage problems was investigated and the advantages of the
method was highlighted. To be able to model fragmentation accurately one has to be
able to model the number of the smallest particles accurately which are formed under
strong fragmentation. Therefore, fragmentation is a natural extension of MPM. In this
work, different types of fragmentation kernels, fragment distribution functions and initial
conditions are imposed and the results are compared with QMOM, HMOM and a high-
precision stochastic solution. The paper is organized as follows. Section 2 presents the
moment of methods for solving the PBE as well as the mathematical formulation and nu-
merical algorithm of MPM. In Section 3 the performance of MPM is tested for different
test cases and in Section 4 principal conclusions are summarised.

2 Moment methods for population balance equations

2.1 Population balance equation

A spatially homogeneous population of particles with a discrete-mass distribution is con-
sidered in this work. The smallest particles have mass m1 and particles in the mass class i
have mass mi = im1. The PBE governing the evolution of the distribution can be written
as:

dN(i, t)

dt
= R(i, t) +W (i, t) + S(i, t) +G(i, t) + F (i, t), i = 1, 2, . . . ,∞, (1)

where N(i, t) is the number of particles in the mass class i at time t which we will refer to
as Ni from hereon. This is known as a particle number representation of the PSD. R, W ,
S, G and F are the inception, growth, shrinkage, coagulation and fragmentation terms,
respectively. The specific functional forms used in this work are as follows:
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R(i, t) = Im1 , (2)
W (i, t) = KG(i− δ)Ni−δ −KG(i)Ni, (3)
S(i, t) = KSk(i+ δ)Ni+δ −KSk(i)Ni, (4)

G(i, t) =
1

2

i∑
j=1

KCg(j, i− j)NjNi−j −
∞∑
j=1

KCg(i, j)NiNj, (5)

F (i, t) =
∞∑
j=i

KFg(j)P (i|j)Nj −KFg(i)Ni, (6)

where Im1 is the inception kernel which describes the rate of formation of the smallest
particles. KG and KSk are the growth and shrinkage kernels, respectively, where δ refers
to the mass change in a single growth or shrinkage event which can be different. KCg is the
coagulation kernel which describes the rate at which particles collide and stick together.
Lastly,KFg is the fragmentation kernel which describes the frequency with which particles
fragment and P (i|j) is the fragment distribution function which represents the number of
particles of mass class i formed by the fragmentation of particles of mass class j.

The choice of fragmentation kernel and fragment distribution function are important be-
cause for certain combinations, “shattering” may occur [32, 45]. In a process analogous to
gelation (but in the oppposite sense), a finite fraction of the mass shatters into an infinite
number of particles of zero mass and for this reason mass is not conserved [44]. This usu-
ally occurs when the fragmentation rate increases as the particles become smaller. Note
that self-similar solutions where the PSD does not vary with time are of special interest
as the PSD is independent of initial conditions and most experimental systems evolve to
the point where this behaviour is reached [43]. Kostoglou and Karabelas [19] found that
a self-similar PSD is achieved when the fragmentation kernel is of the power type and the
fragment distribution function depends on the parent-daughter particle mass ratio.

Many different functional forms of the fragment distribution function have been proposed,
however some physical constraints must be fulfilled [19, 20]:

P (i|j) = 0, for i > j, (7)
j∑
i=1

iP (i|j) = j, (8)

The first equation states that fragmentation can only lead to the formation of particles of
mass class i smaller than the parent particle mass class j, while the second equation is the
conservation of mass where the total mass class of particles resulting from the breakup
of a particle of mass class j must be equal to j. In this work, we only consider binary
fragmentation and the fragment distribution functions are reported in Table 1; a discussion
of multiple fragmentation can be found in Ref. [19]. Symmetric fragmentation leads to
the formation of two equal mass fragments, whereas in the case of erosion one fragment
is of the smallest mass class i = 1 while the other is of the mass class i = j − 1.
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Table 1: Fragmentation distribution functions.

Mechanism P (i|j)

Symmetric fragmentation

{
2 if i = j/2

0 otherwise

Erosion


1 if i = 1

1 if i = j − 1

0 otherwise

2.2 Moment equations

As mentioned earlier, an efficient approach for solving the PBE is MOM where the PBE
is transformed into a set of moment equations and integral quantities such as the total
particle number and mass are computed. This is achieved by applying the definition,
moment of order k of the PSD

Mk =
∞∑
i=1

ikNi, k = 0, 1, 2, . . . , (9)

to Eq. (1), leading to

dMk

dt
= Rk(M) +Gk(M) +Wk(M) + Sk(M,N1) + Fk(M,N1), (10)

where

Rk(M) = mk
1Im1 , (11)

Gk(M) =
1

2

∞∑
i=1

i−1∑
j=1

ikKCg(j, i− j)NjNi−j −
∞∑
i=1

∞∑
j=1

ikKCg(i, j)NiNj, (12)

Wk(M) =
∞∑
i=1

KG(i− δ)ikNi−δ −
∞∑
i=1

KG(i)i
kNi, (13)

Sk(M,N1) =
∞∑
i=1

KSk(i+ δ)ikNi+δ −
∞∑
i=1

KSk(i)i
kNi, (14)

Fk(M,N1) =
∞∑
j=1

j∑
i=1

KFg(j)i
kP (i|j)Nj −

∞∑
i=1

KFg(i)i
kNi. (15)

Two observations can be made about Eqs. (11–15): first, evaluation of the moment source
terms depends on the kernel function K and, second, the shrinkage and fragmentation
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source terms Sk and Fk depend on the number density of the smallest particlesN1. Where
realistic kernels are used, fractional- or even negative-order moments are encountered [4].
Therefore, the mathematical difficulty of MOM lies in obtaining closure for these moment
source terms using a finite set of moments. This requires either a priori assumptions
about the shape of the PSD or a suitable closure scheme. One of the more widely used
closure methods is MOMIC [12] where closure is accomplished by Langrange polynomial
interpolation of the logarithm of the whole-order moments whose values are available at
each integration step of Eq. (10). By separating interpolation for positive- and negative-
order moments, MOMIC shows very high accuracy in the treatment of mono-modal PSDs
undergoing growth and coagulation and satisfactory accuracy for bi-modal PSDs formed
under persistent nucleation [34]. However, MOMIC cannot handle shrinkage as it does
not track N1. Likewise, it cannot rigorously treat fragmentation especially erosion where
a large number of particles accumulate in the smallest particle mass class.

2.3 Moment projection method

The mathematical formulation and numerical algorithm of MPM have already been pre-
sented in Ref. [40], however, pertinent details are repeated here for the reader’s conve-
nience. In MPM, we approximate the true PSD by assuming that all particles are dis-
tributed into a finite number of particle mass classes. The k-th order moment of the
approximated PSD can then be expressed as:

M̃k = αk1Ñα1 +

Np∑
j=2

αkj Ñαj
, k = 0, . . . , 2Np − 2, (16)

where αj is the particle mass, Ñαj
is the number of particles of the mass αj , and Np is the

number of particle masses used to represent the PSD. The symbol “∼” is used to indicate
approximations of the corresponding quantity from the true PSD. αj and Ñαj

are chosen
such that the empirical moments are equal to the moments from the true PSD:

M̃k =Mk. (17)

Applying Eq. (17) to Eq. (10), we obtain:

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃,N1) + Fk(M̃,N1). (18)

To evaluate the boundary flux term N1 present in the shrinkage and fragmentation terms,
we fix the first particle mass to be equal to the smallest particle mass of the true PSD:
α1 = m1. Therefore, Ñα1 is an approximation of the number of the smallest particle
which allows us to express Eq. (18) as:

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1) + Fk(M̃, Ñα1). (19)
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As can be seen from Eq. (19), M̃k is directly evaluated from the moment transport equa-
tion which allows us to take advantage of MOMIC when realistic kernels are used. How-
ever, this introduces an interpolation error. The aim here is to investigate the MPM error
in isolation, therefore constant kernels are adopted:

Rk(M̃) = mk
1Im1 , k = 0, . . . , 2Np − 2, (20)

Gk(M̃) =


−1

2
KCgM̃

2
0 , k = 0,

0, k = 1,

1
2
KCg

k−1∑
r=1

(
k
r

)
M̃rM̃k−r, k = 2, . . . , 2Np − 2,

(21)

Wk(M̃) =


0, k = 0,

KG

k∑
r=1

(
k
r

)
δrM̃k−r, k = 1, . . . , 2Np − 2,

(22)

Sk(M̃) =

 −KSkÑα1 , k = 0,

KSk

k∑
r=1

(
k
r

)
(−δ)rM̃k−r, k = 2, . . . , 2Np − 2.

(23)

The fragmentation source term depends on the fragment distribution function. For sym-
metric fragmentation it is:

Fk(M̃, Ñα1) =

 KFg(M̃0 − Ñα1), k = 0,
0, k = 1,

KFg(2
1−k − 1)(M̃k − αk1Ñα1), k = 2, . . . , 2Np − 2,

(24)

and for erosion:

Fk(M̃, Ñα1) =


KFg(M̃0 − Ñα1), k = 0
0, k = 1,

KFgα
k
1M̃0 +KFg

k∑
r=1

(
k
r

)
(−α1)

rM̃k−r, k = 2, . . . , 2Np − 2.

(25)

Lee et al. [25] used a fragmentation kernel with a linear dependence on particle mass to
study the wet granulation of particles. Since the fragmentation moment source term can
be evaluated based on the whole-moments, we also investigate the same fragmentation
kernel which for symmetric fragmentation is:

Fk(M̃, Ñα1) =

 KFg(M̃1 − α1Ñα1), k = 0,
0, k = 1,

KFg(2
1−k − 1)(M̃k+1 − αk+1

1 Ñα1), k = 2, . . . , 2Np − 2,
(26)
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and for erosion:

Fk(M̃, Ñα1) =


KFg(M̃1 − α1Ñα1), k = 0,
0, k = 1,

KFgα
k
1M̃1 +KFg

k∑
r=1

(
k
r

)
(−α1)

rM̃k−r+1, k = 2, . . . , 2Np − 2.

(27)

The challenge now is determining αj and Ñαj
such that Eq. (17) is true while fulfilling

the requirement that Ñα1 u N1 to close the moment source terms due to shrinkage and
fragmentation. This can be achieved using the Blumstein and Wheeler algorithm [5]
which can be found in Appendix A. The numerical procedure of MPM is summarized in
Algorithm 1.
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Input: Moments of the PSD Mk(t0) for k = 0, . . . , 2Np − 2 or the PSD itself N(i, t0) for
i = 1, . . . ,∞ at initial time t0; final time tf.

Output: Empirical moments of the PSD M̃k(tf) for k = 0, . . . , 2Np − 2 at final time tf
where Np is the number of particle masses used to approximate the PSD.

Calculate the moments of the true PSD using Eq. (9):

Mk(t0) =
∞∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

For M̃k =Mk, solve Eq. (16) for Ñα1 (α1 is fixed) and αj and Ñαj (j = 2, . . . , Np) using
Algorithm 2:

M̃k(t0) = αk1Ñα1(t0) +

Np∑
j=2

αkj Ñαj (t0), k = 0, . . . , 2Np − 2.

t←− t0, M̃k(t)←− M̃k(t0);
while t < tf do

Integrate Eq. (19) over the time interval [ti, ti + h] (using an ODE solver):

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1) + Fk(M̃, Ñα1)

with initial condition: (
M̃k(ti)

Ñα1(ti)

)
=

(
M̃k,i

Ñα1,i

)
,

where Rk(M̃), Gk(M̃), Wk(M̃) and Sk(M̃, Ñα1) are given by Eqs. (20), (21), (22)
and (23), respectively. The form of Fk(M̃, Ñα1) depends on the fragmentation kernel
and fragment distribution function as given by Eqs. (24–27).

Use Blumstein algorithm to update αj and Ñαj , and assign solution at ti+1 = ti + h:(
M̃k,i+1

Ñα1,i+1

)
←

(
M̃k(ti + h)

Ñα1(ti + h)

)
.

i←− i+ 1;
end

Algorithm 1: Moment projection method algorithm.

3 Numerical results

As the focus of this paper is to test MPM for the process of fragmentation, we devise
a number of test cases which can be classified into the following three categories: (1)
pure fragmentation, (2) simultaneous coagulation and fragmentation, and (3) all particle
processes combined (inception, growth, coagulation, shrinkage and fragmentation). It is
assumed that the smallest particles are unbreakable, i.e., KFg(i = 1) = 0. Log-normal,
unimodal and parabolic PSDs are supplied as the initial condition.
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Numerical results are compared to those from HMOM, QMOM and a high-precision
stochastic solution calculated using the direct simulation algorithm. HMOM was orig-
inally developed for bivariate PBEs [34, 35]. We modify this method so that it is ap-
plicable to monovariate PBEs. Details on the modifications made, with a focus on the
fragmentation process, can be found in Appendix B.

3.1 Pure fragmentation

The fragmentation kernels, fragment distribution functions and initial conditions used to
test pure fragmentation are reported in Table 2.

Table 2: Cases used for the comparison of pure fragmentation.

Case KFg(i) P (i|j) Ni(t = 0)

1
{

0 i = 1
20 i > 1

Symmetric
fragmentation

Ni = 105 exp(−(log(2i−1)− log(32))2/0.05),
i = 1, . . . , 10

2
{

0 i = 1
2i i > 1

Erosion Ni = 100, i = 30

3
{

0 i = 1
0.2i i > 1

Symmetric
fragmentation

Ni = 105 exp(−(log(2i−1)− log(16))2/0.05),
i = 1, . . . , 10

4
{

0 i = 1
0.2i i > 1

Symmetric
fragmentation Ni = 10000, i = 256

5
{

0 i = 1
2 i > 1

Erosion Ni = 300i− 10i2, i = 1, . . . , 30

6
{

0 i = 1
2 i > 1

Erosion Ni = 100 exp(−(log(i)− log(25))2/0.05),
i = 1, . . . , 100

7
{

0 i = 1
2i i > 1

Erosion Ni = 100 exp(−(log(i)− log(25))2/0.05),
i = 1, . . . , 100

For case 1 particles undergo symmetric fragmentation with a constant kernel; a log-normal
distribution is supplied as the initial condition. The moment transport equation with the
fragmentation moment source term in Eq. (24) is solved. The particle masses αj and the
corresponding number of particles Ñαj

describing the evolution of the moments of the
PSD are computed using MPM and are shown in Fig. 1. Four particle masses are used to
approximate the PSD. αj (j = 2, 3, 4) decrease as particles fragment to form increasingly
smaller particles. The number of particles of the largest mass Ñα4 decreases leading to
an initial increase in Ñα2 and Ñα3 before also decreasing. Ñα1 increases and shows an
asymptote at aroundN = 3.0×106 as particles of the smallest massm1 are formed which
are assumed to not be able to fragment further.

To assess the accuracy of the moments calculated using MPM the following relative error
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Figure 1: Evolution of the particle mass αj (left panel) and the corresponding number of
particles Nαj

(right panel) obtained using MPM for case 1.

metric is used:

Mk,error =
|M̃k −Mk|

Mk

, (28)

where Mk is the k-th order moment from a high-precision stochastic solution. Figure 2
shows the relative moment errors computed using MPM with Np = 4 for case 1. Mk,error
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Figure 2: Error in the k-th order moment obtained using MPM relative to a high-
precision stochastic solution for case 1.

shows cusp points when the function (M̃k −Mk) changes sign which was also observed
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by Marchisio et al. [29] for QMOM. In general, MPM shows very high accuracy. Al-
though the relative errors in the higher-order moments (k = 5, 6) show an overall increase,
the errors at t = 0.8 s is at most 10−4. By contrast, the relative errors in the lower-order
moments (k = 0, 2) show an overall decrease. Note that as mass is conserved in MPM
the errors in the first-order moment (total particle mass) is 0.

To investigate the sensitivity of the results to the number of particle masses, Np, moments
are computed using MPM withNp = 3, 4 and 5 and compared with the stochastic solution.
Figure 3 shows that for case 1 at least four particle masses (dotted line) are required for
there to be no obvious discrepancy in M̃0. Interestingly, M̃0 at longer residence times
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Figure 3: Sensitivity of the zeroth moment M0 to the number of particle masses Np ob-
tained using MPM for case 1. The stochastic solution (continuous line) is
shown as a point of reference.

displays little sensitivity to Np. The time-averaged (t = 0 to 0.8 s) relative moment er-
rors, Mk,error, as a function of Np and k for case 1 are listed in Table 3. As expected,
higher accuracy is generally observed when more particle masses are used: there is about
an order-of-magnitude decrease in the errors in the lower order moments (k = 0, 2, 3)
when Np is increased from 3 to 5. However, this is not the case for the higher order mo-
ments (k = 4, 5, 6) where there is in fact an increase in errors when Np is increased from
4 to 5.

For case 2 particles undergo erosion where the parent particle mass class is reduced by
one and a particle of the smallest mass class is formed. The rate is controlled by a mass-
dependent kernel and a unimodal distribution is supplied as the initial condition. The
moment transport equation with the fragmentation moment source term in Eq. (27) is
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Table 3: Average error in the k-th order moment obtained using MPM relative to a high-
precision stochastic solution for different particle masses Np for case 1.

k Np = 3 Np = 4 Np = 5

0 3.9× 10−2 1.3× 10−2 8.2× 10−3

1 0 0 0
2 8.8× 10−3 2.3× 10−3 9.7× 10−4

3 2.3× 10−3 5.2× 10−4 2.1× 10−4

4 4.0× 10−4 9.6× 10−5 2.3× 10−4

5 - 1.6× 10−5 2.8× 10−4

6 - 1.2× 10−6 3.1× 10−4

7 - - 3.1× 10−4

8 - - 3.2× 10−4

solved. The time evolution of αj and Ñαj
obtained using MPM is shown in Fig. 4. At

0 0.5 1 1.5 2
0

8

16

24

32

Time (s)

α j

 

 

α
1

α
2

α
3

α
4

0 0.5 1 1.5 2
0

800

1600

2400

3200

Time (s)

N
α j

 

 

Nα1

Nα2

Nα3

Nα4

Figure 4: Evolution of the particle mass αj (left panel) and the corresponding number of
particles Nαj

(right panel) computed using MPM for case 2.

t = 0, the third and fourth particle masses are positioned on either side of the particles at
mass class i = 30. As these particles reduce in mass, αj (j = 2, 3, 4) all move towards the
position of the new parent particle class to better represent these particles. This is reflected
as an increase in α2 (and α3) and a decrease in α4. The evolution of Ñαj

is similar to that
of case 1.

Figure 5 shows the sensitivity of M0 to the number of particle masses computed using
MPM for case 2. It can be seen that there is no discernable difference between MPM
and the stochastic method across all particle masses. This is due to the mass-dependent
kernel used where the only source of error in the fragmentation moment source term
Fk(M̃, Ñα1) is in Ñα1 (see Eqs. (26) and (27) for k = 0) as opposed to both M̃0 and
Ñα1 for mass-independent kernels (see Eqs. (24) and (25) for k = 0) such as in case
1. The time-averaged relative errors (t = 0 to 2 s) are listed in Table 4. Overall, the
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Figure 5: Sensitivity of the zeroth moment M0 to the number of particle masses Np ob-
tained using MPM for case 2. The stochastic solution (continuous line) is
shown as a point of reference.

Table 4: Average error in the k-th order moment obtained using MPM relative to a high-
precision stochastic solution for different particle masses Np for case 2.

k Np = 3 Np = 4 Np = 5

0 2.7× 10−4 1.1× 10−4 1.5× 10−5

1 0 0 0
2 3.6× 10−6 8.4× 10−8 5.9× 10−8

3 1.9× 10−6 8.3× 10−8 6.7× 10−8

4 1.8× 10−6 5.8× 10−8 9.3× 10−8

5 - 5.4× 10−8 9.6× 10−8

6 - 5.3× 10−8 9.4× 10−8

7 - - 8.8× 10−8

8 - - 8.1× 10−8

errors are lower than in case 1 but the observations that can be made are similar. Note
that each increment in the number of particle masses requires the solution of two extra
moments (See Eq. (16)). Smaller tolerances have to be used for the time integration of the
set of ODEs and increases the stiffness of the eigenvalue-eigenvector problem solved via
the Blumstein and Wheeler algorithm, thus leading to a higher computational cost. For
this reason, four particle masses will be used in the rest of this paper.
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Case 3 is similar to case 2 except that a mass-dependent kernel is used. The moment trans-
port equation with the fragmentation moment source term in Eq. (26) is solved. We now
compare MPM to other moment methods: HMOM and QMOM with four nodes. Fig-
ure 6 shows a comparison of M0 between MPM, HMOM and QMOM with the stochastic
solution as a reference. There is an excellent agreement between MPM and the stochas-
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Figure 6: Comparison of the zeroth moment M0 between MPM (four particle masses),
QMOM (four nodes), HMOM and the stochastic solution for case 3.

tic method apart from a slight underprediction at intermediate times. Both HMOM and
QMOM overestimate M0 but the performance by HMOM is worse. It was initially puz-
zling but it became clear to us that in HMOM particles are represented as either small or
large particles which is a coarser assumption than the four particles masses or nodes used
in MPM and QMOM, respectively. Second, it is assumed that the rate at which the small-
est particles are formed is proportional to the overall fragmentation rate [35]. However,
there exist situations where particles fragment and the smallest particles are not formed,
for example, in symmetric fragmentation. Although QMOM incurs some errors, when
particles are small enough, it implicitly tracks the number of the smallest particles which
keeps its accuracy high. The results for case 4 where a unimodal distribution is supplied
as the initial condition is similar (see Fig. 7).

For case 5, particles undergo erosion with a constant kernel and the moment transport
equation with the fragmentation source term in Eq. (25) is solved. Unlike case 2 where
there are only particles at mass class i = 30 at t = 0 s, the parabolic distribution for this
case has particles in the smallest mass class. Therefore, the ability to accurately track the
number of the smallest particles is particularly important. Both HMOM and QMOM are
not able to even capture the steady-state M0 at t = 20 s as shown in Fig. 8.
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Figure 7: Comparison of the zeroth moment M0 between MPM (four particle masses),
QMOM (four nodes), HMOM and the stochastic solution for case 4.

For cases 6 and 7, particles undergo erosion and a log-normal distribution is supplied as
the initial condition. A constant fragmentation kernel is used in case 6 while a mass-
dependent fragmentation kernel is used in case 7. M0 computed using the different meth-
ods for cases 6 and 7 are shown in Figs. 9 and 10, respectively. The results for case 6
is similar to case 5 where HMOM overpredicts and QMOM underpredicts M0. When a
mass-dependent fragmentation kernel is used in case 7, the agreement is much improved.
As highlighted before, one reason for the improved performance is that when the mass-
dependent kernel is used, the source term for the zeroth-order moment is governed by
the total particle mass which is insensitive to the number of the smallest particles, thus
decreasing the errors in computing the moments. In both cases, MPM exhibits the highest
accuracy regardless of the fragmentation kernel used.

Based on the above results, the following observations can be made: MPM is the most
accurate amongst the different method of moments studied for the pure fragmentation
process. Across all of these test cases, the agreement between M0 obtained using MPM
and the stochastic method is excellent. The source term developed in HMOM tends to
overestimate the formation of the smallest particles. Because QMOM does not explicitly
track the number of the smallest particles, the performance of QMOM is worse for erosion
than for symmetric fragmentation.
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Figure 8: Comparison of the zeroth moment M0 between MPM (four particle masses),
QMOM (four nodes), HMOM and the stochastic solution for case 5.

3.2 Simultaneous coagulation and fragmentation

In this section, the performance of MPM is tested for simultaneous coagulation and frag-
mentation processes. Depending on the coagulation and fragmentation kernels used, the
PSD will evolve differently and result in different total particle numbers at steady state.
Four cases are developed to investigate the competition between these two processes as
shown in Table 5. The fragmentation kernel is systematically varied while the coagulation

Table 5: Cases used for the comparison of simultaneous coagulation and fragmentation.

Case KFg(i)

8
{

0 i = 1
0.02 i > 1

9
{

0 i = 1
200 i > 1

10
{

0 i = 1
0.02i i > 1

11
{

0 i = 1
200i i > 1

Note: KCg = 0.02 s−1, P (i|j) = erosion, N30(t = 0) = 100.
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Figure 9: Comparison of the zeroth moment M0 between MPM (four particle masses),
QMOM (four nodes), HMOM and the stochastic solution for case 6.

kernel is left unchanged. For all of these cases, fragmentation takes the form of erosion
and the unimodal distribution in case 2 is supplied as the initial condition.

For case 8, the coagulation and fragmentation kernels are identical. M0 computed using
the different methods are shown in the left panel of Fig. 11. The process is dominated by
coagulation as shown by the decrease in M0. Therefore, very few particles accumulate
in the first particle mass class as these particles tend to collide with each other to form
particles of larger mass. Since constant kernels are used, no closure problem is present in
the coagulation moment equation and all the methods generate almost the same results as
the stochastic method. Also shown in Fig. 11 (right panel) are the corresponding results
for case 9 where the fragmentation kernel is four orders-of-magnitude larger than the
coagulation kernel. The process is dominated by fragmentation and the accumulation of
the smallest particles plays an important role: HMOM overestimates the formation of
the smallest particles, thus overestimating M0; MPM shows the highest accuracy while
a slight discrepancy is observed between QMOM and the stochastic solution. Cases 10
and 11 are similar to cases 8 and 9 except that mass-dependent fragmentation kernels are
used. Similar conclusions can be drawn from Fig. 12.
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Figure 10: Comparison of the zeroth moment M0 between MPM (four particle masses),
QMOM (four nodes), HMOM and the stochastic solution for case 7.
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Figure 11: Comparison of the zeroth moment M0 between MPM (four particle masses),
QMOM (four nodes), HMOM and the stochastic method for case 8 (left panel)
and case 9 (right panel).

3.3 Combined processes

In this section, MPM is tested against QMOM, HMOM and the stochastic method for
the combined processes of inception, growth, coagulation, shrinkage and fragmentation.
The specifics of the two test cases are shown in Table 6. The total particle number and
mass of particles computed using the different methods for cases 12 and 13 are shown in
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Figure 12: Comparison of the zeroth moment M0 between MPM (four particle masses),
QMOM (four nodes), HMOM and the stochastic method for case 10 (left
panel) and case 11 (right panel).

Table 6: Cases used for the comparison of combined processes.

Case KFg(i) Ni(t = 0)

12
{

0 i = 1
2× 10−5i i > 1

100 exp(−(log(i)− log(25))2/0.05),
i = 1, . . . , 100

13
{

0 i = 1
2× 10−5 i > 1

Ni = 1000, i = 50

Note: Im1 = 100 s−1, KG = 20 s−1, KCg = 2× 10−5 s−1, KSk = 30 s−1 and P (i|j) = ero-
sion.

Figs. 13 and 14, respectively. It can be seen that MPM exhibits a very high accuracy that
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Figure 13: Comparison of the zeroth order moment M0 (left panel) and the first order
moment M1 (right panel) between MPM (four particle masses), QMOM (four
nodes), HMOM and the stochastic method for case 12.
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Figure 14: Comparison of the zeroth order moment M0 (left panel) and the first order
moment M1 (right panel) between MPM (four particle masses), QMOM (four
nodes), HMOM and the stochastic method for case 13.

was also observed for pure fragmentation and simultaneous coagulation and fragmenta-
tion. M0 decreases mainly due to the shrinkage of particles—rather than coagulation—as
evidenced by the corresponding decrease in M1. The shrinkage process leads to a zeroth
order moment equation containing a term corresponding to the loss of particles of the
smallest size [26, 42]. In order to evaluate this term, the value of the PSD at the smallest
internal coordinate is required which is not available in QMOM. As expected, Figs. 13
and 14 show that QMOM fails to predict the evolution of M0 and therefore M1. Although
HMOM is able to predict the consumption of particles, it shows a significant discrepancy
compared with the stochastic solution.

4 Conclusion

In this paper, the moment projection method (MPM) was extended to include the frag-
mentation process. MPM was tested against cases involving (1) pure fragmentation, (2)
simultaneous coagulation and fragmentation, and (3) combined processes of inception,
growth, coagulation, shrinkage and fragmentation with different fragmentation kernels,
fragment distribution functions and initial conditions. The numerical results were com-
pared against the hybrid method of moments (HMOM) and the quadrature method of
moments (QMOM) with four nodes and a high-precision stochastic solution calculated
using the direct simulation algorithm.

By fixing the first particle mass α1 to be equal to the smallest particle mass m1, the
evolution of the smallest particles could be tracked in MPM with a high accuracy. The
accuracy was shown to generally improve with the number of particle masses, Np, with
Np = 4 being the best compromise between accuracy and computational efficiency. In all
the test cases considered in this work, MPM is capable of accurately predicting the time
evolution of the moments while the agreement with HMOM and QMOM tend to be less
good when fragmentation dominates. Future work includes application of MPM to real
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particle processes such as soot formation in flames. It remains to be seen how effective
is MPM for more complicated population balance equations with additive kernels and/or
free-molecular Brownian kernel.
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Nomenclature

Upper-case Roman
D Eigenvectors of matrix P
F Source term due to fragmentation
G Source term due to coagulation

Im1 Inception rate of particles of the smallest mass m1

KCg Coagulation kernel
KFg Fragmentation kernel
KG Growth kernel
KSk Shrinkage kernel
M Moment
N Number
P Symmetric tridiagonal matrix as a function of recursion coefficients a and b
P Fragment distribution function
R Source term due to inception
S Source term due to shrinkage
V Eigenvalues of matrix P
W Source term due to growth
Z Matrix with components Z which are a function of the moments M

Lower-case Roman
a, b Recursion coefficients
h Time interval
i particle mass class
m Mass
r Recursive function
t Time
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Greek
α Particle mass
δ Particle mass change in a growth or shrinkage process

Subscripts
f Final

L Large
p Particle
0 Initial or zero
1 Smallest particle mass class

Symbols
x̃ Approximation of x

Abbreviations
DQMOM Direct quadrature method of moments

HMOM Hybrid method of moments
MOM Method of moments

MOMIC Method of moments with interpolative closure
MPM Moment projection method
ODE Ordinary differential equation
PBE Population balance equation
PSD Particle size distribution

QMOM Quadrature method of moments

24



References

[1] J. Akroyd, A. J. Smith, L. R. McGlashan, and M. Kraft. Comparison of the stochastic
fields method and DQMoM-IEM as turbulent reaction closures. Chem. Eng. Sci., 65:
5429–5441, 2010. doi:10.1016/j.ces.2010.06.039.

[2] V. Alopaeus, M. Laakkonen, and J. Aittamaa. Solution of population balances with
breakage and agglomeration by high-order moment-conserving method of classes.
Chem. Eng. Sci., 61:6732–6752, 2006. doi:10.1016/j.ces.2006.07.010.

[3] M. Balthasar and M. Kraft. A stochastic approach to calculate the particle size
distribution function of soot particles in laminar premixed flames. Combust. Flame,
133:289–298, 2003. doi:10.1016/S0010-2180(03)00003-8.

[4] J. C. Barrett and N. A. Webb. A comparison of some approximate methods for
solving the aerosol general dynamic equation. J. Aerosol Sci., 29:31–39, 1998.
doi:10.1016/S0021-8502(97)00455-2.

[5] C. Blumstein and J. C. Wheeler. Modified-moments method: applications to har-
monic solids. Phys. Rev. B, 8:1764–1776, 1973. doi:10.1103/PhysRevB.8.1764.

[6] A. Braumann, M. Kraft, and W. Wagner. Numerical study of a stochastic particle
algorithm solving a multidimensional population balance model for high shear gran-
ulation. J. Comput. Phys., 229:7672–7691, 2010. doi:10.1016/j.jcp.2010.06.021.

[7] M. C. Bruns and O. A. Ezekoye. Development of a hybrid sectional quadrature-
based moment method for solving population balance equations. J. Aerosol Sci., 54:
88–102, 2012. doi:10.1016/j.jaerosci.2012.07.003.

[8] R. B. Diemer and J. H. Olson. A moment methodology for coagulation and breakage
problems: part 2—moment models and distribution reconstruction. Chem. Eng. Sci.,
57:2211–2228, 2002. doi:10.1016/S0009-2509(02)00112-4.

[9] N. A. Eaves, S. B. Dworkin, and M. J. Thomson. The importance of reversibility
in modeling soot nucleation and condensation processes. Proc. Combust. Inst., 35:
1787–1794, 2015. doi:10.1016/j.proci.2014.05.036.

[10] A. Eibeck and W. Wagner. Stochastic interacting particle systems and
nonlinear kinetic equations. Ann. Appl. Probab., 13:845–889, 2003.
doi:10.1214/aoap/1060202829.

[11] A. Falola, A. Borissova, and X. Z. Wang. Extended method of moment
for general population balance models including size dependent growth rate,
aggregation and breakage kernels. Comput. Chem. Eng., 56:1–11, 2013.
doi:10.1016/j.compchemeng.2013.04.017.

[12] M. Frenklach. Method of moments with interpolative closure. Chem. Eng. Sci., 57:
2229–2239, 2002. doi:10.1016/S0009-2509(02)00113-6.

25

http://dx.doi.org/10.1016/j.ces.2010.06.039
http://dx.doi.org/10.1016/j.ces.2006.07.010
http://dx.doi.org/10.1016/S0010-2180(03)00003-8
http://dx.doi.org/10.1016/S0021-8502(97)00455-2
http://dx.doi.org/10.1103/PhysRevB.8.1764
http://dx.doi.org/10.1016/j.jcp.2010.06.021
http://dx.doi.org/10.1016/j.jaerosci.2012.07.003
http://dx.doi.org/10.1016/S0009-2509(02)00112-4
http://dx.doi.org/10.1016/j.proci.2014.05.036
http://dx.doi.org/10.1214/aoap/1060202829
http://dx.doi.org/10.1016/j.compchemeng.2013.04.017
http://dx.doi.org/10.1016/S0009-2509(02)00113-6


[13] F. Gelbard and J. H. Seinfeld. Simulation of multicomponent aerosol dynamics. J.
Colloid Interface Sci., 78:485–501, 1980. doi:10.1016/0021-9797(80)90587-1.

[14] D. Grosschmidt, H. Bockhorn, M. Goodson, and M. Kraft. Two approaches to the
simulation of silica particle synthesis. Proc. Combust. Inst., 29:1039–1046, 2002.
doi:10.1016/S1540-7489(02)80131-6.

[15] S. J. Harris and M. M. Maricq. The role of fragmentation in defining the
signature size distribution of diesel soot. J. Aerosol Sci., 33:935–942, 2002.
doi:10.1016/S0021-8502(02)00045-9.

[16] M. J. Hounslow. A discretized population balance for continuous systems at steady
state. AIChE J., 36:106–116, 1990. doi:10.1002/aic.690360113.

[17] M. J. Hounslow, R. L. Ryall, and V. R. Marshall. A discretized population bal-
ance for nucleation, growth, and aggregation. AIChE J., 34:1821–1832, 1988.
doi:10.1002/aic.690341108.

[18] H. M. Hulburt and S. Katz. Some problems in particle technology: a statistical
mechanical formulation. Chem. Eng. Sci., 19:555–574, 1964. doi:10.1016/0009-
2509(64)85047-8.

[19] M. Kostoglou and A. J. Karabelas. Optimal low order methods of moments for
solving the fragmentation equation. Powder Technol., 143-144:280–290, 2004.
doi:10.1016/j.powtec.2004.04.020.

[20] M. Kostoglou and A. J. Karabelas. On the self-similar solution of fragmentation
equation: numerical evaluation with implications for the inverse problem. J. Colloid
Interface Sci., 284:571–581, 2005. doi:10.1016/j.jcis.2004.10.029.

[21] M. Kraft and W. Wagner. Numerical study of a stochastic particle method for
homogeneous gas-phase reactions. Comput. Math. Appl., 45:329–349, 2003.
doi:10.1016/S0898-1221(03)80022-6.

[22] J. Kumar, G. Warnecke, M. Peglow, and S. Heinrich. Comparison of numerical
methods for solving population balance equations incorporating aggregation and
breakage. Powder Technol., 189:218–229, 2009. doi:10.1016/j.powtec.2008.04.014.

[23] S. Kumar and D. Ramkrishna. On the solution of population balance equations by
discretization—I. A fixed pivot technique. Chem. Eng. Sci., 51:1311–1332, 1996.
doi:10.1016/0009-2509(96)88489-2.

[24] S. Kumar and D. Ramkrishna. On the solution of population balance equations by
discretization—II. A moving pivot technique. Chem. Eng. Sci., 51:1333–1342, 1996.
doi:10.1016/0009-2509(95)00355-X.

[25] K. F. Lee, R. I. A. Patterson, W. Wagner, and M. Kraft. Stochastic
weighted particle methods for population balance equations with coagulation,
fragmentation and spatial inhomogeneity. J. Comput. Phys., 303:1–18, 2015.
doi:10.1016/j.jcp.2015.09.031.

26

http://dx.doi.org/10.1016/0021-9797(80)90587-1
http://dx.doi.org/10.1016/S1540-7489(02)80131-6
http://dx.doi.org/10.1016/S0021-8502(02)00045-9
http://dx.doi.org/10.1002/aic.690360113
http://dx.doi.org/10.1002/aic.690341108
http://dx.doi.org/10.1016/0009-2509(64)85047-8
http://dx.doi.org/10.1016/0009-2509(64)85047-8
http://dx.doi.org/10.1016/j.powtec.2004.04.020
http://dx.doi.org/10.1016/j.jcis.2004.10.029
http://dx.doi.org/10.1016/S0898-1221(03)80022-6
http://dx.doi.org/10.1016/j.powtec.2008.04.014
http://dx.doi.org/10.1016/0009-2509(96)88489-2
http://dx.doi.org/10.1016/0009-2509(95)00355-X
http://dx.doi.org/10.1016/j.jcp.2015.09.031


[26] E. Madadi-Kandjani and A. Passalacqua. An extended quadrature-based moment
method with log-normal kernel density functions. Chem. Eng. Sci., 131:323–339,
2015. doi:10.1016/j.ces.2015.04.005.

[27] G. Madras and B. J. McCoy. Reversible crystal growth–dissolution and aggregation–
breakage: numerical and moment solutions for population balance equations. Pow-
der Technol., 143-144:297–307, 2004. doi:10.1016/j.powtec.2004.04.022.

[28] D. L. Marchisio and R. O. Fox. Solution of population balance equations us-
ing the direct quadrature method of moments. J. Aerosol Sci., 36:43–73, 2005.
doi:10.1016/j.jaerosci.2004.07.009.

[29] D. L. Marchisio, R. Dennis Vigil, and R. O. Fox. Quadrature method of moments
for aggregation–breakage processes. J. Colloid Interface Sci., 258:322–334, 2003.
doi:10.1016/S0021-9797(02)00054-1.

[30] D. L. Marchisio, R. Dennis Vigil, and R. O. Fox. Implementation of the quadrature
method of moments in CFD codes for aggregation–breakage problems. Chem. Eng.
Sci., 58:3337–3351, 2003. doi:10.1016/S0009-2509(03)00211-2.

[31] D. L. Marchisio, J. T. Pikturna, R. O. Fox, R. Dennis Vigil, and A. A. Barresi.
Quadrature method of moments for population-balance equations. AIChE J., 49:
1266–1276, 2003. doi:10.1002/aic.690490517.

[32] E. D. McGrady and R. M. Ziff. “Shattering” transition in fragmentation. Phys. Rev.
Lett., 58:892–895, 1987. doi:10.1103/PhysRevLett.58.892.

[33] R. McGraw. Description of aerosol dynamics by the quadrature method of moments.
Aerosol Sci. Tech., 27:255–265, 1997. doi:10.1080/02786829708965471.

[34] M. E. Mueller, G. Blanquart, and H. Pitsch. Hybrid method of moments for
modeling soot formation and growth. Combust. Flame, 156:1143–1155, 2009.
doi:10.1016/j.combustflame.2009.01.025.

[35] M. E. Mueller, G. Blanquart, and H. Pitsch. Modeling the oxidation-induced frag-
mentation of soot aggregates in laminar flames. Proc. Combust. Inst., 33:667–674,
2011. doi:10.1016/j.proci.2010.06.036.

[36] R. I. A. Patterson, W. Wagner, and M. Kraft. Stochastic weighted particle meth-
ods for population balance equations. J. Comput. Phys., 230:7456–7472, 2011.
doi:10.1016/j.jcp.2011.06.011.

[37] T. W. Peterson. Similarity solutions for the population balance equa-
tion describing particle fragmentation. Aerosol Sci. Tech., 5:93–101, 1986.
doi:10.1080/02786828608959079.

[38] M. D. Smooke, C. S. McEnally, L. D. Pfefferle, R. J. Hall, and M. B. Colket. Com-
putational and experimental study of soot formation in a coflow, laminar diffusion
flame. Combust. Flame, 117:117–139, 1999. doi:10.1016/S0010-2180(98)00096-0.

27

http://dx.doi.org/10.1016/j.ces.2015.04.005
http://dx.doi.org/10.1016/j.powtec.2004.04.022
http://dx.doi.org/10.1016/j.jaerosci.2004.07.009
http://dx.doi.org/10.1016/S0021-9797(02)00054-1
http://dx.doi.org/10.1016/S0009-2509(03)00211-2
http://dx.doi.org/10.1002/aic.690490517
http://dx.doi.org/10.1103/PhysRevLett.58.892
http://dx.doi.org/10.1080/02786829708965471
http://dx.doi.org/10.1016/j.combustflame.2009.01.025
http://dx.doi.org/10.1016/j.proci.2010.06.036
http://dx.doi.org/10.1016/j.jcp.2011.06.011
http://dx.doi.org/10.1080/02786828608959079
http://dx.doi.org/10.1016/S0010-2180(98)00096-0


[39] C. A. Sundback, J. M. Beér, and A. F. Sarofim. Fragmentation behavior of sin-
gle coal particles in a fluidized bed. Symp. (Int.) Combust., 20:1495–1503, 1984.
doi:10.1016/S0082-0784(85)80643-3.

[40] S. Wu, E. K. Y. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang, and M. Kraft. A
moment projection method for population balance dynamics with a shrinkage term.
J. Comput. Phys., 2016. Submitted.

[41] E. K. Y. Yapp, R. I. A. Patterson, J. Akroyd, S. Mosbach, E. M. Adkins, J. H. Miller,
and M. Kraft. Numerical simulation and parametric sensitivity study of optical band
gap in a laminar co-flow ethylene diffusion flame. Combust. Flame, 167:320–334,
2016. doi:10.1016/j.combustflame.2016.01.033.

[42] C. Yuan, F. Laurent, and R. Fox. An extended quadrature method of mo-
ments for population balance equations. J. Aerosol Sci., 51:1–23, 2012.
doi:10.1016/j.jaerosci.2012.04.003.

[43] R. M. Ziff. New solutions to the fragmentation equation. J. Phys. A Math. Gen., 24:
2821–2828, 1991. doi:10.1088/0305-4470/24/12/020.

[44] R. M. Ziff and E. D. McGrady. The kinetics of cluster fragmentation and de-
polymerisation. J. Phys. A Math. Gen., 18:3027–3037, 1985. doi:10.1088/0305-
4470/18/15/026.

[45] R. M. Ziff and E. D. McGrady. Kinetics of polymer degradation. Macromolecules,
19:2513–2519, 1986. doi:10.1021/ma00164a010.

28

http://dx.doi.org/10.1016/S0082-0784(85)80643-3
http://dx.doi.org/10.1016/j.combustflame.2016.01.033
http://dx.doi.org/10.1016/j.jaerosci.2012.04.003
http://dx.doi.org/10.1088/0305-4470/24/12/020
http://dx.doi.org/10.1088/0305-4470/18/15/026
http://dx.doi.org/10.1088/0305-4470/18/15/026
http://dx.doi.org/10.1021/ma00164a010


A Blumstein-Wheeler algorithm

This algorithm is used to determine the particle masses and the numbers used to approxi-
mate the PSD from the empirical moments. The algorithm is implemented in Matlab and
makes use of the eig function to determine the eigenvalues and eigenvectors.

Input: The empirical moments M̃k for k = 0, 1, . . . , 2Np − 2.
Output: The particle masses αj and the corresponding number of particles Ñαj for

j = 1, 2, . . . , Np.
Create a Np × 2Np matrix Z with zeros in all elements.
Determine the elements of the first row of matrix Z: Z1,l = M̃l−1 for l = 1, . . . , 2Np − 1.
For a1 = M̃1/M̃0 and b1 = 0, determine the recursion coefficients ak and bk:
for k = 2 to Np do

for l = k to 2Np − 1 do
The elements of Z must satisfy the following recursion relation:

Zk,l = Zk−1,l+1 − ak−1Zk−1,l − bk−1Zk−1,l;

end

ak =
Zk,k+1

Zk,k
−

Zk−1,k
Zk−1,k−1

; bk =
Zk,k

Zk−1,k−1
.

end
For r1 = 1/(m1 − a1) where m1 is the smallest particle mass, determine the recursion

function:
rk = 1/(m1 − ak − bkrk−1), k = 2, . . . , Np − 1.

As we fix the smallest particle mass, replace aNp with:

aNp = m1 − bNprNp−1.

Construct a symmetric tridiagonal matrix P with ak as the diagonal and the square roots of
bk as the co-diagonal:

P =


a1 −

√
b2 0 · · · 0

−
√
b2 a2 −

√
b3 · · · 0

0 −
√
b3 a3 · · · 0

...
...

...
. . .

...
0 0 0 · · · aNp

 .

Solve for the eigenvalues V and eigenvectors D of matrix P:[
V,D

]
= eig(P).

Solve for αj and Ñαj :
αj = V(j, j), Ñαj = M̃0D(1, j)2.

Algorithm 2: Blumstein-Wheeler algorithm.
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B Hybrid method of moments

The hybrid method of moments (HMOM) was originally developed for bivariate popula-
tion balance equations (PBEs) based on particle volume and surface area [34, 35]. Here
we revise the method so that it is applicable to monovariate PBEs. Below is a brief de-
scription of HMOM based on particle mass for symmetric fragmentation with a constant
kernel.

Following the idea by Mueller et al. [34], the particles are discretised into two modes:
particles of the smallest mass class i0 and particles of the large mass class iL. The moments
can then be represented as:

Mk = Ni0i
k
0 +NiLi

k
L, (B.1)

where Ni0 and NiL are the number of particles of mass i0 and iL, respectively. The
fragmentation moment source term for symmetric fragmentation with a constant ker-
nel (Eq. (24)) can then be written as:

dMk

dt
=


KFgNiL , k = 0,

0, k = 1,

(21−k − 1)KFgi
k
LNiL , k > 1.

(B.2)

The source term for Ni0 is given by the negative infinity order moments:

dNi0

dt
= lim

k→−∞

dMk/dt
ik0

. (B.3)

Applying Eq. (B.3) to Eq. (6) for symmetric fragmentation, we obtain:

dNi0

dt
= 2KFgN2i0 . (B.4)

The only unknown term N2i0 corresponds to the intermodal transfer of particles from the
second mode to the first during the fragmentation process. To close this term, Mueller
et al. [34] assumed that the rate of transfer is proportional to the overall fragmentation
rate with a coefficient equal to the mass ratio between the two modes i0/iL. As a result,
Eq. (B.4) can be transformed into:

dNi0

dt
=

2i20
i2L
KFgNiL . (B.5)

assuming tThe remaining two quantities in Eq. (B.1) are obtained by inverting the system
with two known moments:

NiL =M0 −Ni0 , (B.6)
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and

iL =
M1 −Ni0i0

NiL

. (B.7)

Algorithm 3 describes the numerical procedure of HMOM for symmetric fragmentation
with a constant kernel. HMOM for other processes (inception, growth, shrinkage, coag-
ulation, symmetric fragmentation with a mass-dependent kernel, erosion fragmentation
with a constant or mass-dependent kernel) can be obtained in a similar way. The details
are not given here for simplicity.

Input: PSD supplied as initial condition N(i, t0) for i = 1, . . . ,∞ at initial time t0; final
time tf.

Output: Empirical moments of the PSD M̃k(tf) for k = 0, 1, . . . at final time tf.

Calculate the moments of the true PSD using Eq. (9):

Mk(t0) =
∞∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

Determine the number and mass of the large particles NiL(t0) and iL(t0), respectively, by
solving Eqs. (B.6) and (B.7).

t←− t0, M̃k(t)←− M̃k(t0);
while t < tf do

Integrate Eq. (B.2) for the moments M̃k(t+ h) over the time interval [t, t+ h] (using an
ODE solver) with Ni0(t), NiL(t) and iL(t) as the initial condition.

Integrate Eq. (B.5) for the number of smallest particles Ñi0(t+ h) over the time interval
[t, t+ h] with Ni0(t), NiL(t) and iL(t) as the initial condition.

Determine NiL(t+ h) using Eq. (B.6) with the obtained M0(t+ h) and Ni0(t+ h).

Determine iL(t+ h) using Eq. (B.7) with the obtained M1(t+ h), Ni0(t+ h) and
NiL(t+ h).

Increment t←− t+ h.
end

Algorithm 3: Hybrid method of moments algorithm.
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