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Abstract

In this paper a new explicit algorithm for the numerical solution of homo-
geneous gas-phase combustion systems is proposed, which is shown to outper-
form conventional solvers by more than two orders of magnitude for moderate
accuracy and large systems. Further speedup is achieved by identifying and
removing irrelevant reactions from the mechanism whilst retaining all species.
We show that in terms of computational efficiency this brings about another
factor of at least five at an acceptable loss of precision. Due to its immediate
relationship to stochastic direct simulation, our new (deterministic) algorithm
can also be used as an easily applicable tool for the reaction flow analysis of
mechanisms. Another characteristic of our method is that reactions in par-
tial equilibrium are effectively removed from the mechanism, which can be
regarded as an automatic separation of the fast from the slow timescales. The
new algorithm and its usefulness for the elimination of reactions is investi-
gated numerically for a mechanism which models the combustion of n-decane
at constant pressure and contains 1218 species and 4825 reversible reactions.
Further advantages of our method are its exceptional simplicity of implemen-
tation and negligible start-up costs, both of which can be attributed to the
explicit nature of the algorithm. These properties suggest as typical applica-
tion large operator-splitting problems requiring moderate accuracy, such as
PDF transport models for example.
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1 Introduction

Despite the still ongoing exponential growth of cheaply available computational
power, detailed numerical simulations of combustion processes coupled to fluid dy-
namics remain out of reach. Therefore, the simplification of large reaction mecha-
nisms still has to be considered a necessity.

Previously, several reduction techniques have been developed (see [8] for a short
review and a comparison). For instance, the intrinsic low-dimensional manifold
(ILDM, [12, 11]) method exploits the fact that chemical timescales cover several
orders of magnitude by decoupling the fast processes from the reaction system.
However, this involves the tabulation of large amounts of data related to concen-
tration manifolds. Alternatively, a reduction can be achieved by computational
singular perturbation (CSP, see [7] and references therein), which determines the
eigenvalues of the Jacobi matrix of the source term and identifies the species which
are most closely related to them. Another method uses lifetime analysis [9, 13]. In
the lifetime analysis approach the steady-state species are detected and then the
quasi steady-state assumption (QSSA) is invoked in order to reduce the set of ordi-
nary differential equations governing the time evolution of the system. Though all
mentioned approaches have been proven to be very successful at least for some ap-
plications, they are usually rather complicated and/or require sometimes extensive
preprocessing efforts. In addition, in-depth understanding of and experience with
the considered mechanisms may be necessary, which means that a successful reduc-
tion using such a technique could only be performed by specialists. The simplest
form of model reduction is the elimination of reactions [1]. Dropping reactions from
a mechanism reduces the computational cost by decreasing the number of terms
needed to evaluate the chemical source terms. Further speedup can be obtained
by removing species which occur only in eliminated reactions. The main issue of
all reduction techniques is clearly to optimize the ratio between the computational
speedup and the loss in numerical precision and/or information about the system.

Direct simulation approaches can provide deeper insight into the reaction flow analy-
sis of mechanisms [19]. In [16], a stochastic method is used for the exploration of the
structure and the dynamics of a complex mechanism, in particular the identification
of predominant reaction paths.

The purpose of this paper is to present a new explicit algorithm, capable of solving
large combustion systems more efficiently for moderate precision than conventional
solver packages. Since our method is directly based on the reactions contained in a
mechanism, rather than on solving the reaction rate equations as a system of ordi-
nary differential equations, it can easily be applied as tool for the analysis of fluxes.
We then introduce an extremely simple way of classifying reactions into “relevant”
and “irrelevant” ones and reduce the underlying mechanism by dropping the irrel-
evant reactions. Our approach is substantially less complicated than conventional
ones and requires no detailed knowledge of the involved chemical and physical pro-
cesses whatsoever. Nonetheless, it can result in significant computational benefit,
as we show in our numerical experiments involving a homogeneous gas-phase mech-
anism for the combustion of n-decane [3], which contains 1218 species and 4825
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reversible reactions.

This paper is structured as follows. In the next section, we specify the model
under consideration and state the equations to be solved. Thereafter, the new
algorithm is briefly motivated and explained. Then, in the central part of the text,
we elaborate on numerical experiments performed with the new algorithm exploring
some of its properties followed by a more detailed investigation of its potential for the
elimination of reactions. Finally, we draw some conclusions and indicate directions
of future work.

2 The model

Consider a mechanism consisting of I elementary reversible homogeneous gas-phase
reactions involving S different species. We only look at combined forward/reverse
reactions, which are denoted by

(να1, . . . , ναS) ←→ (ν∗
α1, . . . , ν

∗
αS) ; α = 1, 2, . . . , I, (2.1)

where the stoichiometric coefficients ναj and ν∗
αj are non-negative integers.

Example: Consider the single reaction

H2O + O ←→ 2OH

involving three species. In the notation of (2.1) this would be written as

(1, 1, 0) ←→ (0, 0, 2).

The time evolution of the molar concentrations [Xi] of the species is described by
the reaction rate equations (cf. [10])

d[Xi]

dt
=

I∑
α=1

(ν∗
αi − ναi)

( S∑
j=1

Bαj[Xj]
)(

kα,f

S∏
j=1

[Xj]
ναj − kα,r

S∏
j=1

[Xj]
ν∗

αj

)
(2.2)

with i = 1, 2, . . . , S. The right hand side is simply the molar production rate which
is written here as a summation of the rate of progress variables for all reactions
involving the i-th species. kα,f and kα,r denote the forward and reverse reaction rate
constants for reaction α and Bαj accounts for third-body reactions. This notation
essentially agrees with the one used in CHEMKIN [4].

The time evolution of the temperature is governed by (cf. [10])

dT

dt
= − 1

cp�

S∑
j=1

hjWj ω̇j, (2.3)

where cp denotes the mean specific heat capacity at constant pressure, � the mass
density, hj the specific enthalpy and Wj the molecular weight of the j-th species. ω̇j

denotes the molar production rate of the species, which is given by the right hand
side of Eqn. 2.2.
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3 The deterministic chemistry algorithm

Our algorithm is directly motivated by stochastic modelling techniques studied pre-
viously for instance in [2] or [6, 5]. In a stochastic approach, single reaction events
are considered to occur probabilistically at a rate (number of events per unit time),
which is given by the reaction rate function (cf. [6] or [5])

Qα(x) = (NAV )1−∑S
j=1 ναjkα

S∏
j=1

ναj∏
i=1

(xj − i + 1), (3.1)

where xj denotes the number of atoms/molecules of species j. The normalization

factor NAV = RT
p

∑S
j=1 xj ensures that Q has the correct physical dimension (s−1).

Note also that Qα(x) is always non-negative.

A stochastic simulation procedure proceeds by choosing in each step a reaction
α according to the probability Qα/

∑I
β=1 Qβ and performing the chosen reaction.

Then, the time is advanced by an exponentially distributed waiting time, whose
mean value (expectation) is given by 1/

∑
β Qβ. Repeating this until a given stopping

time is reached yields an approximation of the time evolution of the system (for
details, see [2, 6]). This model can be extended to allow for variable temperature:
After each reaction event the temperature is changed by an amount ∆T given by

∆Tα = −
∑S

j=1 Hj(T )(ν∗
αj − ναj)∑S

j=1 Cj(T )xj

, (3.2)

where Hj(T ) denotes the enthalpy and Cj(T ) the heat capacity of the j-th species.
For a derivation of this equation and its relationship to Eqn. 2.3 see [5].

This stochastic prescription can be turned into a deterministic one by using the fol-
lowing principle. On average, after a large number of steps N , the α-th reaction will
have occurred approximately NQα/

∑
β Qβ times, assuming constant rates, which

is reasonable for sufficiently small time steps. Therefore, we accumulate the prob-
abilities Qα/

∑
β Qβ until they surpass unity, and whenever this is the case, the

corresponding reaction is performed.

Another central aspect of our method is not to treat each forward and each backward
reaction separately but to look at the combined reversible reactions with (possibly
negative) rates Rα(x) = Qα,f(x) − Qα,r(x). Here, Qα,f and Qα,r denote the forward
and reverse rates, each given by Eqn. 3.1 with forward/reverse rate constants kα,f

and kα,r respectively. The underlying idea is to perform either forward or reverse
reactions according to the sign of the rates. The temperature variable is then treated
as follows. If a reaction α is performed in the forward direction then the temperature
is changed by an amount +∆Tα (see Eqn. 3.2), otherwise by −∆Tα.

A noteworthy advantage of this method is that compared to conventional direct
simulation techniques fewer events occur because forward and reverse reaction steps
can compensate such that they are not actually performed, thereby saving compu-
tational effort. Or in a more physical interpretation, reactions in partial equilibrium
are effectively dropped from the mechanism. This essentially means that the sepa-
ration of the fast from the slow timescales is achieved automatically, so that after
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the fast processes have reached partial equilibrium, the system evolves within the
slow manifold.

The species xj and therefore the rates Rα(x) depend on the total initial particle
number n, which plays the role of a control parameter of the numerical error. In
the limit n→∞, the exact solution of Eqns. 2.2 and 2.3 would be recovered [6]. In
the context of conventional solution of ordinary differential equations, the particle
number n corresponds to the absolute error tolerance ATOL via ATOL = 1/n. There
exists no analogue of the relative error tolerance RTOL, which can also be interpreted
as RTOL = 0.

This description results in the following algorithm.

1. Fix the particle number n, a stopping time tstop > 0, set the species xj and
the temperature T equal to their initial values and set the changes ∆Pα = 0.

2. Wait a time step ∆t, i.e. update t �→ t + ∆t with ∆t = 1/
∑I

β=1 |Rβ(x)|.
3. If the stopping time is exceeded (t > tstop) then stop.

4. For each α = 1, 2, . . . , I update

∆Pα �→ ∆Pα +
Rα(x)∑I

β=1 |Rβ(x)| .

5. If |∆Pα| < 1 for all α = 1, 2, . . . , I then goto step 2. Otherwise, choose a
reaction index α such that |∆Pα| is maximal. For this reaction α, if ∆Pα � 1
then perform a forward reaction event, i.e. update

xj �→ xj + (ν∗
αj − ναj) for all j = 1, 2, . . . , S

and update ∆Pα �→ ∆Pα − 1.

Else if ∆Pα � −1 then perform a reverse reaction event, i.e.

xj �→ xj − (ν∗
αj − ναj) for all j = 1, 2, . . . , S

and update ∆Pα �→ ∆Pα + 1.

6. Let α be the index of the reaction chosen in the previous step. If reaction
α has been performed in the forward direction then update the temperature
according to T �→ T + ∆Tα, otherwise T �→ T −∆Tα, where ∆Tα is given by
Eqn. 3.2.

7. Go to step 2.

We emphasize that this algorithm is entirely deterministic, i.e. it does not contain
any random element whatsoever. Nonetheless, there exists a close relationship be-
tween deterministic and stochastic methods and the scheme presented here can even
be generalized to arbitrary systems of ordinary differential equations. Both of these
points are explored in some detail in [15] and [14].
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Figure 1: Time evolution of some major species for the full n-decane mechanism
calculated with the new algorithm at n = 106 particles.

4 Numerical experiments

We created a FORTRAN program containing the new algorithm as well as the
SENKIN [10] and the CHEMKIN [4] packages. All simulations for this paper have
been performed on an Intel Pentium III PC at 866 MHz running Microsoft Windows
2000.

In order to assess the accuracy of the solutions produced by our algorithm, we
compared them to a high precision run performed with SENKIN using ATOL = 10−20

and RTOL = 10−8. Since we are only interested in applications requiring moderate
accuracy, this run can be taken as the “exact” solution.

For all our numerical experiments, we used an automatically generated mechanism
for the combustion of n-decane [3] containing 1218 species and 4825 reversible reac-
tions whose CHEMKIN mechanism file can be obtained from the website www.ensic.u-

nancy.fr/DCPR/Anglais/GCR/softwares.htm. As initial temperature we chose T = 1500 K
and the (constant) pressure was set equal to one physical atmosphere (p = 1.01325×
105 Pa). The initial fuel/air ratio was chosen stoichiometric.

For the quantitative measurement of the overall numerical error of the solutions
produced by our algorithm we use an estimate of the average deviation of the ap-
proximate from the exact quantity of interest given by

ctot =
1

M + 1

M∑
j=0

∣∣f(tj)− f̃(tj)
∣∣, (4.1)

where f denotes some function of the exact solution (e.g. the mass density, the
temperature or the species mole fractions) and f̃ the numerical approximation of f .
The time interval between the initial time 0 and the stopping time tstop is split into
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Figure 2: Time evolution of some radicals for the full n-decane mechanism cal-
culated with the new algorithm at n = 106 particles and SENKIN for
comparison.

M subintervals of equal length via

tj = j × tstop

M
.

4.1 Performance of the new algorithm

For the calculation of the rate functions in our algorithm, we did not employ the
routines provided by CHEMKIN. Instead, we improved the standard routines by
various optimizations and approximations as follows. The rate constants and nor-
malization factors in Eqn. 3.1 are updated only if the change in the temperature
exceeds a certain minimum value: |∆T | � 105 K/n. Furthermore, the rate func-
tions are evaluated fully only if the products of the species particle numbers xj in
Eqn. 3.1 are non-zero. Most importantly, this means that the rate constants are
updated only in the case of non-zero products. The underlying stochastic version
of the algorithm presented in this paper, including all mentioned modifications to
speed up the evaluation of the rate functions, is examined numerically to quite some
extent in [18] (together with a more detailed explanation of the optimizations and
approximations but without the application to the reduction of mechanisms).

In this subsection, we consider throughout only the full mechanism containing all
reactions (and all species).

Figure 1 depicts the time evolution of a number of major species calculated with the
new algorithm at n = 106 particles. The SENKIN high precision run is not shown
since it would coincide exactly with the plotted curves.

Even for species with a relatively small mole fraction, like the radicals shown in
Fig. 2, the solution produced by the new algorithm, again at n = 106 particles, is
indistinguishable from the SENKIN high precision solution.
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In Fig. 3, the efficiency of the new algorithm and of SENKIN are compared. In this
graph, the parameter RTOL for SENKIN has been chosen to be zero because of the
closest resemblance to our method (as mentioned above). Regarding the efficiency,
experiments have shown that using a non-zero RTOL does not make a significant
difference. The value of ATOL varies between 10−4 and 100. The number of particles
for our algorithm is chosen between 2 × 103 and 106 as indicated. For moderate
precision (here ctot > 10 K roughly) the new algorithm is more than two orders of
magnitude faster than SENKIN. We are aware of the fact that solvers of ordinary
differential equations can be optimized in various ways for combustion systems. In
particular, for large systems, sparse matrix routines can be applied successfully (see
for example [17]). But since SENKIN is wide-spread, it may simplify the comparison
to solvers by other authors.

4.2 Exclusion of “irrelevant” reactions

Profiling runs with direct simulation codes show unambiguously that an overwhelm-
ing fraction of the computation time is spent with the evaluation of the reaction rate
functions (Eqn. 3.1). This motivates on the one hand the modifications mentioned
in the previous section and on the other hand the idea of including as few reactions
as possible into the mechanism (as proposed in [1]) at an acceptable loss of precision.
Our approach to reducing mechanisms therefore distinctly differs from conventional
ones like [8] in that all species are retained at all times. Note that we refer to our
mechanisms as “full” or “reduced” according to the number of included reactions,
even though both the full and the reduced mechanisms (in our terminology) contain
all species.

Given the result of a simulation run with a certain number of particles (the “prepro-
cessing run”). We define a reaction α to be relevant if the ratio between the number
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Figure 4: Number of included reactions as function of the threshold for different
particle numbers.

of events of that reaction and the total number of occurred events is greater than or
equal to a given threshold ε. The considered ratio of events for every reaction lies
by definition between 0 and 1, which implies the same range of reasonable values for
ε. Evidently, if ε = 0 then all reactions are relevant and the “reduced” mechanism
coincides with the full mechanism. Otherwise, if ε > 0 computational speed up is
achieved by excluding the irrelevant reactions. We emphasize that this definition of
relevance is rather naive and does not take into account more non-trivial physical
properties of the reactions, like sensitivities (cf. for instance the level of importance
in [8]).

Not only does the notion of relevance given here depend on the physical initial
conditions, but it also depends on the number of particles of the provided simulation
run. In Fig. 4, the number of included reactions is plotted against the threshold for
different numbers of particles. For ε > 0.1 all reactions are found to be irrelevant and
conversely, the full mechanism is recovered for ε = 0 only, which means that even at
a large number of particles not a single event occurs for a majority of the reactions
(up to 3000) - for the chosen initial conditions. We furthermore notice that for
threshold values between roughly 10−5 and 10−2, the number of included reactions
does not depend significantly on the number of particles. Of course, the relevance
of a reaction becomes asymptotically (for high numbers of particles) independent of
the number of particles, regardless of the threshold.

In Figure 5 the time evolution of the temperature is shown for various numbers
of included reactions. In addition, the SENKIN high precision run with all reac-
tions included is shown. This demonstrates that even for as few as 245 reactions
(compared to the 4825 of the full mechanism), the temperature (and the ignition
time) is predicted rather accurately. For these three curves, the corresponding error
values ctot of the temperature are approximately 14.5 K (245 reactions), 107 K (161
reactions) and 212 K (99 reactions) respectively.
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Figure 6 depicts the dependance of the total error ctot of the temperature on the
number of included reactions for different numbers of particles. In accordance with
Figure 5, we notice that the number of reactions can be decreased from 4825 down to
roughly a few hundred (depending on the number of particles) without a significant
increase in numerical error. Furthermore, one can deduce that if a relatively large
error (e.g. ctot ≈ 10 K here) suffices then one can not only work with a low number
of reactions (≈ 250) but also with a low number of particles (n = 104).

In Figure 7, the dependance of the relative computation time on the number of
included reactions is shown. Or in other words, one can read off by what factor
the CPU-time reduces when a certain number of reactions is included. This factor
apparently depends only weakly on the number of particles.

Table 1: Number of included reactions.
Index Reactions

A 4825
B 732
C 661
D 615
E 581
F 530
G 488
H 428
J 359
K 302
L 245
M 161
N 99

11



10
-1

10
0

10
1

10
2

100 1000

n=10
4

n=10
5

n=10
6

A
b
s
o
lu

te
e
rr

o
r

c
to

t
[K

]

Figure 6: Absolute error ctot of the temperature as function of the number of in-
cluded reactions for different particle numbers.

Figure 8 shows the increase in efficiency when removing reactions from the mecha-
nism for n = 106 particles. Starting from the point labelled A, which indicates the
full mechanism, the number of included reactions is reduced down to 99 for the point
labelled N. The complete list of how many reactions are included for each point is
given in Table 1. We recognize that the CPU-time can be reduced approximately by
a factor of five (cf. Fig. 7) with only negligible loss of precision. In order to attain an
intuitive understanding of the magnitude of the error, note that the three curves for
the reduced mechanisms in Figure 5 correspond to the points L (245 reactions), M
(161 reactions) and N (99 reactions) respectively. The curves for different numbers
of particles exhibit similar characteristics.

5 Conclusions

We presented a new explicit and deterministic algorithm for the solution of homoge-
neous gas-phase combustion systems. In a way, it automatically separates fast and
slow timescales by no longer performing reactions that have reached partial equilib-
rium. Also, being motivated by stochastic direct simulation schemes, it is suitable for
the straightforward analysis of reaction flow. We have demonstrated the efficiency
of the new algorithm by calculating the combustion of n-decane, a mechanism con-
taining 1218 species and 4825 reactions. Even for the full mechanism, our method
was shown to be roughly two orders of magnitude faster than SENKIN, for moderate
precision. Applying our algorithm to the reduction of mechanisms, we examined the
number of included reactions as function of the user-specified threshold. We then
studied extensively the effects of the exclusion of reactions on the numerical preci-
sion. For this, we have determined the error as function of the number of included
reactions, for varying number of particles, which serves as a priori error control
parameter. Furthermore, we investigated the speedup achieved by the reduction,
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which showed the substantial decrease in CPU-time in light of the still rather mod-
erate error. For the considered mechanism, the computation time required by our
algorithm could be reduced by a factor of five or more at a negligible loss of preci-
sion, which means for this particular case that our method is about 500 times faster
than SENKIN.

Obvious future extensions of our work are for instance to reduce the number of
species by deleting those which occur only in eliminated reactions, to exploit infor-
mation gathered by reaction flow analysis and to take into account sensitivities of
species and reactions.
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