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Highlights

• A moment projection method for solving particle population balance equations is
developed

• A Blumstein-Wheeler algorithm is adopted in this method to track the number of
the smallest particles

• This method is tested for modelling particle shrinkage process and showed high
accuracy

• The method developed has the advantages of ease of implementation and numerical
robustness

Abstract

A new method of moments for solving the population balance equation is devel-
oped and presented. The moment projection method (MPM) is numerically simple
and easy to implement and attempts to address the challenge of particle shrinkage
due to processes such as oxidation, evaporation or dilution. It directly solves the
moment transport equation for the moments and tracks the number of the smallest
particles using the algorithm by Blumstein and Wheeler [Phys. Rev. B, 8:1764–1776,
1973]. The performance of the new method is measured against the method of mo-
ments (MOM) and the hybrid method of moments (HMOM). The results suggest
that MPM performs much better than MOM and HMOM where shrinkage is dom-
inant. The new method predicts mean quantities which are almost as accurate as a
high-precision stochastic method calculated using the established direct simulation
algorithm (DSA).
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1 Introduction

Population balance equations (PBEs) have received considerable interest in the chemical
engineering field due to its wide ranging applications from soot formation in combus-
tion [34] to crystallisation [33]. The PBE describes the evolution of a particle size distri-
bution (PSD) that is dependent on time, spatial location and a set of internal coordinates
which characterise particle properties (e.g., surface area, volume and chemical composi-
tion) [3, 32, 35, 36]. A typical PBE contains an inception term describing the formation of
particles from the surrounding fluid, a coagulation term due to the collision and sticking of
particles, a growth term due to surface reaction and condensation on individual particles,
and a shrinkage term due to oxidation, evaporation or dilution. In mathematics, PBEs
are a series of integro-differential equations which are often so complex that analytical
solutions rarely exist [24].

A number of methods have been proposed to solve these types of equations [16, 21, 31].
Balthasar and Kraft [5] developed a stochastic method to solve the PBE describing the
evolution of soot particles in laminar premixed flames. Soot particles are represented
by an ensemble of stochastic particles and particle processes are treated probabilisti-
cally [5, 41]. The simulations can be proven to converge to the deterministic solution
of the PBE [10]. However, the simulations can be prohibitively expensive when extended
to particles with multidimensional internal coordinates [8, 43]. In sectional methods, the
PSD is discretised into a number of bins, or sections. The PBE is then transformed into a
set of ordinary differential equations (ODEs) describing the evolution of quantities such
as the mass and number of particles within each bin. Many of the proposed methods are
limited to specific grids or to specific forms of the PBE. Kumar and Ramkrishna [22]
developed a fixed pivot method which is able to evolve any two arbitrary distribution
properties by representing the PSD as a delta function within each bin [9, 13, 22, 23, 39].
The moving pivot approach [22], which is an extension of the fixed pivot method, takes
the pivot as the location of the delta function within each bin. When the PSD is heavily
weighted towards one end of some of the bins, the moving pivot approach is more accu-
rate than the fixed pivot approach. Recently, Alopaeus et al. [4] extended the traditional
sectional method [17, 18] to conserve more than two moments in the discretised solution
of the PBE using a high-order method. Similar to stochastic methods, sectional methods
are intuitive and accurate. However, a large number of bins may be required to obtain
good accuracy which can make the method computationally expensive [27].

For PBEs with only one or two internal coordinates the method of moments (MOM) is
widely used because of the low computational cost [1, 2, 6, 19, 38]. The PBE is multiplied
by property functions, e.g., integer powers of the internal coordinates, and integrated over
state space. The resulting ODEs are then solved to yield integral quantities such as total
particle number and mass. Depending on the coagulation kernel used the moment trans-
port equations may not be closed, i.e., presence of fractional- or negative-order moments.
In general, there are two ways to close the equations: (1) create a functional relationship
between unknown moments and transported moments such as in the method of moments
with interpolative closure (MOMIC) [3, 11, 12]; or (2) reconstruct the PSD from the trans-
ported moments and approximate the unclosed terms using Gauss quadrature such as in
the quadrature method of moments (QMOM) or direct quadrature method of moments
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(DQMOM) [1, 2, 25–28]. MOMIC has been widely used due to its numerical simplicity
and ease of implementation while being reasonably accurate in dealing with inception,
coagulation and growth processes [11]. Silva et al. [37] found that the solution obtained
using QMOM and DQMOM showed an excellent agreement with the analytical solution
for aggregation and breakage problems. A review of the models of particle formation and
the numerical methods used to solve them can be found in ref. [20].

However, MOMIC, QMOM and DQMOM all fail in the treatment of shrinkage problems,
where the pointwise value of the PSD at the smallest particle mass is required to close
the moment equations [24, 40, 44]. Mueller et al. [30] tried to address this problem by
introducing a source term for the smallest particles in what is known as the hybrid method
of moment (HMOM). HMOM adopts the idea of DQMOM where the PSD is discretised
into small and large particles and the production of the smallest particle is assumed to be
proportional to the mass lost from the large particles. However, as we will show later,
this assumption is too coarse and can overestimate the production of the smallest par-
ticles. Strumendo and Arastoopour [40] proposed a finite-size domain complete set of
trial functions method of moments (FCMOM) that uses a series of Legendre polynomi-
als to obtain a continuous reconstruction of the PSD, thus generating information about
the smallest particles. However, this approach cannot guarantee the positivity of the re-
constructed PSD because only a finite number of polynomials can be determined [44].
An alternative method is the extended quadrature method of moments (EQMOM) pro-
posed by Yuan et al. [44] where the PSD is approximated by continuous non-negative
kernel density functions, e.g., gamma, beta or lognormal functions. High accuracy can be
achieved in terms of the reconstructed PSD. Information about the shape of the PSD is
needed a priori to select a suitable kernel density function; otherwise, a large number of
kernel functions are required which can make this method excessively complicated and
computationally expensive.

The purpose of this paper is to present a new method, the moment projection method
(MPM), which is able to robustly handle the shrinkage of particles while retaining nu-
merical simplicity. The paper is organized as follow. Section 2 presents moment methods
for solving the population balance equation. The detailed mathematical formulation of
MPM and related algorithms are introduced. In Section 3, MPM is compared with MOM,
HMOM and the stochastic method for the processes of inception, coagulation, growth and
shrinkage. In Section 4 principal conclusions are summarised.

2 Moment methods for solving the population balance
equation

2.1 Population balance equation

We consider a spatially homogeneous problem with a discrete-mass distribution where
the smallest particles have a mass of m1 and particles in the mass class i have a mass of
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mi = im1 [12]. The PBE governing the evolution of the distribution can be written as:

dN(i, t)

dt
= R(i, t) +G(i, t) +W (i, t) + S(i, t), i = 1, 2, . . . ,∞, (1)

where N(i, t) is the number of particles belonging to the mass class i at time t (which
we will refer to as Ni from hereon), and R, G, W and S are the inception, coagulation,
surface growth and shrinkage terms, respectively, the notation consistent with ref. [11].
This is known as a particle number representation of the PSD. The specific functional
forms of the source terms used in this work will be discussed in Section 3.

2.2 Moment equation

As already mentioned before, an efficient approach for solving the PBE is MOM where
the PBE is transformed into a set of moment equations and integral values such as the total
particle number and mass can be computed. This is achieved by applying the definition,
moment of order k of the PSD

Mk =
∞∑
i=1

ikNi, k = 0, 1, 2, . . . , (2)

to Eq. (1), leading to:

dMk

dt
= Rk(M) +Gk(M) +Wk(M) + Sk(M,N1). (3)

Note that the source terms on the right-hand side of Eq. (3) are now a function of mo-
ments; in addition, the shrinkage term is a function of the number of the smallest particle,
N1. When the source terms contain complex kernels, fractional- or negative-order mo-
ments are encountered [6]. Therefore, the mathematical difficulty of MOM lies in obtain-
ing closure for these moment source terms using a finite set of moments. This requires
either a priori specification of the PSD or a suitable closure scheme. In MOMIC [11],
closure is accomplished by Lagrange polynomial interpolation of the logarithm of the
whole-order moments whose values are available at each integration step of Eq. (3). By
separating interpolation for positive- and negative-order moments, MOMIC shows very
high accuracy in the treatment of unimodal PSDs undergoing coagulation and growth and
satisfactory accuracy for bimodal PSDs formed from the competition between persistent
inception and coagulation [29]. Another type of closure scheme uses Gauss quadratures
such as in QMOM where the PSD is represented by a weighted summation of Dirac delta
functions [28]. The general form of the moment equation in QMOM can be written as:

dM̃k

dt
= Rk(wj, ij) +Gk(wj, ij) +Wk(wj, ij), j = 1, . . . , N, (4)

where wj and ij , respectively, are the weights and abscissas of the delta functions which
can be derived from the moments using the product difference (PD) algorithm [14]. N is
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the number of delta functions. M̃ is the empirical moment determined from the product
of wj and ij and, therefore, is an approximation of M of the true PSD. We use the symbol
“∼” to express approximations of the particle quantities of Eqs. (2) and (3). DQMOM is
similar to QMOM except that in DQMOM transport equations for wj and ij are directly
solved:

dwj
dt

= Rk(wj, ij) +Gk(wj, ij) +Wk(wj, ij),

dij
dt

= Rk(wj, ij) +Gk(wj, ij) +Wk(wj, ij).

(5)

Note the absence of a shrinkage source term as both of these methods are unable to han-
dle shrinkage. Although DQMOM is superior to QMOM in terms of computational effi-
ciency [37], to determine the source terms for wj and ij , inversion of a matrix composed
of the abscissas is required. When some of the abscissas are not distinct the matrix may
exhibit singularity problems, i.e., the rank of the matrix is lower than its dimension, thus
making its inversion impossible [25]. This implies that not all of the delta functions are
required to represent the PSD. This situation arises, for example, when the PSD is uni-
modal; all the delta functions would be located at the same position associated with the
mode of the distribution. This has been addressed by adding small perturbations to the
non-distinct abscissas [25]. Another important case is when the PSD is generated from an
inception process; at the first time step wj and ij would be undefined. To overcome this
problem “seeds” have been introduced with negligibly small weights and abscissas which
did not lead to any discernable difference in the moments [25].

2.3 Moment projection method

In MPM, we approximate the true PSD by assuming that all particles are distributed into
a finite number of particle mass classes. The k-th order empirical moment can then be
expressed as:

M̃k = αk1Ñα1 +

Np∑
j=2

αkj Ñαj
, k = 0, . . . , 2Np − 2, (6)

where αj is the particle mass, Ñαj
refers to the number of particles of the mass αj , and

Np is the number of particle masses. Mathematically, αj and Ñαj
can be interpreted as

the particle number representation of ij and wj in QMOM and DQMOM. MPM uses αj
and Ñαj

as an assumption of the form of the PSD itself, in a similar vein to the fixed
pivot method [22]. By construction, the particle masses and particle number calculated
by the MPM ensure that the corresponding moments are always equal to those from the
true PSD:

M̃k =Mk, k = 0, . . . , 2Np − 2. (7)

From Eq. (3), it follows that:

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃,N1). (8)
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In order to evaluate the boundary flux (N1) present in the shrinkage term, we fix the
first particle mass to be equal to the smallest particle mass of the true PSD: α1 = m1.
Therefore, Ñα1 , the number of particles of the mass α1, reflects the number of the smallest
particles of the true PSD. The moment transport equations in MPM can then be given as:

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1). (9)

Comparing Eq. (9) with Eqs. (4) and (5), there are two important differences. First, the
source terms for M̃k are directly evaluated using the moment transport equation; there
is not a need to evaluate integrals of the source terms which involve the unknown PSD
and are approximated using Gaussian quadrature in QMOM and DQMOM. Second, by
tracking the number of the smallest particles, MPM is able to handle shrinkage problems.
The problem now lies in determining αj and Ñαj

while ensuring that α1 = m1 (see
Eq. (6)). This can be achieved by using the algorithm by Blumstein and Wheeler [7]
which was originally applied to the moments of the frequency distribution of harmonic
solids. A real symmetric tridiagonal matrix is constructed from a series of recursion
coefficients of orthogonal polynomials composed of moments [15, 42]. αj and Ñαj

can
be determined by solving for the eigenvalues and eigenvectors of the matrix. As for the
requirement that α1 be fixed to be equal to m1, this can be fulfilled simply by modifying
the last recursion coefficient of the tridiagonal matrix using m1. The full algorithm can
be found in Appendix A. Algorithm 1 describes the numerical procedure of MPM. Note
that if the initial PSD is simple (e.g., unimodal or bimodal), not all the particle masses are
required to reproduce the PSD so “seeds” with a small Ñαj

would be introduced.
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Input: Moments of the PSD Mk(t0) for k = 0, . . . , 2Np − 2 or the PSD itself N(i, t0) for
i = 1, . . . ,∞ at initial time t0; final time tf.

Output: Empirical moments of the PSD M̃k(tf) for k = 0, . . . , 2Np − 2 at final time tf
where Np is the number of particle masses used to approximate the PSD.

Calculate the moments of the true PSD using Eq. 2:

Mk(t0) =
∞∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

For M̃k =Mk, solve Eq. 6 for Ñα1 (α1 is fixed) and αj and Ñαj (j = 2, . . . , Np) using
Algorithm 2:

M̃k(t0) = αk1Ñα1(t0) +

Np∑
j=2

αkj Ñαj (t0), k = 0, . . . , 2Np − 2.

t←− t0, M̃k(t)←− M̃k(t0);
while t < tf do

Integrate Eq. 9 over the time interval [ti, ti + h] (using an ODE solver):

dM̃k

dt
= Rk(M̃) +Gk(M̃) +Wk(M̃) + Sk(M̃, Ñα1),

with initial condition: (
M̃k(ti)

Ñα1(ti)

)
=

(
M̃k,i

Ñα1,i

)
,

where Rk(M̃), Gk(M̃), Wk(M̃) and Sk(M̃, Ñα1) are given by Eqs. (11), (14), (16) and
(18), respectively.

Use Blumstein algorithm to update αj and Ñαj , and assign solution at ti+1 = ti + h:(
M̃k,i+1

Ñα1,i+1

)
←

(
M̃k(ti + h)

Ñα1(ti + h)

)
.

i←− i+ 1;
end

Algorithm 1: Moment projection method algorithm.

3 Numerical results

To assess the performance of MPM, numerical results are compared to those from MOM,
HMOM and the stochastic method. We test the method for the individual processes of
inception, coagulation, growth and shrinkage, then for all of these processes combined. As
the focus of this paper is on MPM’s ability to handle shrinkage, we devise a number of test
cases where different types of PSDs are supplied as the initial condition and present the
errors in the moments relative to a high-precision stochastic solution calculated using the
direct simulation algorithm (DSA) [10]. HMOM was originally developed for bivariate

8



PBEs [29, 30]. We modify this method to make it applicable for monovariate PBEs.
Pertinent details of the method can be found in Appendix B.

In this work constant kernels are used. The use of more realistic Brownian collision ker-
nels would lead to a closure problem due to fractional- and negative-order moments which
would appear on the right-hand side of Eq. (9). The way in which MPM is formulated
means that these source terms can be closed using MOMIC; however, this introduces an
interpolation error. The aim here is to investigate the MPM error in isolation.

3.1 Pure inception

Inception is the formation of particles from the surrounding fluid and is a common phe-
nomenon in the chemical engineering field. By definition these particles have the smallest
mass m1 and is assumed to be equal to 1. In this work the inception rate is assumed to be:

R(i, t) = Im1 , (10)

where the inception kernel Im1 = 100 s−1. The moment source term due to inception can
be derived to be:

Rk(M) = mk
1Im1 , k = 0, . . . , 2Np − 2. (11)

It can be seen that the moment source term is only dependant on the smallest particle mass
and the inception kernel. Simulations are performed where a log-normal distribution is
supplied as the initial condition:

N(i, t = 0) = 100 exp(−(log(i)− log(25))2/0.05), i = 1, 2, . . . , 100, (12)

which is shown in Fig. 1 (continuous line). Also shown in Fig. 1 (dotted line) is the PSD
computed by solving the master equation after 10 seconds of pure inception. It develops
a mode at the smallest particles because only particles with the smallest mass are formed.
We now want to see whether MPM is able to capture this increase in the number of the
smallest particles. The particle masses αj and the corresponding number of particles Ñαj

from MPM are shown in Fig. 2. Four particles masses (Np = 4) are used to approximate
the PSD. As α1 is fixed to be equal to the smallest particle mass, the particle masses remain
unchanged. The number of particles of the smallest mass Ñα1 does indeed increase (linear
because of constant rate) while the other Ñαj

(j = 2, 3, 4) do not change. As a further
point of comparison the zeroth and first moments are compared with those from MOM,
HMOM and the stochastic method in Fig. 3. All the methods give the same results. The
continuous inception of particles leads to a linear increase in the total number and mass
of particles, M0 and M1, respectively.
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Figure 1: Evolution of the PSD computed by solving the master equation under pure
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Figure 2: Evolution of the particle masses αj (left panel) and the corresponding number
of particles Ñαj

(right panel) using MPM under pure inception. The PSD at
t = 0 s in Fig. 1 (continuous line) is supplied as the initial condition. A total of
four particle masses are used to approximate the PSD.

3.2 Pure coagulation

Coagulation is a nonlinear process that describes the collision and sticking of particles.
The source term for coagulation considered in this work is of the form:

G(i, t) =
1

2

i∑
j=1

KCgNjNi−j −
∞∑
j=1

KCgNiNj. (13)
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(right panel) between MPM, MOM, HMOM and the stochastic method under
pure inception.

The first term on the right-hand side of Eq. (13) refers to the formation of particles of
mass i due to collisions between all combinations of particles with masses that sum to
i. It contains a factor of a 1/2 to avoid double counting. The second term represents
the destruction of particles of mass i due to collisions between particles of mass i and
particles of any other mass j. The coagulation kernel KCg is usually dependent on the
collision regime and the collision diameter. In this work, this kernel is assumed to be a
constant: KCg = 2× 10−4 s−1. The moment source term due to coagulation is:

Gk(M) =


− 1/2KCgM

2
0 , k = 0,

0, k = 1,

1

2

k−1∑
r=1

(
k
r

)
KCgMrMk−r, k = 2, . . . , 2Np − 2.

(14)

The same log-normal distribution in Eq. (12) is supplied as the initial condition and the
evolution of the PSD under pure coagulation is shown in Fig. 4. The PSD is computed
using the stochastic method because for the given coagulation kernel and simulation time,
if the master equation were to be used, particles would rapidly reach the maximum mass
class which would introduce errors. Multiple coagulation peaks are formed as particles
collide and stick together, and these particles in turn collide and stick, and so forth. Fig-
ure 5 shows that αj (j = 2, 3, 4) increase reflecting an increase in the average particle
mass. An increase in Ñα2 is observed at the beginning of the simulation due to the colli-
sion and sticking of the smallest particles. The time evolution of M0 and M1 computed
using the different methods are compared in Fig. 6. Since no fractional- or negative-order
moments are present in the moment source term, all the methods generate the same re-
sults. Coagulation is a nonlinear process, therefore, we observe a nonlinear decrease in
M0 while M1 remains unchanged.
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Figure 4: Evolution of the PSD computed using the stochastic method under pure coag-
ulation.
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four particle masses are used to approximate the PSD.

3.3 Pure growth

Growth is a process whereby particles increase in mass due to surface reaction or con-
densation. Here we consider a growth process where its source term is of the form of:

W (i, t) = KG(Ni−δ −Ni), (15)
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Figure 6: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method under
pure coagulation.

where the growth kernel KG = 20 s−1, and δ is the change in particle mass after a growth
process and is assumed to be 1. The moment source term can be expressed as:

Wk(M) =


0, k = 0,

KG

k∑
r=1

(
k
r

)
δrMk−r, k = 1, . . . , 2Np − 2.

(16)

Again, the log-normal distribution in Eq. (12) is supplied as the initial condition. Figure 7
shows the evolution of the PSD computed by solving the master equation under pure
growth. The PSD shifts towards larger particle masses; however, the distribution widens
and the peak decreases in magnitude consistent with a growth process. The simulation
results using MPM is similar to that of pure coagulation. αj (j = 2, 3, 4) increase as
shown in Fig. 8 and the mean quantities computed using MPM are in agreement with
MOM, HMOM and the stochastic method as shown in Fig. 9. The total particle number
remains unchanged while a linear increase in the total particle mass is observed.

3.4 Pure shrinkage

Shrinkage is the opposite of growth but with an important difference: when particles of
the smallest mass shrink they are removed from the system which leads to a decrease in
the total particle number. Here we consider the source term for shrinkage of the form:

S(i, t) = KSk(Ni+δ −Ni), (17)

where the shrinkage kernel KSk = 30 s−1 and δ is the change in particle mass after a
shrinkage process and is assumed to be 1. The moment source term for shrinkage can
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Figure 7: Evolution of the PSD computed by solving the master equation under pure
growth.
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Figure 8: Evolution of the particle masses αj (left panel) and the corresponding number
of particles Ñαj

(right panel) using MPM under pure growth. The PSD at
t = 0 s in Fig. 7 (continuous line) is supplied as the initial condition. A total of
four particle masses are used to approximate the PSD.

then be expressed as:

Sk(M,N1) =


−KSkN1, k = 0,

KSk

k∑
r=1

(
k
r

)
(−δ)rMk−r, k = 1, . . . , 2Np − 2.

(18)
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Figure 9: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method under
pure growth.

It can be seen that the zeroth order shrinkage moment source term, S0, is dependent on
the number of particles of the smallest mass, N1. To obtain closure of Eq. (18), N1 has
to be determined. In MPM, we fix the first particle mass, α1, to be equal to the smallest
mass so that the corresponding number of particles, Ñα1 , can be used as an approximation
of N1 of the true PSD.

So far we have looked at the performance of MPM for the individual processes of in-
ception, growth and coagulation where only a log-normal distribution is supplied as the
initial condition. Since the focus of this paper is on the development of a method which is
able to handle shrinkage, a more rigorous investigation is warranted. Four different types
of PSDs are supplied as the initial condition and for each case the number of particles
masses, Np, is varied.

Case 1 A log-normal distribution which we have seen before but we repeat here for ease
of reference:

N(i, t = 0) = 100 exp(−(log(i)− log(25))2/0.05), i = 1, 2, . . . , 100.

Case 2 A unimodal distribution:

N(i = 30, t = 0) = 100. (19)

Case 3 A parabolic distribution:

N(i, t = 0) = 300i− 10i2, i = 1, 2, . . . , 30. (20)

Case 4 A uniform distribution:

N(i, t = 0) = 10, i = 1, 2, . . . , 30. (21)

To determine the error in the moments computed using MPM the following relative error
metric is used:

Mk,error =
|M̃k −Mk|
Mk + η

, (22)
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where M̃k is the k-th order moment calculated using MPM while Mk is from a high-
precision stochastic solution. η is a constant assumed to be 1. The purpose of introducing
η is to prevent the error metric from tending towards infinity because as particles shrink
and are removed from the system Mk would tend towards zero.

For Case 1, a log-normal distribution is supplied as the initial condition. Evolution of the
PSD computed by solving the master equation under pure shrinkage is shown in Fig. 10.
The distribution shifts towards the smallest particle mass and at t = 2 s all the particles
have been removed from the system.
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Figure 10: Evolution of the PSD computed by solving the master equation under pure
shrinkage (Case 1).

The simulation results using MPM where five particle masses (Np = 5) are used to ap-
proximate the PSD are shown in Fig. 11. αj (j = 2, 3, 4, 5) move towards the smallest
particle mass before flattening out as almost all the particles have been removed. Large
particles shrink to form smaller ones, therefore, Ñαj

(j = 2, 3, 4, 5) decreases while Ñα1

increases. However, once the rate of removal of the smallest particles is greater than the
rate of formation from large particles Ñα1 also decreases.

The relative error for moments of order k = 0 to 8 (Np = 5; k = 0, . . . , 2Np − 2) using
MPM is shown in Fig. 12. The errors gradually increase over time as the moments tend
towards zero. However, at t = 1 s, when almost no particles are left in the system, the
errors are at most ∼ 10 %.

To investigate the influence of the number of particle masses, Np, on the accuracy of
MPM,Np is varied from 3 to 5. (We see little decrease in the error forNp > 5.) The zeroth
and first moments computed using MPM for differentNp are compared with the stochastic
solution in Fig. 13. M̃0 computed using MPM for Np = 3 (dashed line) shows an obvious
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Figure 11: Evolution of the particle masses αj (left panel) and the corresponding number
of particles Ñαj

(right panel) using MPM under pure shrinkage. The PSD at
t = 0 s in Fig. 10 (continuous line) is supplied as the initial condition (Case 1).
A total of five particle masses are used to approximate the PSD.
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Figure 12: Error in the k-th order moment using MPM relative to a high-precision
stochastic solution under pure shrinkage. Errors correspond to Case 1 where
a log-normal distribution is supplied as the initial condition.

discrepancy with M0 computed using the stochastic method (continuous line). By con-
trast, the results obtained using Np = 4 and 5 show a good agreement with the stochastic
solution. M̃1 does not display any sensitivity to Np. The time-averaged (t = 0 to 1.5 s)
relative moment error, Mk,error, is shown in Table 1 as a function of Np and k. A higher
accuracy is observed when larger values of Np are used; the errors show about an order of
magnitude decrease when Np is increased from 3 to 5. As more particle masses are used,
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the approximation made on the pointwise value of the PSD (Ñα1 u N1) is closer to the
real value. However, the higher-order moments tend to exhibit a larger error than lower-
order moments. As can be seen in Fig. 12, errors in the higher-order moments are initially
small; however, as the simulation proceeds, the moments tend towards zero making the
relative errors large. Nevertheless, these errors decrease significantly with an increase Np.
For example, M4,error decreases from 0.3088 to 0.2053 when Np is increased from 3 to 4,
and M6,error decreases from 0.3515 to 0.2522 when Np is increased from 4 to 5.
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Figure 13: Sensitivity of the zeroth momentM0 (left panel) and the first momentM1 (right
panel) to the number of particle masses, Np, using MPM under pure shrink-
age. Results correspond to Case 1 where a log-normal distribution is supplied
as the initial condition. The stochastic solution is shown as a point of refer-
ence.

Table 1: Average error in the k-th order moment using MPM relative to a high-precision
stochastic solution, for different number of particle masses, Np, under pure
shrinkage. Errors correspond to Case 1 where a log-normal distribution is sup-
plied as the initial condition.

k Np = 3 Np = 4 Np = 5

0 0.0912 0.0304 0.0104
1 0.1179 0.0399 0.0103
2 0.1711 0.0793 0.0201
3 0.2362 0.1393 0.0548
4 0.3088 0.2053 0.1123
5 - 0.2767 0.1802
6 - 0.3515 0.2522
7 - - 0.3269
8 - - 0.4041

The ability of different methods to handle shrinkage can be seen in Fig. 14. MOM does
not account for the consumption of particles due to shrinkage therefore M̃0 remains con-
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stant; however, the behaviour of M̃1 is somewhat more reasonable. M̃1 is set to be equal
to M̃0 whenever M̃1 falls below M̃0 to ensure that the moments are strictly monotonic.
HMOM performs much better as it includes a source term to account for the consumption
of the smallest particles. As large particles shrink to eventually form the smallest particles,
it was assumed that the number of the smallest particles formed from the large particles is
proportional to the mass lost from the large particles [30] (see Appendix B). This assump-
tion is too coarse. Initially, the mass of large particles can decrease without there being a
change in the number of particles. HMOM overestimates the number of the smallest parti-
cles, and therefore M0. However, small particles are easier to remove; therefore, the trend
reverses and HMOM underestimates M0 (and M1). By contrast, the moments computed
using MPM for Np = 4 shows an excellent agreement with the stochastic solution.
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Figure 14: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM (four particle masses), MOM, HMOM and the
stochastic method under pure shrinkage. Results correspond to Case 1 where
a log-normal distribution is supplied as the initial condition.

The results for Case 2 where a unimodal distribution is supplied as the initial condition are
similar to Case 1 and are shown in Fig. 15 and Table 2. For Case 3, a parabolic distribution
is supplied as the initial condition. Figure 16 shows that M̃0 computed using MPM for
Np = 3 shows a poor agreement with the stochastic solution. Even if Np is increased to 4,
a slight discrepancy can still be observed. A satisfactory agreement is obtained when Np

is increased to 5. The conclusions drawn from the corresponding average relative error
in Table 3 are similar to those for previous cases. For Case 4, a uniform distribution is
supplied as the initial condition. The results are similar to those for Case 3 and are shown
in Fig. 17 and Table 4.

Based on the four cases considered above, we conclude that MPM is able to simulate the
shrinkage of different types of PSDs as long as a sufficient number of particle masses are
used. Np = 4 is a good compromise between accuracy and computational efficiency.
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Figure 15: Sensitivity of the zeroth momentM0 (left panel) and the first momentM1 (right
panel) to the number of particle masses, Np, using MPM under pure shrink-
age. Results correspond to Case 2 where a unimodal distribution is supplied
as the initial condition. The stochastic solution is shown as a point of refer-
ence.

Table 2: Average error in the k-th order moment using MPM relative to a high-precision
stochastic solution, for different number of particle masses, Np, under pure
shrinkage. Errors correspond to Case 2 where a unimodal distribution is sup-
plied as the initial condition.

k Np = 3 Np = 4 Np = 5

0 0.0256 0.0053 0.0009
1 0.0366 0.0057 0.0008
2 0.0701 0.0143 0.0014
3 0.1158 0.0381 0.0049
4 0.1667 0.0756 0.0170
5 - 0.1206 0.0408
6 - 0.1689 0.0749
7 - - 0.1163
8 - - 0.1615

3.5 Combined processes

We looked at the processes of inception, coagulation, growth and shrinkage in isolation.
Now we test MPM against MOM, HMOM and the stochastic method for all of these
processes combined. Two types of PSDs are supplied as the initial condition and the
shrinkage kernel is varied to simulate relatively weak (Case 6) and strong (Case 7) shrink-
age:

Case 5 Inception kernel Im1 = 100 s−1, growth kernel KG = 20 s−1, coagulation kernel
KCg = 2× 10−4 s−1 and shrinkage kernel KSk = 30 s−1 with a log-normal distribution as
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Figure 16: Sensitivity of the zeroth momentM0 (left panel) and the first momentM1 (right
panel) to the number of particle masses, Np, using MPM under pure shrink-
age. Results correspond to Case 3 where a parabolic distribution is supplied
as the initial condition. The stochastic solution is shown as a point of refer-
ence.

Table 3: Average error in the k-th order moment using MPM relative to a high-precision
stochastic solution, for different number of particle masses, Np, under pure
shrinkage. Errors correspond to Case 3 where a parabolic distribution is sup-
plied as the initial condition.

k Np = 3 Np = 4 Np = 5

0 0.1456 0.0512 0.0088
1 0.1605 0.0665 0.0126
2 0.1965 0.0981 0.0261
3 0.2413 0.1383 0.0501
4 0.2912 0.1827 0.0832
5 - 0.2294 0.1226
6 - 0.2775 0.1659
7 - - 0.2113
8 - - 0.2577

the initial condition (see Eq. (12)):

N(i, t = 0) = 100 exp(−(log(i)− log(25))2/0.05), i = 1, 2, . . . , 100.

Case 6 Im1 = 100 s−1, KG = 20 s−1, KCg = 2 × 10−4 s−1 and KSk = 22 s−1 with a
unimodal distribution as the initial condition (see Eq. (19)):

N(i = 30, t = 0) = 100.
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Figure 17: Sensitivity of the zeroth momentM0 (left panel) and the first momentM1 (right
panel) to the number of particle masses, Np, using MPM under pure shrink-
age. Results correspond to Case 4 where a uniform distribution is supplied as
the initial condition. The stochastic solution is shown as a point of reference.

Table 4: Average error in the k-th order moment using MPM relative to a high-precision
stochastic solution, for different number of particle masses, Np, under pure
shrinkage. Errors correspond to Case 4 where a uniform distribution is sup-
plied as the initial condition

k Np = 3 Np = 4 Np = 5

0 0.0642 0.0156 0.0036
1 0.0795 0.0168 0.0023
2 0.1218 0.0369 0.0046
3 0.1735 0.0734 0.0148
4 0.2294 0.1192 0.0368
5 - 0.1689 0.0699
6 - 0.2203 0.1109
7 - - 0.1565
8 - - 0.2043

Case 7 Im1 = 100 s−1, KG = 20 s−1, KCg = 2 × 10−4 s−1 and KSk = 30 s−1 with a
unimodal distribution as the initial condition (see Eq. (19)):

N(i = 30, t = 0) = 100.

For Case 5, the shrinkage kernel is larger than the growth kernel, therefore, there is a net
shrinkage of particles and the PSD shifts towards the smallest particle mass as shown in
Fig. 18. By the end of simulation (t = 10 s), no particles are left in the system. MOM
predicts a slight decrease in M̃0 as shown in Fig. 19 due to the interplay between inception
and coagulation. M̃1 computed using MOM decreases much faster than the stochastic
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solution. As we saw in the Section 3.4, M̃1 would eventually fall below M̃0 under pure
shrinkage as the MOM formulation does not include a source term to account for the
consumption of particles due to shrinkage. To maintain the monotonicity of moments,
from about t = 2.5 s onwards, M̃1 is set to be equal to M̃0. HMOM reproduces the
decreasing trend in M0 and M1, however, there is an obvious discrepancy compared with
the stochastic solution. By contrast, M̃0 and M̃1 obtained using MPM for Np = 4 is in a
much better agreement with the stochastic solution compared with MOM and HMOM.
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Figure 18: Evolution of the PSD computed using the stochastic method under all particle
processes (Case 5).

For Case 6, a unimodal distribution where its mode is located at a mass of 30 evolves
into a bimodal distribution under the combined effects of inception, coagulation, growth
and shrinkage as shown in Fig. 20. There is only a slight shift in the position of the sec-
ond mode of the distribution because the shrinkage kernel is only slightly larger than the
growth kernel. As shown in Fig. 21, M̃0 and M̃1 computed using MPM show a good
agreement with the stochastic solution while MOM and HMOM fail to even match. The
performance of MOM and HMOM is similar to Case 5 except that MOM predicts a non-
linear increase in M̃0. This shows that while inception is dominant, nonlinear effects from
coagulation is significant.

For Case 7, the shrinkage kernel, KSk, is increased to 30 s−1 while the inception, coag-
ulation and growth kernels are the same as in Case 6. A bimodal distribution is again
observed in Fig. 22. This time however the PSD shifts towards smaller particle masses at
a much faster speed within the same period of time, simulating a situation with a strong
particle shrinkage. Comparison of M0 and M1 between the different methods are similar
to Case 6.
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Figure 19: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method un-
der all particle processes. Results correspond to Case 5 where a log-normal
distribution is supplied as the initial condition.
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Figure 20: Evolution of the PSD computed using the stochastic method under all particle
processes but with relatively weak shrinkage (Case 6).

4 Conclusion

A new moment projection method (MPM) for solving the population balance equation
(PBE) has been developed and presented. The main advantages of this method are its
ease of implementation and numerical robustness as well as its ability to deal with parti-
cle shrinkage. It directly solves the moment transport equation for the moments so that

24



0 2 4 6 8 1 00

3

6

9
M 0 (d

im
en

sio
nle

ss
)

T i m e  ( s )

 M P M
 M O M
 H M O M
 S t o c h a s t i c

x  1 0 2

0 2 4 6 8 1 00 . 0

0 . 9

1 . 8

2 . 7

3 . 6

M 1 (d
im

en
sio

nle
ss

)

T i m e  ( s )

 M P M
 M O M
 H M O M
 S t o c h a s t i c

x  1 0 3

Figure 21: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method under
all particle processes. Results correspond to Case 6 where a unimodal distri-
bution is supplied as the initial condition and shrinkage is relatively weak.
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Figure 22: Evolution of the PSD computed using the stochastic method under all particle
processes but with relatively strong shrinkage (Case 7).

the source terms can be readily evaluated using the method of moments with interpolative
closure (MOMIC). A set of particle masses are used to approximate the discrete-mass
distribution where one of the particle masses is fixed at the smallest particle. The al-
gorithm by Blumstein and Wheeler is used to track the number of these particles which
eliminates the need for matrix inversion which can lead to singularity problems. The
new method is compared with the method of moments (MOM) and the hybrid method of
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Figure 23: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM, MOM, HMOM and the stochastic method under
all particle processes. Results correspond to Case 7 where a unimodal distri-
bution is supplied as the initial condition and shrinkage is relatively strong.

moments (HMOM), first for the individual processes of particle inception, coagulation,
growth and shrinkage (constant kernels), then for all of these processes combined; differ-
ent types of particles size distributions (PSDs) are supplied as an initial condition. It is
shown that MPM is just as accurate as MOM and HMOM when used to treat inception,
coagulation and growth. However, when it comes to shrinkage, MPM performs much bet-
ter than MOM and HMOM. The accuracy of MPM improves with the number of particle
masses, Np, and Np = 5 is found to provide an excellent agreement with a high-precision
stochastic solution calculated using the direct simulation algorithm (DSA). Higher-order
moments computed using MPM show larger relative errors than lower-order moments
consistent with other moment methods. These errors gradually increase with time be-
cause the moments tend towards zero. Future work includes applying MPM to breakage
problems and incorporating more realistic rate laws for coagulation, i.e., Brownian kernel.
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Nomenclature

Upper-case Roman
G Source term due to coagulation
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I Inception rate
KCg Coagulation kernel
KG Growth kernel
KSk Shrinkage kernel
M Moment
N Number
P Symmetric tridiagonal matrix which is a function of recursion coefficients a

and b
R Source term due to inception
S Source term due to shrinkage
W Source term due to growth
Z Matrix with components Z which are a function of the moments M

Lower-case Roman
a, b Recursion coefficients
h Time interval
i Abscissa of delta function
m Mass
r Recursive function
t Time
v Eigenvector of matrix P
w Weight of delta function

Greek
α Particle mass
η User defined constant in relative moment error
δ Particle mass change in a growth or shrinkage process

Subscripts
α Particle mass
f Final

L Large
p Particle
0 Initial or smallest

Symbols
x̃ Approximation of x

Abbreviations
DQMOM Direct quadrature method of moments

DSA Direct simulation algorithm
EQMOM Extended quadrature method of moments
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FCMOM Finite-size domain complete set of trial functions method of moments
HMOM Hybrid method of moments

MOM Method of moments
MOMIC Method of moments with interpolative closure

MPM Moment projection method
ODE Ordinary differential equation
PBE Population balance equation

PD Product difference
PSD Particle size distribution

QMOM Quadrature method of moments
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A Blumstein-Wheeler algorithm

This algorithm is used to determine the particle masses and the numbers used to approxi-
mate the PSD from the empirical moments. The algorithm is implemented in Matlab and
makes use of the eig function to determine the eigenvalues and eigenvectors.

Input: The empirical moments M̃k for k = 0, 1, . . . , 2Np − 2.
Output: The particle masses αj and the corresponding number of particles Ñαj for

j = 1, 2, . . . , Np.
Create a Np × 2Np matrix Z with zeros in all elements.
Determine the elements of the first row of matrix Z: Z1,l = M̃l−1 for l = 1, . . . , 2Np − 1.
For a1 = M̃1/M̃0 and b1 = 0, determine the recursion coefficients ak and bk:
for k = 2 to Np do

for l = k to 2Np − 1 do
The elements of Z must satisfy the following recursion relation:

Zk,l = Zk−1,l+1 − ak−1Zk−1,l − bk−1Zk−1,l;

end

ak =
Zk,k+1

Zk,k
−

Zk−1,k
Zk−1,k−1

; bk =
Zk,k

Zk−1,k−1
.

end
For r1 = 1/(m1 − a1) where m1 is the smallest particle mass, determine the recursion

function:
rk = 1/(m1 − ak − bkrk−1) k = 2, . . . , Np − 1.

As we fix the smallest particle mass, replace aNp with:

aNp = m1 − bNprNp−1.

Construct a symmetric tridiagonal matrix P with ak as the diagonal and the square roots of
bk as the co-diagonal:

P =


a1 −

√
b2 0 · · · 0

−
√
b2 a2 −

√
b3 · · · 0

0 −
√
b3 a3 · · · 0

...
...

...
. . .

...
0 0 0 · · · aNp

 .

Solve for the eigenvalues V and eigenvectors D of matrix P:[
V,D

]
= eig(P).

Solve for αj and Ñαj :
αj = V(j, j), Ñαj = M̃0D(1, j)2.

Algorithm 2: Blumstein-Wheeler algorithm.
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B Hybrid method of moments

HMOM was originally developed for bivariate PBEs based on particle volume and surface
area [29, 30]. Here we revise the method to be based on particle mass and we focus on the
shrinkage process. Particles are discretised into two modes: particles of the smallest mass
i0 and particles of large mass iL [29, 30]. Based on this concept, the k-th order moment
is:

Mk = Ni0i
k
0 +NiLi

k
L, (B.1)

where Ni0 and NiL are the number of particles of mass i0 and iL, respectively. Combining
Eqs. (2) and (17), we get:

dMk

dt
= −KSki

k
0Ni0 +KSk

∞∑
i=i0+δ

((i− δ)k − ik)Ni, (B.2)

where KSk is the shrinkage kernel and δ is the change in mass after a shrinkage process.
The first term corresponds to the removal of the smallest particles when they shrink and
the second term corresponds to the formation of the smallest particles when large particles
shrink. Combining Eqs. (B.1) and (B.2):

dMk

dt
=


−KSkNi0 , k = 0,

KSk

k∑
r=1

(
k
r

)
(−δ)r(ik−r0 Ni0 + ik−rL NiL), k > 0.

(B.3)

The source term for Ni0 is given by [30]:

dNi0

dt
= lim

k→−∞

dMk/dt
ik0

. (B.4)

Applying Eq. (B.4) to Eq. (B.2) we get:

dNi0

dt
= −KSkNi0 +KSkNi0+δ. (B.5)

The first term is the destruction of the smallest particles and the second term corresponds
to the intermodal transfer of particles from the second mode to the first during a shrinkage
process. To close this latter term, Mueller et al. [29] assumed that the number of particles
transferred from the large particles to the smallest particles is proportional to the total
mass lost from the large particles with a coefficient, C, equal to the mass ratio between
the two modes i0/iL:

Ni0+δ = CδML
−1 =

i0δ

i2L
NiL , (B.6)

where the superscript L refers to the contribution to the moment from the second mode.
Combining Eqs. (B.5) and (B.6):

dNi0

dt
= −KSkNi0 +

i0δ

i2L
KSkNiL . (B.7)
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The remaining two quantities in Eq. (B.3) are obtained from the two known moments [29]:

NiL =M0 −Ni0 , (B.8)

and
iL =

M1 −Ni0i0
NiL

. (B.9)

Algorithm 3 describes the numerical procedure of HMOM for the shrinkage process. The
HMOM approach for other processes (inception, coagulation and growth) can be obtained
in a similar way, but the details are not given here for simplicity.

Input: PSD supplied as initial condition N(i, t0) for i = 1, . . . ,∞ at initial time t0; final
time tf.

Output: Empirical moments of the PSD M̃k(tf) for k = 0, 1, . . . at final time tf.

Calculate the moments of the true PSD using Eq. 2:

Mk(t0) =

∞∑
i=1

ikN(i, t0), k = 0, . . . , 2Np − 2.

Determine the number and mass of the large particles NiL(t0) and iL(t0), respectively, by
solving Eqs. (B.8) and (B.9).

t←− t0, M̃k(t)←− M̃k(t0);
while t < tf do

Integrate Eq. (B.3) for the moments M̃k(t+ h) over the time interval [t, t+ h] (using an
ODE solver) with Ni0(t), NiL(t) and iL(t) as the initial condition.

Integrate Eq. (B.7) for the number of smallest particles Ñi0(t+ h) over the time interval
[t, t+ h] with Ni0(t), NiL(t) and iL(t) as the initial condition.

Determine NiL(t+ h) using Eq. (B.8) with the obtained M0(t+ h) and Ni0(t+ h).

Determine iL(t+ h) using Eq. (B.9) with the obtained M1(t+ h), Ni0(t+ h) and
NiL(t+ h).

Increment t←− t+ h.
end

Algorithm 3: Hybrid method of moments algorithm.
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