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Abstract

This paper presents results of parameterisation of typical input-output relations
within process flow sheet of a biodiesel plant and assesses parameterisation accu-
racy. A variety of scenarios were considered: 1, 2, 6 and 11 input variables (such as
feed flow rate or a heater’s operating temperature) were changed simultaneously, 3
domain sizes of the input variables were considered and 2 different surrogates (poly-
nomial and High Dimensional Model Representation (HDMR) fitting) were used.
All considered outputs were heat duties of equipment within the plant. All surrogate
models achieved at least a reasonable fit regardless of the domain size and number
of dimensions. Global sensitivity analysis with respect to 11 inputs indicated that
only 4 or fewer inputs had significant influence on any one output. Interaction terms
showed only minor effects in all of the cases.
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1 Introduction

Every industrial actor strives towards better understanding and, ultimately, optimisation of
any and all of its activities. That applies on each level beginning with workforce schedules
and individual pieces of machinery, through specific processes, ending with entire plants.
Traditionally the main objectives of such an optimisation are minimising resource use
and maximising profit. However, as environmental concerns become ever more pressing
ecologically-focused targets such as reducing pollutants, creating cleaner manufacturing
processes or reducing carbon footprints rise in prominence.

Those trends prompted significant academic and industrial interest in the concepts of "sus-
tainable development" [19], "industrial ecology" [2, 3, 36, 69] and "industrial symbio-
sis" [22]. The latter concept brings together separate industries in a collective approach
to competitive advantage involving physical exchange of materials, energy, water and
by-products [22]. Ecological industrial development based thereon is often realised as
Eco-Industrial Parks (EIPs).

An EIP is defined as an industrial park where businesses cooperate with each other and, at
times, with the local community to reduce waste and pollution, efficiently share resources
(such as information, materials, water, energy, infrastructure, and natural resources), and
minimise environmental impact while simultaneously increasing business success [54].
An example of an EIP exists in Kalundborg, Denmark where an exchange network is cen-
tred around Asnas Power Station, a 1500MW coal-fired power plant, and linked to the
local community and several other companies [22, 27]. Sample exchanges include selling
excess steam from the plant to Novo Nordisk, a pharmaceutical and enzyme manufac-
turer, and to Statoil power plant or using extra heat to heat local homes and a nearby fish
farm. Also, one of the plant’s by-products, gypsum, is purchased by a wallboard producer,
helping to reduce the amount of necessary open-pit mining [29].

Primary academic interest stems from EIPs’ ability to create more sustainable industrial
activities through the use of localised symbiotic relationships [13]. To this date a great
number of studies concerning various aspects of EIPs have been conducted. Many of them
probe methods suitable for optimal design, focusing primarily on employing mathemati-
cal programming to create exchange networks of materials, water and energy connecting
members of the EIP in question [23, 41, 42, 44, 48]. Utility of such designs is evaluated
by monitoring environmental, social and economical impacts.

Holistic modelling of complex, highly interconnected networks is a non-trivial and ex-
pensive task, especially for EIPs which include numerous physical models of disparate
processes. That is why many studies apply mathematical optimisation to simplified mod-
els of individual aspects of the parks.

The limitations of this approach may be overcome by exploiting key features of the con-
cept of Industry 4.0 [54]: creation of virtual copies of the physical world and the ability of
industrial components to communicate with each other. Those virtual copies could be sur-
rogate models of physical models produced for a predefined range of inputs. Developing
a virtual system primarily based on surrogate models would significantly reduce required
computation time and storage space and allow for dynamic modelling and studies other-
wise impossible to conduct. Figure | presents a framework of EIP modelling based on
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Figure 1: Framework of EIP modelling based on Industry 4.0. Adopted from Ming Pan
etal [54].

A surrogate model (or a metamodel) is an approximation of experimental and/or sim-
ulation data designed to provide answers when it is too expensive to directly measure
the outcome of interest [32]. Two key requirements thereof are reasonable accuracy and
significantly faster evaluation than the original method. The models are used to:

e explore design space of a simulation or an experiment,

e calibrate predictive codes of limited accuracy and bridging models of varying fi-
delity,

e account for noise or missing data,

e gain insight into nature of the input-output relationship (data mining, sensitivity
analysis and parameter estimation).

Producing a surrogate model involves choosing a sampling plan (an experimental design),
choosing a type of model and fitting the model to the gathered data. Numerous sampling
and fitting techniques are available as documented in a number of reviews. Simpson et al.
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[62] provides detailed reviews of data sampling and metamodel generation techniques,
including response surfaces, kriging, Taguchi approach, artificial neural networks and
inductive learning. It also discusses metrics for absolute and relative model assessment,
including R?, residual plots and root mean square error. An introduction to and analysis
of linear regression with a focus on generalized linear mixed models with many examples
and case studies is provided by Ruppert et al. [59].

A book by Forrester et al. [32] puts the process of data sampling and generating surrogate
models into engineering perspective providing numerous case studies and MATLAB code
to preform associated calculations. It discusses response surfaces, kriging, support vectors
machines and radial basis functions. An in-depth review of kriging, its application and
new extensions are provided by Kleijnen [45]. A review and assessment of various sam-
pling techniques is provided by Crary [25]. Reich and Barai [57] focuses on assessment
of machine learning techniques, artificial neural networks in particular, with case studies
of modelling marine propeller behavior and corrosion data analysis. An example of sur-
rogate models bridging models of varying fidelity is provided by Bakr et al. [10] where a
surrogate maps data produced by fine and coarse physical models in order to accelerate
optimisation of the fine model. Jin et al. [38] assesses applicability and accuracy of meta-
models for optimisation under uncertainty and reports promising results noting that only
a small-size analytical problem was considered. Surrogate models are widely employed
in engineering and science for space exploration [34, 35], modelling [2 1, 26, 46], sensi-
tivity analysis [6, 20, 35, 40, 52], parameter estimation [9, 14, 43], optimisation in areas
ranging from circuit design through nanoparticle synthesis to flood monitoring [4, 12, 58].
However, none of the aforementioned applications employ surrogate models in order to
describe a process flow sheet model of a typical industrial process and assess quality of
the description.

The main purpose of this paper is to approximate the relations between 11 inputs typical to
a biodiesel plant and its energy requirements using surrogate models and assess accuracy
of the approximations. Additionally, it aims to investigate the effects of dimensionality,
domain size and surrogate type on the accuracy and analyse global sensitivities of the
outputs in order to identify opportunities for dimensionality reduction.

This paper is structured as follows. Section 2 describes the biodiesel plant model and its
modelling environment. Section 3 presents sampling and surrogate generation techniques
prodecures and software employed to perform those. Section 4 provides implementa-
tion details of the surrogate models and accuracy indices used to assess them. Section

presents results of the numerical analysis, while Section 6 summarizes the main findings.



2 Model

2.1 Aspen Plus V8.6

Aspen Plus is a process modelling and optimisation software used by the bulk, fine, spe-
cialty, and biochemical industries, as well as the polymer industry for the design, op-
eration, and optimisation of safe, profitable manufacturing facilities [5]. Its capabilities
include:

e optimisation of processing capacity and operating conditions,
e assessment of model accuracy,
e monitoring safety and operational issues,

e identifying energy savings opportunities and reduce greenhouse gas (GHG) emis-
sions,

e performing economic evaluation,

e improving equipment design and performance.

The software was used to simulate the process described in Section

2.2 Biodiesel plant simulation

The process flow sheet model under investigation includes initial stages of a biodiesel
production line, namely a reaction step and a separation step, with auxiliary equipment as
seen in Figure 2. The final fuel, fatty acid methyl ester, is produced via trans-esterification
pathway where triglycerides react with methanol to form methyl ester and glycerin in the
presence of an alkaline catalyst. The flow sheet was based on an existing plant designed
by Lurgi GmbH. It consists of the following elements: a continuously stirred tank reac-
tor (CSTR), a flash drum, a decanter, 3 heaters and 11 material streams. In the process
tripalmitine oil is reacted with methanol in the CSTR to produce glycerol and methyl-
palmitate (biodiesel) and then passed through a flash drum and a decanter to separate
excess methanol and glycerol. The simulation is solved for steady-state operation and
produces a wide variety of chemical and physical information ranging from throughput to
heat duties of individual equipment.

In this study surrogate models were used to describe relations between chosen inputs and
outputs occurring in the process flow sheet model. The choice of variables aimed to study
effects of inputs typical for chemical plants on energy consumption as it is desired to study
interactions between chemical and electrical models in the future. Three domain sizes of
the input variables were considered in order to assess their effect on the parametrisation
accuracy. The variables’ names, domain and preferred operating conditions are listed in
Tables | and 2. Plots of heat duties of various equipment against molar flow of tripalmitin
oil can be seen in Figure



Table 1: Input variables.

Name Lower bounds | Upper bounds | Operating point
Molar flow of tripalmitine oil (kmol/hr) 20, 22.5, 25 40, 37.5, 35 30
Temperature of tripalmitine oil (°C) 20, 22.5, 25 40, 37.5, 35 30
Operating temperature of CSTR 10D01 (°C) 44, 49, 54 64 60
Volume of CSTR 10D01 (m?) 40, 43, 45 50, 49, 47 45
Operating temperature of flash drum 10D02 (°C) 80, 82.5, 85 100, 97.5, 95 90
Operating temperature of heater 10E01 (°C) 60, 62.5, 65 80, 77.5,75 70
Molar flow of methanol (kmol/hr) 150, 160, 170 210, 200, 190 180
Temperature of methanol (°C) 20, 22.5, 25 40, 37.5, 35 30
Operating temperature of decanter 10D02D (°C) 20, 22.5, 25 40, 37.5, 35 30
Operating temperature of heater 10E02 (°C) 80, 82.5, 85 100, 97.5, 95 90
Operating temperature of heater 10E03 (°C) 60, 62.5, 65 80, 77.5,75 70

Table 2: Output variables.

Name

Heat duty of heater 10E01 (MW)

Heat duty of heater 10E02 (MW)

Heat duty of heater 10E03 (MW)

Heat duty of reactor 10D01 (MW)

Heat duty of flash drum 10D02 (MW)

Heat duty of decanter 10D02D (MW)
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Figure 2: Aspen Plus flowsheet representing the biodiesel production line.
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3 Parameterisation

3.1 Model Development Suite

Model Development Suite (MoDS) [24] is an advanced software tool designed to analyse
black-box models (e.g. executables, batch scripts). It includes a broad range of tools such
as data-driven modelling, multi-objective optimisation, generation of surrogate models,
data standardisation and visualisation, global parameter estimation [14—16, 49-52, 60,

], uncertainty propagation [7, 18], global and local sensitivity analysis [0, 66, 67], and
intelligent design of experiments [ |, 8, 17, 30, 63, 70]. It was used to sample data, produce
surrogate models and compute global sensitivities.

Sobol sequence, a quasi-random low discrepancy sampling method, is employed for sam-
pling data and polynomial fitting and High Dimensional Model Representation (HDMR)
fitting are used to generate surrogate models. A brief description of each is included,
respectively, in Sections 3.4, and

3.2 MoDS-Aspen Plus interface - Component Object Model (COM)

The data collection and parameterization process of a model can be automated using
MoDS provided an executable file capable of reading an input file, running the consid-
ered model and producing an output file (input and output files need to have either .csv or
.xml format).

For the purpose of this study a script written in Python 3.4 was used to manipulate the As-
pen Plus simulation via Microsoft Component Object Model (COM) interface. COM is
a platform-independent, binary-interface standard enabling creation of objects and com-
munication between them [53]. COM object (also known as COM component) is defined
as a piece of compiled code that provides a service to the rest of the system. That can
be a script, an instance of a program e.g. an Aspen Plus simulation. A primary feature
of this architecture is the fact that COM components access each other through interface
pointers, rather than directly. It provides a number of functions applicable to all compo-
nents. Any additional functions need to be provided by the object or the user, in both cases
via a library associated with the object. In this project COM interface is primarily used
to launch, explore data structures, access data entries and solve models simulated within
Aspen Plus.

3.3 Data harvest and surrogate generation

Data collection, processing and visualisation were done using MoDS and custom-made
Python 3.4 and R 3.2.2 scripts. The process of producing a surrogate of existing mod-
els involves the following steps: generation of input data, reception of output data from
the studied model and, when both data sets are complete, scanning for and excluding er-
roneous data points and executing a parametrisation algorithm. The first two steps are
critical to ensure high accuracy of the surrogate model and hence a sufficient number of
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points and a suitable sampling method are required to satisfactorily describe the input-
output relation for a given number of independent variables and operating range. In this
study the following procedure was used:

1. A Sobol sequence was used to generate input data for user-specified variables within
the process flow sheet model.

Model’s input data was altered according to the generated input data.
The simulation was evaluated with the new inputs.
MoDS retrieved values of user-specified outputs.

Data was scanned for errors and corrected.

A

Polynomial and HDMR fitting were used to generate surrogate models describing
the relation between inputs and outputs.

Client

Surrogate
eg Mops | [Surroe

Aspen
Plus

T |J

Figure 4: Model Development Suite work flow.

The workflow of MoDS is visualized in Figure 4. A variety of scenarios were considered:
1, 2, 6 and 11 input variables were changed simultaneously, 3 different domain sizes of
the input variables were considered and 2 different surrogate generation methods (poly-
nomial and HDMR fitting) were used. To ensure that there is always sufficient number
of points required to generate a surrogate, each simulation produced 400 points per input
variable (prior to error exclusion). They were used for fitting surrogates and calculating
R? and R?. Depending on the case, erroneous points made up to 1% of all points. They
arose due to convergence and stability issues within Aspen Plus. Additionally, test sets
of points (100 points per dimension) were generated for calculating Root-Mean-Square
Deviation (RMSD) and residuals (see Section for further description). In this study
three domain sizes of the input variables were considered in order to assess their effect on
the parameterisation accuracy. The domain bounds of input variables during simulations
and initial steady state values are summarised in Table

11



3.4 Sampling

Data points were generated using Sobol sequences, a type of quasi-random, low-discrepancy
sequences. Low discrepancy of points in such a sequence means that their proportion
falling into an arbitrary set is approximately proportional to the measure of the set. This
property is true on average, but not necessarily for specific samples. Their ability to cover
considered domain quickly and evenly gives them advantages over purely random num-
bers. Also, in contrast to deterministic sequences, they do not require a predefined number
of samples and their coverage improves continually as more data points are added. Sobol
sequences uses a base of two to form successively finer uniform partitions of the unit inter-
val, and then reorder the coordinates in each dimension [64]. The MoDS implementation
of a Sobol sequence generator follows the description of Joe and Kuo [39].

12



4 Implementation

4.1 Polynomial response surfaces

Polynomial response surfaces are a subset of response surface methodology, a group
of mathematical and statistical techniques designed to facilitate empirical model build-
ing [55]. Polynomials of a predefined degree are optimized to describe an unknown re-
lation between independent variables (input variables) and responses (output variables).
Input and output data sets are obtained via series of tests, an experiment, in which the
input variables are modified in order to study the changes in the output responses. As
the number of adjustable coefficients in a polynomial surrogate increases combinatori-
ally with its order and number of variables so does the minimum number of data points
required to produce it. Hence applying high-order polynomials to problems with many
inputs may lead to overfitting and hence poorer predictive power. Generally, overfitting
occurs when a model describes features specific to the data set on which it is trained such
as random error or noise. For deterministic computer experiments those are not an issue,
but an overfitted model will suffer from having an exaggerated set of coefficients pro-
viding no intuitive insight into nature of the relationship under consideration and from
introducing irrelevant nonlinearity.

General linear least-squares fit

When fitting polynomial of a given order k to a data set the objective function to be
minimised is the weighted sum of the squares of the differences between data and model.

This analysis assumes N data values y!), ..., y™ obtained at the points x!), ..., x™), and
statistical weights W, ..., W) are given. Coefficients of the polynomial are given by
B* = argmin®(f)

B

with

N
() =Y WO [y — 5 (xo))]z
i=1
The polynomial f3 is given by
fp(x) = Z Bpx".

|pl<k

The necessary condition g—g = 0 for any multi-index 1 with |¢| < k for stationary points
q

of ® then becomes

WL 1y (6)] Vo)

(e)
|
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=
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=)
I
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I
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Looking at the g™ component of the gradient the following equation is obtained

== =2Y WO~ f5(x 8
35, 2BV D65 ¥ bl
N
=2) w0 [y(’) — Y B (x(‘))}gq (x).
i=1 pl<k
Rearranging yields
N
ZW( Iyt )gq( - Z Z ﬁpgp )
i=1 i=1 |p|<k

(1)
=) B [ZW gp(x ())] :
|p|<k i

In case of a polynomial, this linear system of equations, called normal equations, consists
of ("/*) equations for as many unknown coefficients 3.

4.2 High Dimensional Model Representation

High Dimensional Model Representation (HDMR) is a finite expansion for a given mul-
tivariable function as described by Rabitz and Alig [56], Sobol [65]. Its allows readily
extracting global sensitivities with respect to the independent variables by calculating
them from the coefficients of a HDMR surrogate. Also, it needs to be noted that the num-
ber of parameters within HDMR fit increases far slower than within polynomial fit when
high-dimensional problems are considered.

In HDMR representation the output function y is decomposed into a sum of functions that
only depend on subsets of the input variables such that:

y=f(x 0+Zﬁ Xi +Z Z Jij (i) + oo+ fro v, (1, %2, 000 XN,

i=1j=i+1

where N, is the number of input parameters, i and j index the input parameters, and
fo is the mean value of f(x). The expansion given above has a finite number of terms
and exactly represents f(x), however for most practical applications terms containing
functions of more than two input parameters can often be ignored due to their negligible
contributions compared to the lower order terms [47, 56]. Hence for most models or data
the truncated approximation

fO+Zﬁ Xi +Z Z fl/ xl7x]
i=1j=i+1

is sufficient. An efficient method of evaluating each of these terms is to approximate
the functions f;(x;) and f;;(x;,x;) with analytic functions, ¢ (x;), [47]. For data produced
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using random and quasi-random sampling these functions are related by:

fo=1T1, (2a)
M
(xi) = Z 0O (X)) (2b)
k=1
fij (xi,x;) Z Z Bij kO (x:) ¢ (x;) - (2¢)
—11=k+1

The functions, ¢(x;) are orthonormal obeying,

/¢k (x;)dx; =0 (3a)
/ O () Oy (x;) dx; = &, (3b)
This leads the following equations for the coefficients:
fo= [ rixar (4a)
= [ £(0(x) dr, (4b)
Biaa = [ )0 () 0 () . 4o)

The separation of the contributions from each individual input parameter and each com-
bination of parameters makes the process of calculating the global sensitivities almost
trivial. It has been described by Rabitz and Alig [56] that the contribution of each term
in (2), G and o2, to the variance of the output parameter can be related to the total
variance by

lj’

G_Z/f x,dx—l—ZZ//fu x5, dx (52)

i=1 j=i+1
N,

—Z%+ZZ G- (5b)

i=1 i=1 j=i+1

The sensitivities, S; and S
get

ij, can then be calculated by dividing by the total variance Gy2 to

o2..
and S;; = % (6)

y

Si:

\<9N | 1:91\)

Global sensitivity analysis explores the parameter space and provides robust sensitivity
measures throughout the region of interested even in the presence of nonlinearity and
parameter interactions. In nonlinear cases, derivative-based local sensitivity analysis can
give a false impression of sensitivity [68].
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4.2.1 Basis functions

Polynomials, including Lagrange polynomials [ 1], orthonormal polynomials, cubic B
splines, and ordinary polynomials [47], are commonly used as basis functions for HDMR
construction.

In MoDS, Legendre polynomials, P,,(x), are used as the basis functions, ¢ (x). They are
normalised according to

1 2
/_ BuOR(X)dx = 26, %

to satisfy (3b). The polynomials are generated at runtime according to Bonnet’s recursion
formula
(n+1)P1(x) = 2n+1)xP,(x) —nP,_1(x), (8)

where Py(x) = 1 and P, (x) = x. This means that maximum polynomial order, M*, can be
set to an arbitrary natural number. Additionally, maximum interaction order, M"*, needs
to be set to either 1 or 2.

4.2.2 Automatic order selection

Accuracy improvement due to each new term is assessed by calculating R* value (9) and
comparing it against a predefined minimum value R** (0.99999), before continuing on to
the next one. If a term’s contribution is smaller than the threshold, the term is discarded.
The algorithm terminates once maximum polynomial orders M* and M"* are reached. This
is a new approach different from generally used least square method described by Ziehn
and Tomlin [71]. In MoDS implementation the fitting algorithm computes successive
terms of a polynomial fit and discards one deemed unnecessary. It has several advantages
over employment of a raw polynomial including reduction of data processing, compu-
tational complexity and number of optimisable parameters, which greatly helps dealing
with high-dimensional problems.

O XL0Y -y N-1
Y (60— fORN—p—1

where y") is an i data point, f) is an i"* model predicted value, y is the empirical mean
of data points, N is the number of data points, p is the number of adjustable parameters
andi=1,2,..,N.

The use of R? rather than R? acts as a partial safeguard against over fitting. All of the
functions f; have the same polynomial order, M*, and the f;; are all of order M". Also,
it is assumed that the magnitude of the coefficients decreases as the order of the basis
function increases. Whilst this is valid in many situations it may not always be applicable.

€))
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4.3 Accuracy measures

There exist various accuracy measures applicable to surrogate models, but there is no
single, all-encompassing index. For that reason a number of methods was used including
R?, R?, Root-Mean-Squared-Deviation(RMSD) and residual plots. The indices are defined
as follows:

RI—1— vazl(y(i) —y)
YL (0 — f0)2
N
RR=1-(1-R)——
N—p
N (y() — £())2
RMSD — \/Zz_l(y f )
N
) — () _ £

where y) is the i data point, 1 is an i"" model predicted value, ¥ is the empirical mean
of data points, N is the number of data points, p is the number of adjustable parameters,
e(!) refers to residual for i data point and i = 1,2, .., N. The first three measures are single

number indices thus more convenient, but less informative than residual plots.

R? (coefficient of determination) is a measure indicating fit of a statistical model to data [28].
In essence, it compares the discrepancies between the predicted data and actual data with
the discrepancies between the arithmetic average and actual data.

R? is R?, as described above, corrected for the number of fitted parameters relative to the
number of data points. This measure cannot be greater than R*(for N > p) and it decreases
as N — p indicating that the model overfits the data.

RMSD is the sample standard deviation of the differences between predicted values and
observed values [37]. It is a good metric for comparing predictive power of different
models for a particular variable (but not between the variables due to scale dependency).
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S Numerical experiments

5.1 Polynomial versus HDMR

R? values were produced using the training set and are used to assess fit of the surro-
gates to the training data (data sampled from Aspen Plus used for model fitting), while
RMSD and residual plots were produced using the test set (data sampled from Aspen Plus
used for testing, but not model fitting). Values sampled from entire domain of the input
variables were used unless specified otherwise. Plots comparing surrogate types include
polynomial fits of order 1 through 5 (labelled as P1 through P5) and HDMR fits with
various constraints. Label H1 corresponds to a 1*' order fit, H2a to a 2" order without
interactions, H2b to 2™ order with interactions and H10 to 10" order with 2™ order inter-
actions. Note that HDMR fits may consist of terms with powers lower than specified, but
in such a case it will be explicitly mentioned.

A number of different behaviours were observed in the study. Most surrogate models
achieved at least a reasonable fit regardless of the domain size, number of dimensions
and according to R?> and RMSD. Neither R? nor R? can be used to effectively differentiate
between the models as most achieve values in excess of 0.98 (for an example see Fig-
ure ). However, there is noticeable increase in R> due to 2nd order interaction terms
(P1 to P2 and H2a to H2b). Also, it needs to be noted that the number of parameters within
HDMR fit increases far slower than within polynomial fit when high-dimensional prob-
lems are considered. Even the most extensive HDMR fit H10 had far fewer parameters
than polynomial fits of order > 3, as seen on plot

RMSD provides a reasonable measure for comparing accuracy of models, as seen in Fig-
ure 6. Plots and suggest that polynomial fit of order 3 and HDMR fit H2b
(marked by green squares) minimise RMSD and hence are the best fit for the duty of re-
actor 10D01 with respect to all 11 inputs. The aforementioned plots (marked by orange
triangles) also show that increasing order of polynomial fit lead to poorer predictive pow-
ers, most likely due to overfitting the training data. Similarly, HDMR fit H10 produces
larger RMSD values than H2b. It can be seen that adding interaction (H2a to H2b) effect
noticeably decreases RMSD in HDMR fitting.

Plots and show how RMSD changes as the domain size of inputs increases. The
former plot (for 5 order polynomial fit) shows an exponential increase, while the latter
(for HDMR fit H10) shows decrease of RMSD from smallest to intermediate size and
sharp increase from intermediate to largest size.

Residual plots are the most informative form of error measurement as they show the error
size and distribution helping to understand whether the fit captures the true nature of
the data. In most cases data does not seem to follow a polynomial relation resulting in
non-random distribution of the residuals. Figures & and 9 present residual plots for 11-
dimensional surrogates of heat duties of reactor 10D01 and heater 10E03. Comparison of
plots in Figures & and 7 shows that for output produced by surrogates with multiple input
variables the non-random features are much more difficult to make out. Magnitude of the
residuals in most cases is relatively small indicating strong predictive powers of the fits.
Comparing plots and reveals that performance of polynomial fit of order 5 drops
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from being the best model to the worst. Plots and show that even though HDMR
fit H10 produced a higher RMSD, its residual plot is as good as seemingly better P3 fit.
Those also confirm that P3 seems to be one of the best fits. Plot confirms that P5 fit
exhibits relatively low accuracy, even worse than that of a simple linear fit (see plot ).
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(a) Plot of R? for the considered surrogates. (b) Plot of number of parameters for the con-
sidered surrogates.

Figure 5: Plots of RMSD and number of parameters for the considered surrogates pro-
duced for heat duty of reactor 10D01 with respect to all 11 inputs. Labels P1
through PS5 correspond to polynomial fits of order 1 through 5. Label HI cor-
responds to a 1% order fit, H2a to a 2" order without interactions, H2b to 2"
order with interactions and HI0 to 10" order with 2™ order interactions.
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Figure 6: Plots of RMSD for the considered surrogates and domain sizes produced for
heat duty of reactor 10D01 with respect to all 11 inputs. Labels P1 through P5
correspond to polynomial fits of order 1 through 5. Label HI corresponds to
a 1" order fit, H2a to a 2" order without interactions, H2b to 2" order with
interactions and HI0 to 10" order with 2" order interactions. Green squares
indicate models (one per type) with lowest RMSD, while red triangles indicate
models (one per type) with suffering most from overfitting.
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Figure 7: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10D01 produced for 1 input.
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Figure 8: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10DO01 produced for 11 inputs.
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5.2 Global sensitivity

Global sensitivities of the heat duties of all equipment under consideration with respect
to the 11 inputs produced by HDMR fitted over the entire domain are summarised in
Figures 10 and | 1. It can be seen that in all cases only 4 or fewer inputs have significant
influence on a given output. Interaction terms have no significant effect in all of the cases.
Heat duty of each device is significantly affected by its own operating temperature and
operating temperature of a heating device directly upstream (given such exists). While
molar flow of oil, main feedstock of the process, has significant effect on all heat duties
(except that of the flash drum), molar flow of methanol only affects heat duty of heater
10EO2. This is because heat capacity of oil is around 100 higher than that of methanol
(1665.0 —— and 79.5 —— [31, 33]) and only in the flash drum there is significantly

mol*xK ; mol*K
more methanol than oil.

Heat duty of heater 10EO1 is primarily affected by its operating temperature and molar
flow and temperature of incoming oil. Heat duty of heater 10EO2 is primarily affected
by its operating temperature, operating temperature of reactor 10D01 and molar flows of
oil and methanol. Heat duty of heater 10EO3 is primarily affected by its operating tem-
perature, operating temperature of decanter 10D02D and molar flows of oil. Heat duty of
reactor 10DO1 is primarily affected by its operating temperature, operating temperature of
heater 10EO1 and molar flows of oil. Heat duty of flash drum 10D02 is primarily affected
by its operating temperature and operating temperature of heater 10E02. Heat duty of de-
canter 10D02D is primarily affected by its operating temperature, operating temperature
of flash drum 10D02 and molar flows of oil. Terms and variables not mentioned here have
a negligible global sensitivity with respect to those outputs.

These observations show that when performing multi-dimensional analysis of heat duties
within the system many terms in the surrogate models can be ignored due to insignifi-
cant influence. Thus calculation complexity and computational expense can be greatly
reduced. Additionally, it shows which inputs are important when heat duties of the equip-
ment needs to be controlled.
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Figure 10: Global sensitivities produced by 11-dimensional HDMR fit over the entire do-
main.
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6 Conclusions

This paper studies the possibility of describing Aspen Plus simulation of a biodiesel plant
with surrogate models and assess their quality. The model under investigation includes
a reaction and separation steps with auxiliary equipment and was solved for steady-state
operation. Thus produced data was used to generate surrogate models describing rela-
tions between chosen inputs and outputs. A variety of scenarios was considered: 1, 2, 6
and 11 input variables were changed simultaneously, 3 different domain sizes of the input
variables were considered and 2 different surrogate generation methods (polynomial and
HDMR fitting). Each simulation produced 400 points per input variable used for fitting
and calculating R> and R?. Test sets of points (100 points per dimension) were gener-
ated for calculating RMSD and residuals. Furthermore, a new automatic order selection
method was implemented in HDMR generation with R? used as an optimisation criterion.

A number of different behaviours were observed in the study. Most surrogates achieved at
least a reasonable fit regardless of the domain size, number of dimensions and according
to R? and RMSD. Neither R? nor R? could be used to effectively differentiate between
the models as most achieve values in excess of 0.98. Also, it needs to be noted that the
number of parameters within HDMR fit increases far slower than within polynomial fit
when high-dimensional problems are considered. The most extensive HDMR fit (H10)
had far fewer parameters than polynomial fits of order > 4. RMSD provides a reasonable
measure for comparing accuracy of models. Fits P3 and H2b minimised RMSD and hence
are the best fit for the duty of reactor 10D01 with respect to all 11 inputs. Increasing order
of polynomial fit above 3 lead to poorer predictive powers, most likely due to overfitting
the training data. RMSD increases exponentially for polynomial fits as the domain size
of inputs increases. For fit HI0 RMSD decreases from smallest to intermediate size and
sharply increases from intermediate to largest size. Inclusion of 2nd order interaction
terms accounted for a noticeable accuracy increase in terms of R* and RMSD. It was
observed that non-random features in residual plots are much more difficult to make out
when multiple inputs were considered. Higher order polynomial fits may not be suitable
for describing high dimensional, chemical data. For example, performance of polynomial
fit of order 5 drops from being the best model to the worst as dimensionality increases
from 1 to 11.

Global sensitivities of the heat duties of all equipment under consideration with respect to
the 11 inputs were produced by HDMR fitted over the entire domain. It was observed that
in all cases only 4 or fewer inputs had significant influence on a given output. Interaction
terms had no significant effect in all of the cases. Heat duty of each device is significantly
affected by its own operating temperature and operating temperature of a heating device
directly upstream (given such exists). While molar flow of oil, main feedstock of the
process, has significant effect on all heat duties (except that of the flash drum), molar
flow of methanol only affects heat duty of heater 10E02. These observations show that
when performing multi-dimensional analysis of heat duties within the system many terms
in the surrogate models can be ignored due to insignificant influence. Thus calculation
complexity and computational expense can be greatly reduced. Additionally, it shows
which inputs are important when heat duties of the equipment needs to be controlled.

In the future a more complex chemical model should be considered as the simulation
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used in this study was relatively simple. For example a number of interconnected mod-
els forming a feedback loop necessitating coupling surrogate models and solving them
simultaneously. In order to further the goal of modelling eco-industrial parks chemical
and electrical models and their interactions should be considered.
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