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Abstract

We assess the impact of individual experimental observations on a multivariate pop-
ulation balance model for the formation of silicon nanoparticles from the thermal
decomposition of silane by means of basic regression influence diagnostics. The
nanoparticle model includes morphological and compositional details which allow
representation of primary particles within aggregates, and of coagulation, surface
growth, and sintering processes. Predicted particle size distributions are optimised
against 19 experiments across ranges of initial temperature, pressure, residence time,
and initial silane mass fraction. The influence of each experimental observation
on the model parameter estimates is then quantified using the Cook distance and
DFBETA measures. Seven model parameters are included in the analysis, with five
Arrhenius pre-exponential factors in the gas-phase kinetic rate expressions, and two
kinetic rate constants in the population balance model. The analysis highlights cer-
tain experimental conditions and kinetic parameters which warrant closer inspection
due to large influence, thus providing clues as to which aspects of the model require
improvement. We find the insights provided can be useful for future model develop-
ment and planning of experiments.

Highlights:

• Silicon nanoparticle synthesis is modelled using a detailed population balance model.

• An omission-based regression influence analysis is carried out.

• The impact of individual experimental observations on parameter estimates is quan-
tified.

• Outliers are identified, suggesting areas for model improvement.
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1 Introduction

Gas-phase synthesis in hot-wall reactors and shock-tubes is a common way in which sili-
con nanoparticles are manufactured. Typically, these processes begin with silane (SiH4) as
a precursor, which is transformed into the eventual nanoparticle product at high tempera-
tures. A variety of models have been proposed to describe this transformation [26]. These
models usually contain unknown or low-confidence (kinetic) parameters with large uncer-
tainties associated to them. Systematic parameter estimation techniques can then be em-
ployed to arrive at better values for these quantities, based on available experimental data.
One of the most elementary parameter estimation methods is least-squares optimisation,
i.e. minimising the distance between experimental observations and model prediction as
measured by a sum-of-squares objective function. The result of such an optimisation is
a set of values, called (‘best’) estimates, for the selected model parameters. Not all ex-
perimental data points may equally inform the optimal value of the parameters, though
– different parameters may be determined to a varying extent by different observations.
In order to assess which experiments are the most relevant in the optimisation, one can
conduct what may be called an omission-based regression influence analysis [30]: Firstly,
optimise the model against the full data set, and then repeat the optimisation with one of
the data points removed, for each of the data points. Based on the difference between the
parameter estimates of the full optimisation and the optimisations with an omitted data
point, it is then possible to quantify the influence of individual observations on the model
overall or on individual parameters. Several such measures have been proposed [10, 37],
the most widely-used one being Cook’s distance [8], and applied to detect influential data
points, high-leverage points, and statistical outliers [6, 12].

An alternative approach to quantifying influence of experimental observations is uncer-
tainty propagation [43], part of which is concerned with how experimental measurement
errors propagate into model parameters and responses. Some of these methods allow cal-
culating the relative contribution of each data point (and its error bar) to the uncertainty
in each of the parameters. In particular, the Data Collaboration framework [15] exploits
the pairwise consistency of data set units to identify outliers.

Yet another approach, called perturbation of the optimum, has been developed for con-
strained optimisation [16, p. 34] and unconstrained least-squares optimisation [14], which
has found application in chemical kinetics [30, 36, 44]. These methods allow calculating
sensitivities of parameter estimates with respect to any other quantity in the objective
function (or constraints), including in particular experimental data.

The purpose of this paper is to conduct an omission-based outlier analysis of a selec-
tion of experimental data for silicon nanoparticles produced from a silane precursor in
hot-wall flow reactors and shock tubes which are modelled using a detailed population
balance model. A main aim is to identify those experimental conditions which are the
most challenging for the model. We apply a technique established in the field of regres-
sion influence diagnostics to quantify the influence of individual experimental observa-
tions on kinetic parameter estimates for this purpose. We determine the influence of the
measurements on estimates of some Arrhenius pre-exponential factors in the gas-phase
kinetic mechanism as well as the population balance model for the particle phase. Using
a threshold for the influence values, specific measurements are then highlighted for further
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Table 1: The gas-phase kinetic mechanism. Values in bold correspond to parameters cho-
sen for the influence analysis. Units for the Arrhenius pre-exponential factors
are cm, mol, and s.

Idx. Reaction A β [-] E [kcal/mol] Ref.

1 SiH4 (+M)
SiH2 + H2 (+M) 3.12×109 1.7 54.71 [23]
Low pressure limit: 3.96×1012 0 45.10 [26, 35]1

2 Si2H6 (+M)
SiH4 + SiH2 (+M) 1.81×1010 1.7 50.20 [23]
Low pressure limit: 5.09×1053 −10.37 56.03 [23]

3 Si2H6 (+M)
Si2H4B + H2 (+M) 9.09×109 1.8 54.20 [23]
Low pressure limit: 7.79×1040 −7.77 59.02 [23, 26]2

4 Si3H8 (+M)
SiH2 + Si2H6 (+M) 6.97×1012 1.0 52.68 [23]
Low pressure limit: 1.73×1069 −15.07 60.49 [23]

5 Si3H8 (+M)
Si2H4B + SiH4 (+M) 3.73×1012 1.0 50.85 [23]
Low pressure limit: 4.36×1076 −17.26 59.30 [23]

6 Si2H4B (+M)
Si2H4A (+M) 2.54×1013 −0.2 5.38 [23]
Low pressure limit: 1.10×1033 −5.76 9.15 [23]

7 Si2H4B + H2
SiH4 + SiH2 9.41×1013 0 4.09 [23]
Reverse coefficients: 9.43×1010 1.1 5.79 [23]

8 Si2H4B + SiH4
Si2H6 + SiH2 1.73×1014 0.4 8.90 [23]
Reverse coefficients: 2.65×1015 0.1 8.47 [23]

1A is from [26], β and E are from [35]. 2A is from [26], β and E are from [23].

analysis, providing further insight into the model and potential improvements, as well as
suggestions for future experiments.

2 Background

We firstly describe the model, provide some background on omission-based regression
influence diagnostics, and how it can be used to identify outliers.

2.1 Population balance model for silicon nanoparticle formation

We briefly summarise the main features of the model here. Full details can be found
in [26–29, 39, 39, 40]. It consists of two main parts, a gas-phase model, and a particulate
phase model.

2.1.1 Gas phase

The gas-phase chemical kinetic reaction mechanism used is a modified version of the
one proposed by [23], and is summarised in Table 1 (more details can be found in [26]).
Two isomers of Si2H4 are included: silene, i.e. H2SiSiH2, denoted by the suffix “A”, and
silylene, i.e. HSiSiH3, denoted by the suffix “B”.
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2.1.2 Particulate phase

The particle phase is described by a detailed, high-dimensional population balance model
covering aggregate morphology and chemical composition [26]. In this model, each
nanoparticle is represented as a list of primary particles, together with a (triangular) ma-
trix, called connectivity matrix, each entry of which represents the common surface area
for the corresponding pair of primary particles. For each primary particle, the number of
silicon and the number of hydrogen atoms are stored.

The following processes which create or transform particles, or account for interaction of
the particles with the gas phase, are represented in the model:

Inception: Any two molecules of any of the three species SiH2, Si2H4A, and Si2H4B can
collide to form a new particle. The rate at which this happens is assumed to be non-
zero only if the diameter of the resulting particle exceeds a temperature- and pressure-
dependent critical nucleus diameter. If the latter is the case, the inception rate is pro-
portional to the product of the concentrations of the collision partners and the transition
regime coagulation kernel.

Condensation: An existing particle can grow through (barrier-free) deposition of SiH2,
Si2H4A, or Si2H4B molecules from the gas phase onto its surface. It is assumed that
the collision efficiency, i.e. the probability of sticking, is unity. The rate is given by a
free-molecular collision kernel.

Surface reaction: Apart from simply condensing, gas-phase species can also react het-
erogeneously on the particle surface. Specifically, silanes (SiH4, Si2H6, and Si3H8) can
be integrated into the particle, with each step releasing one, two, and three molecules of
hydrogen, respectively. The rate is proportional to the particle surface area and an Arrhe-
nius expression with non-zero activation energy. Rounding of adjacent primary particles
caused by this process is also taken into account.

Hydrogen release: In order to attain a stable crystal structure, particles need to release
some of the hydrogen acquired through each of the above processes. The rate of des-
orption is proportional to an Arrhenius expression and the coverage of hydrogen on the
particle surface, which is approximated by the ratio of hydrogen to silicon atoms within
the particle. It is assumed that the sintering level of adjacent primaries is unaffected by
this process, i.e. the connectivity matrix remains unchanged.

Coagulation: Two particles can collide and stick to each other at their point of contact.
The rate is given by transition regime coagulation kernel, which is the harmonic mean of
the slip-flow and free-molecular kernels.

Sintering: The sintering of any pair of adjacent primary particles is modelled by an ex-
ponential decay of the excess of the joint surface area of the primaries compared to the
surface area of their equivalent sphere. In other words, the corresponding entry in the
connectivity matrix decreases exponentially towards the equivalent spherical area of the
primary particle pair.
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2.2 Omission-based regression influence diagnostics

2.2.1 Parameter estimation

Given a set of N experimental observations ηexp
n , with n = 1, . . . , N . For example, these

could be, as in this work, means or modes of the particle size distribution at given temper-
atures and pressures. Assuming we have a model which depends on a vector ϑ of P model
parameters, we denote its response for the conditions of the nth experiment by ηn(ϑ). For
simplicity, we restrict ourselves in this work to a single response, but the generalisation
of all that follows to multiple responses is straightforward.

In order to quantify agreement between experiment and model, a measure of the distance
between the model response and experimental results needs to be defined. We use the
ordinary least-squares objective function

Φ(ϑ) :=
N∑
n=1

[
ηn(ϑ) − ηexp

n

]2 (1)

for this purpose. The term ‘ordinary’ refers to the fact that the covariance matrix of the
responses is the unity matrix, i.e. the responses are assumed to be uncorrelated and are
subject to the same or very similar uncertainties, meaning all the terms in the sum are
equally weighted.

The vector ϑ̂ of parameter values which are optimal with respect to the objective function
can be obtained by minimising (1):

ϑ̂ := argmin
ϑ

Φ(ϑ) (2)

The best estimate of the model responses is then defined as η̂ := η(ϑ̂).

2.2.2 Influence measures

The basic idea underlying omission-based regression influence diagnostics is to analyse
the effect of deleting a single observation from the considered set of data. In the following,
we use a subscript “−i” to denote quantities based on the data set with the ith observation
removed. In particular, the objective function (1) becomes

Φ−i(ϑ) :=
∑

n=1,...,i−1,i+1,...,N

[
ηn(ϑ) − ηexp

n

]2
, (3)

with the corresponding best parameter estimate

ϑ̂−i := argmin
ϑ

Φ−i(ϑ) (4)

and response estimate η̂−i := η(ϑ̂−i).

There are numerous ways of assessing how the optimum, i.e. the best estimate of the
parameters, is affected by removing a data point [6]. The most elementary statistic is
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obtained by considering the difference between the best estimate of the parameters and
the best estimate with the ith data point removed:

D∗ij := ϑ̂j − ϑ̂−i,j, (5)

where ϑ̂−i,j is the value of the j th parameter obtained from the optimisation with the ith

experiment omitted. In the literature this is usually referred to as DFBETAi [2, p. 13].

We note that such an analysis requires ϑ̂−i to be calculated for all i = 1, . . . , N , each re-
quiring one optimisation. This can become computationally prohibitively expensive if the
model itself is expensive or there are many experimental observations. If the considered
model is linear, at least approximately, then it is possible to derive a formula which allows
calculating the entire set of D∗ij based on only a single optimisation [30]. This, however,
is not an option if the model responses are strongly non-linear or are subject to numerical
or statistical noise. The model considered in this work is by nature a stochastic model and
its responses do exhibit non-negligible noise.

In order to compare or rank different parameters against each other with respect to their in-
fluence, due to different physical dimensions and/or orders of magnitude, it is essential to
consider non-dimensionalised diagnostic measures. Belsley et al. [2, p. 13] recommend to
normalise by the square root of an estimate of the variance of each parameter (with the ith

data point removed). This allows assessing the influence of data points on each parameter
in relation to their uncertainty. Specifically, they propose to measure the influence of the
ith experiment upon the j th parameter using DFBETASij := D∗ij/(Var ϑ̂j)

1/2 (see also [9]),
where Var ϑ̂j refers to the variance of the j th parameter. In some situations, the parameter
variance may not be readily available, such as in this work where we directly optimise the
model while progressively excluding experiments. Hence, we simply use here parameters
which are normalised by (logarithmically) mapping them to the interval [−1, 1].

Cook’s distance [8], one of the most widely-used influence diagnostics, can be a useful
tool for assessing the influence of an experimental data point during an optimisation. In
the special case we consider in this work, i.e. that of uncorrelated responses with similar
uncertainty, it can be defined as [6]

Ci :=

∑N
n=1

[
η̂n − η̂−i,n

]2
Ps2

, (6)

where η̂−i,n is the value of the model response for the conditions of the nth experiment
obtained using the best parameter value estimates determined through optimisation with
the ith observation omitted (i.e. ϑ̂−i), and where s2 is an estimate of the mean square error,
given by

s2 =
1

N − P

N∑
n=1

(
ηexp
n − η̂n

)2
. (7)

Large values of Cook’s distance Ci occur if deleting case i causes large differences in the
parameter estimates.

The motivation for definition (6) stems from the notion of joint confidence regions for
the parameters. Joint 100(1 − α)% confidence ellipsoids for the model responses can be
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defined as
(η̂ − η)>Σ−1(η̂ − η) ≤ Ps2F (P,N − P, 1 − α), (8)

with s given by (7), and F (P,N − P, 1 − α) the 1 − α point of the F -distribution (con-
sult [13, pp. 94 & 108] and [19] for more details). Σ is the covariance matrix of the
responses. Cook introduced his original measure [8] for ordinary least squares, i.e. unity
covariance matrix, and later generalised it to weighted least squares [10, p. 209]. As men-
tioned above, if the responses are uncorrelated, of equal dimension, and of similar order
of magnitude and uncertainty, Σ can be assumed to be the unit matrix.

Definition (6), like (5), involves one optimisation per experimental data point. As men-
tioned above, in situations where this is too computationally expensive, there may be the
option of conducting a linearised analysis. For linear models, one can derive an expres-
sion for Cook’s distance (6) which requires only a single regression for all observations.
Whether or not a linear approximation is appropriate can be decided for example by means
of local curvature [1, 38], but this is beyond the scope of the paper.

It is noted that Cook’s distance measures only the overall influence of an observation, in
contrast to (5), which assesses parameters individually. More generally, while in this work
we consider the influence of single observations only on either single parameters or the
model as a whole, this can be generalised to the influence of subsets of observations on
subsets of parameters in the model (see for example [6, 9]). As the original notions, how-
ever, the measures tend to be applicable to linear models only, and may require additional
regressions.

It is furthermore noted that, unlike (5), the Cook distance (6) is dimensionless by defini-
tion – a necessary property in order to achieve a generic classification of data points.

2.2.3 Outlier detection

One way of identifying potential outliers is by means of a threshold: A data point is
deemed to require further attention if the corresponding value of the chosen diagnostic
measure exceeds the threshold. Naturally, the choice of any such threshold is ultimately
arbitrary, which is reflected in the fact that a range of them has been suggested in the
literature. For example, Bollen and Jackman [3] propose

Ci ≥ 4/N. (9)

This threshold is very conservative in the sense that it tends to highlight too many points
as outliers. On the other hand, Cook and Weisberg [11, p. 345] suggest

Ci ≥ 1, (10)

i.e. approximately the median of the F distribution with P and N − P degrees of free-
dom (see Eqn. (8)). Irrespective of which value is chosen, it needs to be emphasised that
this method can give only a rough indication, which should be interpreted merely as a
suggestion of which data points warrant closer investigation. The main reason for this
is that the method does not automatically distinguish between errors and highly influ-
ential points which potentially point towards genuine model improvements. Therefore,
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highlighted points should not necessarily be excluded from the analysis, as one may lose
valuable information. Furthermore, whether or not a data point is deemed an ‘outlier’ by
this method, is by definition dependent on the chosen model. That is, a data point labelled
an outlier with respect to one model, may or may not appear as an outlier with respect
to another (possibly better) model. As there is no consensus in the literature as to which
cut-off should be used, in this work we consider both (9) and (10).

3 Experimental data

Table 2: Experimental data sets with process conditions used to model them. XSIH4 de-
notes the initial silane mole fraction, and τ denotes the residence time.

Idx. Reference Reactor Bath XSiH4 T [K]
P τ d µ µexp

i

i type gas [%] [kPa] [ms] type type [nm]

1

Ar

4.0 873-1373

2.5

80

dpri

Mode 26.7
2 4.0 873-1373 192 Mean 26.0
3 12.0 873-1373 192 Mean 38.0
4 Körmer Hot-wall 12.8 873-1373 80 Mode 31.0
5 et al. [24] flow reactor 2.0 873-1373 80 Mode 41.0
6 8.0 873-1373 80 Mode 24.0
7 4.0 873-1373 420 Mode 32.5
8 4.0 673-1173 420 Mode 21.2
9 4.0 773-1273 420 Mode 28.5

10 Frenklach Shock tube Ar 3.3
1089

49
2.6

dpri Mode
11.0

11 et al. [21] 1320 2.1 11.0
12 1580 1.8 15.0

13 Wu Hot-wall N2 1.0 770-1520 101 1000 dmob Mode 127et al. [45] flow reactor

14 Flint Laser-
Ar

21.4 923-1270
20

5.2
dpri Mean

43.4
15 et al. [18] driven 9.0 1023-1483 18 55.4
16 flow reactor 0.6 1023-1400 53 23.0

17 Nguyen and Hot-wall N2
0.1 770-1080 101 900 dmob Mode 89.0

18 Flagan [33] flow reactor 0.04 51.0

19 Onischuk Hot-wall Ar 5.0 853 39 870 dpri Mean 52.0et al. [34] flow reactor

As in previous work [26, 29], a total of nineteen experimental data points were selected
from six different studies, spanning a range of process conditions and reactor configura-
tions. Reactor types include hot-wall flow reactors and a shock tube, for each of which
different temperatures, pressures, residence times, and initial silane mole fractions are
covered. The particular selection of studies, though ultimately arbitrary amongst large
amounts of literature, was motivated by covering a range of conditions. An overview of
the chosen datasets is given in Table 2.

The study of Körmer et al. [24] is focused on synthesising silicon nanoparticles with
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narrow size distributions in a hot-wall flow reactor. In this setup, it turns out that most of
the precursor is lost to deposits on the reactor wall, and therefore the initial composition
is adjusted to account for this particle deposition [25]. As in [22], an initial silane mass of
about 6 × 10−5 kg/m3 is assumed. The amount of mass expected for a partial pressure of
1 mbar of silane at 1024 K is about 3.8 × 10−4 kg/m3 indicating that only about 16% of
the precursor are available to form particles. The initial silane fractions listed in Table 2
for this data subset are adjusted accordingly for our simulations.

The Flint et al. [18] data refers to their cases 630S, 631S, and 654S, respectively. The
experiment is described in detail in [4, 5, 17], including how to convert flow rates into
residence times and initial compositions.

4 Results and discussion

Table 3: The seven model parameters considered in the influence analysis, all Arrhenius
pre-exponential factors (see Table 1), with optimal values resulting from optimi-
sation against the complete data set.

Idx. Parameter Optimal value Unit Phase Role

1 A1,LP 2.87× 1012

cm3/mol/s Gas

Low-pressure limit of reaction #1
2 A2,LP 2.11× 1035 Low-pressure limit of reaction #2
3 A3,LP 4.90× 1039 Low-pressure limit of reaction #3
4 A5,LP 2.98× 1068 Low-pressure limit of reaction #5
5 A8,rev 1.48× 1014 Reverse of reaction #8

6 ASR,SiH4
4.47× 1033 cm/mol/s Particle Surface reac.: silane addition, H2-release

7 AH2
1.88× 1018 1/s H2-release from particle

Both reactor types occurring in the set of experiments (Table 2), i.e. flow reactor and
shock tube, are modelled as homogenous batch reactors. The shock tube is modelled as
a constant temperature, constant pressure reactor. For the flow reactors, plug-flow is as-
sumed, and the experimentally measured temperature profile, where available, is imposed.
In case 19 [34], no temperature profile is available, so a constant temperature is assumed,
and the residence time given refers to the approximate time spent in the ‘hot-zone’, i.e. at
that temperature.

As software to carry out the necessary optimisations, we use the Model Development
Suite (MoDS) [7] – a software tool for conducting various generic tasks to develop black-
box models. Such tasks include parameter estimation and uncertainty quantification [32],
Design of Experiments (DoE) [31], and global sensitivity analysis [29].

Each optimisation involved in the Cook distance and DFBETA analysis is performed in
two stages: Firstly, a quasi-random global search is conducted using Sobol low-discrepancy
sequences [41]. Secondly, starting from the best point identified in the first stage, a local
optimisation is carried out using the Simultaneous Perturbation Stochastic Approximation
(SPSA) [42] algorithm. The SPSA method estimates the local gradient based on only two
objective function evaluations, and can be shown to obey the traditional gradient descent
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Onischuk et al. (2000)

Figure 1: Overall influence of each of the experimental observations in Table 2 as mea-
sured by Cook’s distance Ci (Eqn. 6). Each of the thresholds (9) and (10) are
indicated through dashed horizontal lines.

on average. It is designed for problems where stochastic noise is present. The motivation
for the first stage is to avoid becoming trapped in local minima or valleys on the objective
function surface, which could happen with a method purely based on the local gradient.
Chemical kinetic objective functions are widely reported to exhibit a complex, highly
structured surface with multiple local minima and/or valleys (see for example [19]). Re-
garding the second stage, the reason for not choosing a more conventional method utilising
the local Jacobi matrix or Hessian is the stochastic noise in the model response. While
the procedure adopted here cannot guarantee to find the global minimum, based on previ-
ous experience [32], a low-lying minimum can be found at a manageable computational
expense. On an objective function surface with multiple local minima, there is then of
course the risk of selecting the ‘wrong’ optimum, i.e. not the global one. Any conclusions
derived from perturbations such as those induced by omission of data points may change
depending on the chosen minimum and the local geometry surrounding it.

Here, seven parameters were adjusted which represent key gas-phase and heterogeneous
growth rates identified through sensitivity analysis [26]. Details are given in Table 3.
Thus, the vector of model parameters to be optimised is given by

ϑ = (A1,LP, A2,LP, A3,LP, A5,LP, A8,rev, ASR,SiH4
, AH2).

The optimal values for the parameters resulting from optimisation against the full data set
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D
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(a) Influence of observation i = 5 by Körmer et al.
[24] on each of the considered model parame-
ters.
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Parameter index j [-]
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1
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D
∗ ij

[-]

(b) Influence of observation i = 10 by Frenklach
et al. [21] on each of the considered model pa-
rameters.

Figure 2: DFBETA D∗ij (Eqn. 5), for the two most influential experimental observations
as identified in Fig. 1 (see also Table 2), for each of the parameters in Table 3.

are also given in Table 3. The differences in these values as compared to [26] and [29] are
due to the fact that different sets of responses are being considered.

For the optimisation against the complete data set, 800 Sobol points were generated, fol-
lowed by 240 SPSA points. Recall that each point involves one evaluation of the objective
function (Eqn. 1), and that every objective function evaluation involves 19 model evalua-
tions. For all subsequent optimisations, i.e. those of Φ−i (Eqn. 3) with i = 1, . . . , 19, the
model evaluations performed as part of the original set of Sobol points can be re-used, as
all that is required is for each i to calculate the different objective function Φ−i for all of
the points. For each of the Φ−i optimisations, 120 SPSA points were used. In total, this
corresponds to about 3300 CPU-hours of computation.

The Cook distance analysis was conducted for all of the 19 experiments in Table 2, and
results are shown in Fig. 1. In this figure, the responses are grouped by the particular
experimental papers from which they were obtained. Both of the two outlier thresh-
olds, Eqn. (9) and Eqn. (10), are shown. While several of the observations exceed the
lower threshold (9), only two of them exceed the upper one (10) (with one of them only
marginally). This is consistent with reports that (9) is too conservative in that it has a
tendency to highlight too many observations, as mentioned in subsection 2.2.3. We con-
clude that observation i = 5 requires further attention, as its Cook distance exceeds both
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(a) Case 1 [24].
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(b) Case 2 [24].
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(c) Case 3 [24].
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(d) Case 4 [24].
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(e) Case 5 [24].
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(f) Case 6 [24].
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(g) Case 7 [24].
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(h) Case 8 [24].
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(i) Case 9 [24].
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(j) Case 10 [21].
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(k) Case 11 [21].
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(l) Case 12 [21].
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(m) Case 13 [45].
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(n) Case 17 [33].
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(o) Case 18 [33].

Figure 3: Particle size distributions for those experiments for which they were measured.
Solid lines: model optimised against the complete data set. Dashed lines:
model optimised against the data set with the 5th experiment omitted. Points:
experiment.

thresholds and is significantly larger than all the others. This indicates that this experi-
mental point most strongly affects the objective function Φ (Eqn. 1), which in turn affects
the parameter estimates, i.e. the optimal values ϑ̂ of the parameters (Eqn. 2). It could
furthermore suggest that this particular observation might be an outlier with respect to the
present model, or, more likely, that the model describes it inadequately.
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Figure 4: Ratios of model responses to experimental values for each of the 19 experiments
in Table 2. Two sets are shown: squares – optimised against the complete data
set, and circles – optimised against the data set with the 5th experiment omitted.

Additionally, a DFBETA analysis was conducted to assess how the experimental obser-
vations affect the values of the parameters which are determined through the optimisation
(Fig. 2). In terms of highlighting individual observations, the DFBETA analysis agrees
with the Cook distance analysis: The values of D∗ij for i = 5 and i = 10 are at least two
orders of magnitude larger than those obtained for any other experiment. The DFBETA
values for these experiments are shown in Figs. 2a and 2b respectively. We notice that the
best estimate of parameter 4, i.e. the pre-exponential factor in the low-pressure limit of
reaction 5 (Table 1), is influenced most by both of the considered experimental observa-
tions.

In principle, there are two possible reasons for why an observation stands out in a Cook
distance or DFBETA analysis: errors associated with the experiments, and errors associ-
ated with the model. Regarding experimental errors, we assume here that all experimental
data are both correct and accurate. Considering model errors, these can be further cate-
gorised into the following: errors arising from the solution methodology, i.e. numerical
algorithms, and flaws in the model. Specifically in this case, the latter include reactor
model errors, and deficiencies in the gas or particulate phase sub-models.

Figure 3 shows particle size distributions for those experiments in Table 2 for which they
have been measured. Figure 4 shows ratios of model responses to experimental ones for
all experiments. Recall that only the means or modes of the distributions are optimised,
not the widths or any other characteristic. Both figures show two sets of results, one
for the optimisation against the complete data set, and one for the data set with the 5th

experiment omitted. As expected, if the 5th experiment is omitted, the corresponding
response deteriorates.

The i = 5 experiment refers to the lowest silane pressure case (0.5 mbar) reported by
Körmer et al. [24]. In this hot-wall reactor experiment, a modal size of 42 nm was ob-
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tained for particles, larger than that obtained for a higher pressure (at 1 mbar yielded
26 nm particles). This inverse proportionality is not captured by the model, thus indicat-
ing clearly that this aspect requires further development.

5 Conclusions

We determined optimal values of seven parameters in a population balance model for the
formation of silicon nanoparticles by means of least-squares optimisation against a set of
19 experiments. The influence of each of those measurements on the values of the consid-
ered kinetic model parameters was then quantified using Cook’s distance and DFBETA –
two basic omission-based measures popular in the field of regression influence diagnos-
tics. An outlier analysis was then conducted by applying standard thresholds in order to
identify the most important experimental datasets in the optimisation. This highlighted
one particular experimental condition for further scrutiny. We emphasise again that, in
general, a particular measurement exceeding an outlier threshold does not necessarily im-
ply that there is a problem with that measurement or more generally the experiment. In
the first instance, one should thoroughly examine whether there are shortcomings in the
model which are responsible for the disagreement with the measurement. This informs
future model development [31] by helping to identify aspects of the model which require
improvement. Furthermore, if one regards the model as a formal representation of the
best current knowledge about the experiment or system under consideration [20], then the
methods can be thought of as giving an indication as to which measurements are most
informative.

Acknowledgements

This work was partly funded by the Cambridge Australia Trust, by the National Re-
search Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Re-
search Excellence and Technological Enterprise (CREATE) programme, and by the Eu-
ropean Union Horizon 2020 Research and Innovation Programme under grant agreement
646121.

15



References

[1] D. M. Bates and D. G. Watts. Relative curvature measures of nonlinearity. Journal
of the Royal Statistical Society B, 42(1):1–25, 1980.

[2] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics : Identifying
Influential Data and Sources of Collinearity. John Wiley & Sons, 1980.

[3] K. A. Bollen and R. W. Jackman. Regression diagnostics: An expository treatment
of outliers and influential cases. In J. Fox and J. S. Long, editors, Modern Methods
of Data Analysis, pages 257–291. Sage Publications, Newbury Park, 1990.

[4] W. R. Cannon, S. C. Danforth, J. S. Flint, J. S. Haggerty, and R. A. Marra.
Sinterable ceramic powders from laser-driven reactions: I, Process description
and modeling. Journal of the American Ceramic Society, 65(7):324–330, 1982.
doi:10.1111/j.1151-2916.1982.tb10464.x.

[5] W. R. Cannon, S. C. Danforth, J. S. Haggerty, and R. A. Marra. Sinterable ce-
ramic powders from laser-driven reactions: II, Powder characteristics and pro-
cess variables. Journal of the American Ceramic Society, 65(7):330–335, 1982.
doi:10.1111/j.1151-2916.1982.tb10465.x.

[6] S. Chatterjee and A. S. Hadi. Influential observations, high leverage points,
and outliers in linear regression. Statistical Science, 1(3):379–393, 1986.
doi:10.1214/ss/1177013622.

[7] cmcl innovations. MoDS (Model Development Suite), version 0.2.3, 2015.
http://www.cmclinnovations.com/mod-suite/.

[8] R. D. Cook. Detection of influential observation in linear regression. Technometrics,
19(1):15–18, 1977. Stable URL: http://www.jstor.org/stable/1268249.

[9] R. D. Cook and S. Weisberg. Characterizations of an empirical influ-
ence function for detecting influential cases in regression. Technometrics,
22(4):495–508, 1980. doi:10.1080/00401706.1980.10486199. Stable URL:
http://www.jstor.org/stable/1268187.

[10] R. D. Cook and S. Weisberg. Residuals and Influence in Regression. Chapman and
Hall, New York, 1982.

[11] R. D. Cook and S. Weisberg. Criticism and influence analysis in regression. In
S. Leinhardt, editor, Sociological Methodology, pages 313–316. Jossey-Bass, San
Francisco, 1982.

[12] N. R. Draper and J. A. John. Influential observations and outliers in regression.
Technometrics, 23(1):21–26, 1981. doi:10.1080/00401706.1981.10486232. Stable
URL: http://www.jstor.org/stable/1267971.

16

http://dx.doi.org/10.1111/j.1151-2916.1982.tb10464.x
http://dx.doi.org/10.1111/j.1151-2916.1982.tb10465.x
http://dx.doi.org/10.1214/ss/1177013622
http://www.cmclinnovations.com/mod-suite/
http://www.jstor.org/stable/1268249
http://dx.doi.org/10.1080/00401706.1980.10486199
http://www.jstor.org/stable/1268187
http://dx.doi.org/10.1080/00401706.1981.10486232
http://www.jstor.org/stable/1267971


[13] N. R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, New
York, 2nd edition, 1981.

[14] L. Eno, J. G. B. Beumee, and H. Rabitz. Sensitivity analysis of experimental data.
Applied Mathematics and Computation, 16(2):153–163, 1985. doi:10.1016/0096-
3003(85)90005-0.

[15] R. Feeley, P. Seiler, A. Packard, and M. Frenklach. Consistency of a re-
action dataset. Journal of Physical Chemistry A, 108(44):9573–9583, 2004.
doi:10.1021/jp047524w.

[16] A. V. Fiacco and G. P. McCormick. Nonlinear Programming – Sequential Uncon-
strained Minimization Techniques. Classics in Applied Mathematics. SIAM, 1990.

[17] J. Flint and J. Haggerty. A model for the growth of silicon particles
from laser-heated gases. Aerosol Science and Technology, 13(1):72–84, 1990.
doi:10.1080/02786829008959425.

[18] J. H. Flint, R. A. Marra, and J. S. Haggerty. Powder temperature, size, and number
density in laser-driven reactions. Aerosol Science and Technology, 5(2):249–260,
1986. doi:10.1080/02786828608959091.

[19] M. Frenklach. Modeling. In W. C. Gardiner, editor, Combustion Chemistry, chap-
ter 7, pages 423–453. Springer Verlag, New York, 1984.

[20] M. Frenklach. Transforming data into knowledge – Process Informatics for com-
bustion chemistry. Proceedings of the Combustion Institute, 31(1):125–140, 2007.
doi:10.1016/j.proci.2006.08.121.

[21] M. Frenklach, L. Ting, H. Wang, and M. J. Rabinowitz. Silicon particle formation in
pyrolysis of silane and disilane. Israel Journal of Chemistry, 36(3):293–303, 1996.
doi:10.1002/ijch.199600041.
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