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Abstract

In the present study we propose an extension of the Euler/Lagrangian

approach for liquid-liquid two phase flows when the volume fraction of the

dispersed phase is not small. The continuous phase velocity is obtained by

solving the Reynolds-averaged Navier-Stokes equations augmented with the

turbulence model. Motion of the dispersed phase is calculated by solving the

equations of motion taking into account inertia, drag and buoyancy forces.

The coupling between the phases is described by momentum source terms

and the terms that account for turbulence generation by the droplets’ motion.

Collision and breakage of the droplets are treated by a single particle Monte-

Carlo stochastic simulation method. This method is based on a mass flow

formulation and operator splitting technique. For validation of the numerical

procedure droplet size distribution and flow fields in a rotating disc contactor

are calculated and compared with the existing experimental results.
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1 Introduction

Two-phase turbulent liquid-liquid or liquid-gas flows in which a large number of
droplets or gas bubbles are dispersed in a continuous phase are frequently found in
a variety of chemical and biochemical technological processes. Examples are bubble
and extraction columns [17], [2], stirred tanks [28], air-lift reactors [26], amongst
others. High interphase area is a very attractive feature for mass transfer opera-
tions. Typical applications are encountered in processes involving absorption, ex-
traction, mixing, and emulsification. The dynamics of these systems are dictated
by interphase mass, momentum and energy transfer, size distribution of the bub-
bles/droplets, and generation of turbulence by the dispersed phase.
If the volume fraction of the dispersed phase is not small, breakage, collision and co-
alescence of the bubbles/droplets, becomes the factor of paramount importance that
determines not only size distribution of the dispersed phase but the main hydrody-
namical features of both phases. Thus, any adequate computational fluid dynamics
(CFD) description of these flows must incorporate droplets population balance as
a submodel. Although liquid-liquid dispersion has been numerically investigated in
the framework of zero dimensional [28] or multi compartments models [21], there
are only very few examples of CFD models that take breakage and coalescence of
bubbles into consideration. In [19] an Euler-Euler method has been used to simulate
three dimensional two phase flow field in a bubble column. The dispersed phase size
distribution was approximated by the introduction of two monosize groups, namely,
large bubbles and small bubbles. A more detailed multi-group approximation with
a suitable population balance model has been used in [6].
In the present study we use an Euler/Lagrangian approach for calculation of the
flow evolving in a rotating disc contactor (RDC). The main advantage of this ap-
proach is suitability for treating droplet-droplet and droplet-turbulence interaction
in a natural, simple manner. Collisions, coalescence and breakage of the droplets is
treated by a Monte Carlo stochastic simulation [27], [12] based on the single-particle
method. The model does not require any information on the location and motion of
nearby droplets, instead a fictitious collision partner with a given size and velocity
is generated. The main drawback that limited applicability of this method in the
past is that for each control volume the particle joint size and velocity distribution
function have to be sampled and stored. In the present study we applied a dis-
crete representation of the distribution function that requires only small memory
resources and allows fast updating.

2 Rotating disc contactor and two phase hydro-

dynamics model

In this study we simulate two-phase turbulent flow in a pilot-scale RDC [20], its
schematic view and flow patterns are given in Fig.1. The device has five compart-
ments, its internal diameter is 150mm and diameter of the rotating shaft is 54mm.
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Figure 1: Schematic view of the rotating disc contactor and flow patterns. Vector
plot of the radial and axial velocities in the azimuthal section (left) and
contour plot of the azimuthal velocity (right).

The external diameter of the discs and the internal diameter of the baffles are 92mm
and 105mm, respectively. The angular velocity of the shaft Ωs varies from 150rpm
to 300rpm. The continuous phase that has higher density ρc = 0.998g/cm3 is sup-
plied from above with volume flux Qc = 50 − 100l/hr, i.e., the average downward
velocity is less than 0.18cm/s, which is several orders of magnitude less than the
local velocities encountered in the system. Due to the rotation of the discs the fluid
is centrifuged outward in the radial direction and after impinging on the outer wall
is reflected inwards. Thus a staggered chain of vortices is formed along the column
as is depicted in Fig. 1.
The dispersed (lighter) phase with density ρd = 0.881g/cm3 is supplied through the

bottom of the column with volume flux Qd = 50 − 100l/hr. Initially, the volume
of the droplets is distributed according to a cumulative distribution function Fin(v),
as the droplets move through the RDC, the distribution changes due to coalescence
and breakage. The droplets rise up but are trapped in each compartment by the
vortices which play the role of partially mixed reactors.
Generally speaking, the buoyancy forces due to the presence of the lighter phase
should make the flow time-dependent and three-dimensional, this considerably com-
plicates numerical treatment of such a flow. In the present study we assume that the
agitation in RDC is strong enough and that buoyancy forces are of marginal impor-
tance only, and an axisymmetric steady model of the flow is adopted. Thus, we use
an iterative solution procedure that is common in many CFD methods, namely, we
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solve the Reynolds-averaged Navier-Stokes equations for the continuous phase and
then droplets are tracked through the calculated flow field. The source terms that
account for the effect of the dispersed phase on the continuous phase are updated
and substituted into the Navier-Stokes equations. This procedure is repeated until
convergence is achieved.

2.1 Continuous phase hydrodynamics

The fluid flow was calculated by solving the steady Navier-Stokes equations aug-
mented with k − ε model of turbulence. The model was modified to account for
the effect of the droplets on the flow field and turbulence generation. The Reynolds
stress tensor σR is given by

σRij =
2

3
φckδij − φcνt

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
. (1)

In the above equations δij is the Kronecker delta, φc is the volume fraction of the
continuous phase, and ~u is the mean velocity of the continuous phase. Effective
viscosity in the turbulent flow is a sum of molecular and eddy viscosities:

νt = ν + Cµk
2/ε,

where Cµ = 0.09. Thus, the equations of conservation of mass, momentum, kinetic
energy of turbulence k, and dissipation rate ε reads:

∂φcui

∂xi

= 0,

∂φcuiuj

∂xj

= −φc

ρc

∂p

∂xi

− ∂σRij

∂xj

− φcgi + Sui,

∂φcuik

∂xi

=
∂

∂xi

(
φcνt

σk

∂k

∂xi

)
+ φc(G− ε) + Sk,

∂φcuiε

∂xi

=
∂

∂xi

(
φcνt

σε

∂ε

∂xi

)
+ φc

ε

k
(C1G− C2ε) + Sε. (2)

In Eqs. (2) p is the pressure that is shared by all the phases, ~g is the acceleration of
gravity and S(·) denotes a source of corresponding property due to the presence of
the dispersed phase. G is the generation of kinetic energy of turbulence:

G =
νt

2

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)2

.

The other parameters are constants: σk = 1.0, σε = 1.3, C1 = 1.44, C2 = 1.92. In
the second of Eqs. (2) we rewrite the source term as ~Su := ~Su − (1 − φc)∇p, that
accounts for all the forces that the continuous phase exerts on the dispersed phase.
After rearrangement of the corresponding terms the momentum conservation reads:

∂φcuiuj

∂xj

= − 1

ρc

∂p

∂xi

− ∂σRij

∂xj

− φcgi + Sui.
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Eqs. (2) are solved on a rectangular mesh by a finite volume method. The diffu-
sive and convective terms are discretised using second-order central-difference and
upwind schemes respectively. The boundary conditions are treated by an immersed
boundaries method [13]. The iterative procedure for the solution of the resulting set
of equations is based on the SIMPLE procedure for pressure correction [23].

2.2 Dispersed phase tracking and interphase interaction

An analogy between chaotic droplets’ motion in turbulent flow and motion of molecules
in a gas enables application of the methods previously developed for rarefied gas dy-
namics [5], [16] to population balance of droplets. The direct simulation Monte
Carlo (DSMC) method can be formulated as follows. The flow volume is divided
into cells. Provided that the droplets’ sizes, velocities and positions are known at
a time t, the droplets’ distribution at time t + ∆t can be calculated in two steps
(operator-splitting technique). The particles are allowed to move, without collision
with each other, during the time interval ∆t. At the second stage spatially homo-
geneous coagulation and breakage are sampled randomly in each cell. In this step,
a droplet can collide only with those particles that are in the same cell irrespective
of the relative positions of the particles within the cell.
In the framework of the Lagrangian method accepted in the present study, each
droplet that is tracked through the computational domain represents a group of
identical droplets with total volume flux Qi, i.e.,

∑
Qi = Qd. The equations of

motion of the droplet read

d~xd

dt
= ~ud,

d~ud

dt
=

3ρc

4ρdD
CD|~Vc − ~ud|(~Vc − ~ud) + ~g(1− ρc

ρd

) (3)

+
ρc

2ρd

(
D~uc

Dt
− d ~ud

dt
) +

ρc

ρd

D~uc

Dt
.

Here ~xd, ~vd and D are the position, velocity and diameter of the droplet respectively.
The terms on the right hand side of Eq. 3 represent drag, buoyancy, added mass
and pressure forces, respectively, [17]. ~Vc = ~uc + ~v′ is the instantaneous velocity
of the ambient continuous phase that consists of the mean time-independent part
and a turbulent pulsation. The drag coefficient CD is calculated from the empirical
correlation:

CD =

{
24Re−1(1 + 0.15Re0.687) Re 6 1000,

0.44 Re > 1000,

where Re = D|~Vc − ~ud|/ν.
The above described momentum balance for the dispersed phase does not contain
momentum transfer due to droplet-droplet interaction. The attempt to treat mo-
mentum interchange through inelastic binary collisions leads to so-called clustering
instability [9], i.e., formation of regions with high concentration of the dispersed
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phase and, in the case of droplets, formation of one large drop. This phenomenon
has never been observed in an experiment. Note, that the theory of hydrodynamic
interaction in dense suspensions is far from being resolved and the assumption of
binary collision cannot be applied in this case. Thus, in the present investigation we
do not include momentum transfer in the collision process and model droplet-droplet
force interaction through a mean field approach, i.e., correct the drag coefficient by
a φ2

c factor as was done in [6], [14].
The mean part of the instantaneous fluid velocity is linearly interpolated from the
neighbouring grid nodes, while the fluctuating component ~v′ is randomly generated
according to the turbulent Langevin model [27].
Consider a droplet and the ambient liquid envelope (Fig. 2). At time t and the point
O the fluctuating component of fluid velocity is ~v′(t, O). At the next moment of time
t + ∆t the liquid particle is advected by the mean flow to the point O′ = O + ∆t~uc.
The fluctuation at time t + ∆t is correlated with that in the previous one. We used
an exponential approximation of the Lagrangian correlation function

〈v′i(t)v′j(t + ∆t)〉
〈v′2〉 = RL(∆t)δij = exp(−∆t

TL

)δij,

where TL = CT (2/3)kε−1 is the time scale of the turbulence, and CT = 0.4.
In the same moment in time t + ∆t the droplet is at the new point O′′ = O + ∆t~ud.
The correlation for two points O′ and O′′ is given by the Eulerian correlation tensor

〈v′i(O′)v′j(O
′′)〉

〈v′2〉 = RE
ij(~r) = [f(r)− g(r)]

rirj

r2
+ g(r)δij,

which is a function of the vector ~r connecting these two points, and where r = ‖~r‖.
The functions f(r) and g(r) are longitudinal and transversal (with respect to the
vector ~r) correlation coefficients. Since the liquid is incompressible f(r) and g(r)
are related through the continuity equation dg(r)/dr = f(r) + (r/2)df(r)/dr. In
the present study we use the following approximation for the correlation coefficients
[27], [31]:

f(r) = exp(− r

LE

),

g(r) = (1− r

2LE

) exp(− r

LE

),

where LE =
√

2/3kTL is the spatial correlation length. Eventually, the longitudinal
and transversal components of fluctuation velocity are

v′n(t + ∆t, O′′) = RLfv′n(t, O) +
√

1− (RLf)2ξ,

v′t(t + ∆t, O′′) = RLgv′t(t, O) +
√

1− (RLg)2ξ,

where ξ is a Gaussian random number with zero mean value and standard deviation
equal to the mean-square velocity of the vortices that contribute to the motion of the
droplet. In order to estimate the dispersion of ξ we need to take into account that

6



∆ t u
d
 

∆ t u
c
 r 

O’

O’’

O

Figure 2: A droplet (gray) and the ambient liquid particle in turbulent flow.

a droplet is advected by turbulent vortices that are larger than the diameter of the
droplet. Since spectral energy density in the inertial subrange is E(λ) = 1.7ε2/3λ−5/3

the mean-square velocity of these vortices is (see [4])

〈ξ2〉 =
2

3
k −

∫ ∞

2π/D

E(λ)dλ ≈ 2

3
k − 0.5(εD)2/3 (4)

Eqs.(3) are solved using a first-order implicit Euler method. The time step of inte-
gration ∆t has to be chosen smaller than the time scales relevant to motion of the
droplet, namely: the time required for a droplet to cross a control volume, relaxation
time τrelax = 4D(ρd/ρc + 0.5)/(3CD|~Vc − ~ud|) and the time scale of the turbulence
TL.
The effect of the dispersed phase on the fluid flow is calculated by means of a
particle-source-in-cell method [17], which considers the droplets as a local source of
the momentum, kinetic energy of turbulence and dissipation rate. In the beginning
of the nth dispersed phase iteration the future volume fraction and sources are set to
be 0: φn+1

d := 0, Sn+1
(·) := 0. During one step of the integration procedure a droplet

changes the volume fraction of the dispersed phase φn+1
d in the cell where its centre

of gravity is located by ∆tQi/Vcell, where Vcell is the volume of the cell. Thus, the
total volume fraction in a cell is obtained by summation of the above formula over
all time steps and all droplets that visit the cell during the dispersed phase iteration:

φn+1
d =

∑ ∆tQi

Vcell

.

Following [17] the droplet contribution to the momentum source reads

~su = −∆tQiρd

Vcellρc

(
d ~ud

dt
− (1− ρc

ρd

)~g

)
,
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and the total momentum source due to the presence of the dispersed phase is ~Sn+1
u =∑

~su, where the summation is over all time steps and all droplets that visit the cell.
The production of kinetic energy of turbulence by the chaotic motion of the droplets
is

Sn+1
k = Σ( ~ud · ~su)− ~uc · Sn+1

u ,

where the first term is the total work done by the dispersed phase and the second
term is the work done by the mean interface force [17]. The source term for ε has
the standard form, i.e., it is the ratio between production of kinetic energy and time
scale of the turbulence:

Sn+1
ε = C3

ε

k
Sn+1

k ,

where C3 = 1.8. In the end of the dispersed phase iteration we underrelax the source
terms and volume fraction as Sn+1

(·) = cSn+1
(·) + (1− c)Sn

(·), where c = 0.3− 0.4.

3 Breakage, collision and coalescence of the droplets

3.1 Breakage rate and distribution of the resulting daughter
droplets

According to the common view on the fragmentation of bubbles and droplets in
turbulent flows, a droplet breaks if the dynamic pressure due to the turbulence
exceeds the pressure due to surface tension, while the mechanisms that govern the
size distribution of the resulting daughter droplets are less clear. In the present
investigation we assume that the characteristic size of the fragments is also dictated
by the balance between the surface tension and the dynamic pressure of the vortices
that are smaller than the diameter of the daughter particle Dd [22]. The surface
pressure of the daughter drop is τs(Dd) = 6σ/Dd, where σ is the surface tension.
The dynamic pressure of the turbulence at the scale of the parent drop τt(D) is
exponentially distributed with parameter

1

2
ρc∆u2(D) =

1

2
βρc(εD)2/3, (5)

where ∆u2(D) is the characteristic velocity difference between two points separated
by distance D, and the constant β = 8.2 was given by Batchelor [4]. We assume
that the dynamic pressure of the turbulence at the scale of the daughter drop Dd

scales according to Kolmogorov’s universal scaling, i.e., τt(Dd) = (Dd/D)2/3τt(D).
The equation τs(Dd) = τt(Dd) yields

Dd =
(6σD2/3

τt(D)

)3/5
. (6)

We now simulate breakage as follows:

1. Dynamic pressure of the turbulence τt(D) is generated exponentially with
parameter (5).
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2. Minimum possible size of daughter drop is calculated according to Eq. (6).

3. Number of the fragments Nd is the integer part of the fraction (D/Dd)
1/3.

4. If Nd < 2 breakage does not occur, otherwise we create Nd − 1 droplets with
diameter Dd, while the rest of the mass remains in the droplet with diameter
D′

d = (D3 − (Nd − 1)D3
d)

1/3.

The time that is necessary for breakage can be estimated as the life time of the
turbulent vortex with size D:

1

tbreak

=

√
∆u2(D)

D
=

√
β

ε1/3

D2/3
. (7)

3.2 Coalescence rate

Since during the collision step we assume a uniform distribution of the droplets
inside a cell, the probability that two particles that are in the same spatial cell and
have sizes and velocities Di and ~ui, respectively, can collide during a time interval
∆t is

h1,2∆t =
π

4
χ(φd)(D1 + D2)

2|~u1 − ~u2|
√

1− f 2(
D1 + D2

2
)

∆t

Vcell

, (8)

where h1,2 is the collision rate and χ(φd) is the radial distribution function

χ(φd) =
1− φd/2

(1− φd)3
.

In Eq. (8), unlike in classical statistical mechanics, the relative velocity is reduced by
the factor

√
1− f 2((D1 + D2)/2) that accounts for the longitudinal correlation be-

tween two points in turbulent flow that are separated by the distance (D1 + D2)/2.
As the droplets approach each other they do not necessarily merge, a liquid film
separates the droplets and plays the role of a barrier that prevents immediate co-
alescence. Since the droplets are not rigid particles but have a finite elasticity due
to surface tension, the time of contact between two droplets is non-zero. Thus we
adopt the following model for the droplets’ interaction: if the time of contact tcontact

is less then the time that is necessary for drainage of the barrier liquid film tdrainage,
then the colliding droplets do not coalesce, otherwise they merge into a single drop.
The equation for the coagulation rate of the droplets reads

K1,2 = h1,2H(tcontact − tdrainage), (9)

where H(·) is the Heaviside function.

In the present investigation we follow the analysis of the relative motion of two
droplets that was done in [7, 15]. The effective mass (together with added mass) of a
droplet with mass mi is Mi = mi(1+0.5ρc/ρd). The reduced mass that characterizes
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the inertia of the relative motion is M = M1M2/(M1 + M2) (see [18]), while the
rigidity of contact is K = πσ (see [15]). Thus the time of contact can be estimated
as a half-period of a pendulum with rigidity K and mass M . Since tcontact cannot be
higher than the life time of the turbulent vortex with size (D1 + D2)/2, we choose
the contact time to be

tcontact = min

(
π

√
M

K
,
√

β
22/3ε1/3

(D1 + D2)2/3

)
. (10)

The drainage time between two droplets is [7, 15]

tdrainage =
ρcvrel

4σ

D1D2

D1 + D2

, (11)

where vrel is the relative velocity of the droplets at the beginning of the contact.

4 Solution of the population balance model

The computational domain is divided in to around 104 cells. Since for a proper
representation of the polydispersed droplets ensemble one needs 5 − 15 droplets in
each spatial cell, modelling of the dispersed phase requires simultaneous tracking of
about 105 droplets. Given the droplets’ number density is nonuniform over the flow
region, in order to provide the minimum necessary number of droplets in the low-
density regions, one needs to further increase the total number of computational
droplets. A significant simplification can be achieved if we use the fact that the
flow is steady. A single particle (or alternatively, test particle) method (SPM)
can be applied. The spatially homogeneous coagulation/fragmentation step does
not require any information about neighboring particles, instead a particle (that
is referred to as test particle) coagulates with a fictitious collision partner that is
generated according to the local particles’ distribution [27], [12], thus, the particle
always has a collision partner even in a low-density region. As soon as the particle
leaves the system, the new particles’ distribution function is recalculated. This
procedure is iterative until convergence is achieved. Note that the coagulation SPM
step naturally fits the general iterative strategy adopted in the present investigation
and the iterative nature of the above method should not be considered as a drawback.
The SPM for the Boltzmann equation has a longer history than the DSMC method
[11]. Recently this method has been applied for spatially homogeneous coagulation-
fragmentation problems [24], [25]. The main obstacle that limited wide application
of SPM in the past was the necessity to store and update the particle distribution
function in each cell of the computation domain. This difficulty has been resolved
by Vlasov [30]. According to this approach only the particles’ number density and
the parameters of a few (maybe even one) particles are stored in each cell. These
particles are referred to as field (or target) particles. When a test particle crosses
a cell, one of the field particles is replaced by the test particle with a probability p
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that is proportional to the residence time tres of the test particle in the cell.
The spatially homogeneous coagulation-fragmentation equation reads:

∂n(t, x)

∂t
+

n(t, x)

θ(x)
− Nin(x)

Vcell

=

−
∫ ∞

0

K(x, x′)n(t, x′)n(t, x)dx′ − g(x)n(t, x)−
1

2

∫ x

0

K(x− x′, x′)n(t, x′)n(t, x− x′)dx′ +
∫ ∞

x

g(x′)β(x, x′)n(t, x′)dx′. (12)

In the above equation n(t, x) is the number density of the droplets that have volume
x at time t. The droplets that enter the cell are distributed according to Nin(x),
and θ(x) is a size-dependent residence time. The probability that two droplets with
volumes x and x′, respectively, coalesce during a small time interval dt is K(x, x′)dt.
The collision probability depends on the relative velocity between the two droplets
(c.f. Eqs. (8) - (9)) but we omit it from the above formula for the sake of simplicity.
A droplet breaks during a small time interval dt with probability g(x)dt, and the
number of fragments with size x that are formed from one droplet with volume x′

is β(x, x′).
Let us reformulate Eq. (12) in terms of mass density (so-called mass flow formula-
tion [1, 8, 10]). The mass density of the droplets that have volume x at a time t is
m(t, x) = xn(t, x), and Min(t, x) = xNin(t, x). In order to reformulate the coagula-
tion equation (12) in terms of m(t, x), we express n(t, x) as m(t, x)/x, substitute it
into Eq. (12) and multiply the equation by x. Note, that if K(x, x′) = 0 for x 6 0 or
x′ 6 0, and β(x, x′) = 0 for x′ < x the limits of integration in (12) can be extended
from −∞ to ∞. After some algebra we obtain [25, 1, 8]:

∂m(t, x)

∂t
+

m(t, x)

θ(x)
− Min(x)

Vcell

=

−
∫

K(x, x′)
x′

µ(t, x′)m(t, x)dx′ − g(x)m(t, x) +

∫
K(x− x′, x′)

x′
µ(t, x′)m(t, x− x′)dx′ +

∫
g(x′)

β(x, x′)x
x′

m(t, x′)dx′, (13)

where µ(t, x) is the mass density of field particles that converges to the mass density
of test particles m(t, x) as t → ∞. The factor of 1/2 before the first integral in
Eq.(12) disappears because coagulation reduces the number of droplets but does
not affect their volumes.
The Monte Carlo algorithm for the single particle process is as follows. As it was
mentioned above, the dispersed phase iteration consists of sequential tracking of the
number of droplets. We represent the field droplets ensemble at the beginning of the
nth particle tracking by N target droplet groups with volumes yn = (yn

1 , ..., yn
i , ..., yn

N)
and velocities ~vn = (~vn

1 , ..., ~vn
i , ..., ~vn

N). The volume of the ith group is φd/N and the
number of droplets in the group is φd/(Nyn

i ). Since the probability that during a
small time interval dt the test droplet collides with one field droplet from the ith

group is h(x, yn
i )dt (c.f. Eq. (8)), the probability that the test droplet collides with
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any of the ith field droplets is h(x, yn
i )(φd/y

n
i )dt. Thus, the collision rate ρ of the

test droplet is given by a summation of the above formula over all groups of target
droplets:

ρ =
φd

N

N∑
i=1

h(x, yn
i )

yn
i

. (14)

We sample breakage of the test droplet with rate 1/tbreak which is calculated accord-
ing to Eq. (7).
At the beginning of the simulation we initialize some target droplet distribution y0

and then the simulation algorithm reads:

1. Set yn+1 = yn and ~vn+1 = ~vn.

2. Set time counter tcount = 0.

3. Generate an exponentially distributed time increment τ with parameter ρ +
1/tbreak, update the time counter as tcount = tcount + τ .

4. With probability

α
τQi

φdVcell

(15)

replace a uniformly chosen yn+1
i by x and ~vn+1

i by ~ud, where α is a constant.

5. With probability ρ(x)/(ρ(x) + 1/tbreak) choose coagulation step, overwise go
to step 8.

6. Choose collision partner according to the distribution

h(x, yn
i )φd

Nρyn
i

. (16)

7. Calculate contact time and drainage time according to Eqs. (10) and (11),
respectively. If tcontact > tdrainage replace x by x + yn

i , otherwise reject the
coalescence. Go to step 9.

8. Breakage step. Generate the daughter droplet size Dd and the number of
fragments Nd as is described in Eq. (6) and the breakage algorithm. If Nd > 2
replace x by a droplet with diameter Dd with probability (Nd − 1)(Dd/D)3,
otherwise replace x by a droplet with diameter D′

d.

9. If tcount 6 ∆t go to step 3.

10. Move the droplet according to Eqs. (3). During this step the droplet can pass
from one cell to another. If the droplet leaves the system, generate a new
(n + 1)th droplet at the bottom of RDC according to inlet size distribution
Fin(x) and go to step 1. If not, go to step 2.
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This method has been investigated in previous work [29] and its performance was
compared with a direct simulation method in an ideally stirred reactor. The main
results are the following.

1. It was shown that both methods provide identical results within similar CPU
time.

2. The probability that a test particle will leave a cell without being registered
in the field particles’ array is given by the product of Eq. (15) over all time
steps: ∏

j

(1− α
τjQi

φdVcell

) ≈ 1− α
Qin

ΦnV

∑
j

τj = 1− α
Qi

φdVcell

tres, (17)

where tres is a characteristic residence time of a droplet in the cell. In the above
formula we used the assumption that τ ¿ tres. Since φd ∼ ndQitres/Vcell,
(where nd is the number of droplets that crossed the cell), in order to keep
the probability (17) positive one needs α ≈ 1 if each cell is visited by more
then one computational droplet during the dispersed phase iteration. In the
present investigation we used α = 0.5.

3. The numerical experiments reveal that in order to avoid correlation between
consecutive collisions, one needs the number N of field droplets to be approx-
imately equal to the number of collisions that a test droplet undergoes before
it leaves the cell. In usual CFD applications the size of control volumes is
chosen in such a way that the probability of more than one collision in one
cell is small, even one field particle per cell can be sufficient. To calculate the
results presented below we used from 6 to 12 field droplets per cell.

5 Results and discussion

There are two main forces that govern the flow field in a RDC, namely, inertia forces
due to rotation of the discs and dispersed phase buoyancy forces. In the absence of
the less dense dispersed phase the velocity field consists of a chain of 10 staggered
vortices, a vortex between two discs and a counterrotating vortex between two baf-
fles, etc., as is depicted in Fig. 3. This picture persists for all values of Ωs. These
vortices trap the droplets and significantly slow down the rising velocity of the dis-
persed phase. Thus, as the droplets accumulate in these regions, a lower average
density of the mixture leads to an additional upward directed force that deforms
the flow field. The results of the calculations are presented on Figs. 3, 4. When the
angular velocity of the shaft is sufficiently high, the dispersed phase decreases the
size of the vortices that are below the discs and moves them toward the periphery,
but the qualitative structure of the flow does not change. The downward inclined
jets that originate from the rotating discs serve as the main obstacle that prevents a
droplet transition from one compartment to another and the droplet can be trapped
in a compartment for a long time. The typical trajectories are presented in Fig. 5. As
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Figure 3: Vector plot of the radial and axial velocities in the azimuthal section
for different volume fractions of the dispersed phase 〈φd = 0〉 (left) and
〈φd = 15%〉 (right), Ωs = 300rpm.
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Figure 4: Vector plot of the radial and axial velocities in the azimuthal section for
Ωs = 300rpm (left) and Ωs = 200rpm (right), Qc = Qd = 100l/hr.
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Figure 5: Typical trajectories of the droplets Ωs = 300rpm (left) and Ωs = 200rpm
(right), Qc = Qd = 100l/hr.
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Figure 6: Volume fraction of the continuous phase in the azimuthal section for
Ωs = 300rpm, average hold-up is 15.0% (left), and Ωs = 200rpm (right)
average hold-up is 5.98%, Qc = Qd = 100l/hr.
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Figure 7: Mean-mass diameter of the droplets (cm) for Ωs = 300rpm (left) and
Ωs = 200rpm (right), Qc = Qd = 100l/hr.
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(a) Ωs = 300rpm
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Figure 8: Calculated (lines) and measured (symbols) cumulative mass distribution
function of the droplets diameter dp (cm) at the outlet.
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the rotation velocity of the shaft decreases the relative importance of the buoyancy
forces becomes higher, and for Ωs < 250rpm bifurcates to the system of elongated
vortices that extend from the shaft to the external wall of the RDC. The jets that
separate these vortices are horizontal and do not constitute a serious obstacle for
buoyant droplets. Thus the residence time of a droplet in each compartment is less
and its trajectory is less tangled.
Two different structures of flowfields lead to different distributions of the dispersed
phase inside the contactor (Fig. 6). Since for Ωs = 300rpm the characteristic velocity
in the azimuthal plane is about 20cm/s, and given that the characteristic diameter of
the vortex is about 1.5cm, the inertia forces are strong enough in comparison with
the buoyancy forces, and the continuous phase accumulates in the centres of the
vortices. For lower values of Ωs the acceleration of gravity is much higher than the
centripetal acceleration and the droplets rise up and stick to the discs and, mainly,
to the baffles.
It is conceivable that a high concentration of the dispersed phase leads to high
collision and coalescence rates, and therefore to a larger characteristic size of the
droplets. The distribution of the mass-mean diameter of the dispersed phase is plot-
ted on Fig. 7. Visual comparison of Fig. 6 and Fig. 7 reveals that while for low
rotation speeds of the shaft, the patterns of characteristic droplet size follow the
volume fraction of the dispersed phase, for Ωs = 300rpm the characteristic size of
the droplets in the vortices adjacent to the discs is relatively small. The intensive
flow and, therefore, high dissipation rate of the turbulence in this region result in a
high breakage rate that prevents formation of large droplets.
In order to validate our numerical model we compared the computational predictions
with the available experimental data [20], [3]. Cumulative mass distribution func-
tions for the droplets diameter at the outlet are presented in Fig. 8. Notably, both
the experiment and the calculations predict that the droplet size distribution does
not depends significantly on Qc and Qd. As one can see, the predicted mass-mean
diameter is close to the measured value, while the computational model overesti-
mates the standard deviation of the distribution approximately by a factor of 3.
The fact that the calculated distribution is wider than the distribution in the ex-
periment could be the result of overestimation of the coagulation rate by the model.
Since the large drops formed cannot survive in the turbulent flow, high numbers of
breakage/coalescence events increases the standard deviation of droplets’ diameter.
Note that Eqs. (6)-(11) provide only orders of magnitude for the estimated param-
eters but not exact values. These equations are correct up to some coefficients of
order one, that have to be identified from the experimental data. Since our model,
unlike most of the dispersion models found in the literature, does not contain any
fitting parameters, the agreement between the experimental and numerical data is
satisfactory.
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6 Conclusions

In the present work an Euler/Lagrange formulation has been proposed for the nu-
merical simulation of the dispersion of droplets in two phase turbulent flows. The
flow field of the continuous phase was described by the k − ε Reynolds-averaged
Navier-Stokes equations and calculated by a control volume method. The simula-
tion of the dispersed phase by the Lagrangian method requires the solution of a
stochastic ordinary differential equation for each drop that represents a cluster of
drops with identical properties. The instantaneous fluid velocity at the droplet lo-
cation consists of the local mean velocity and the random component generated by
the Langevin model. The effect of the dispersed phase on the fluid flow is calcu-
lated by means of the particle-source-in cell method that considers the droplets as a
local source of momentum, kinetic energy and dissipation rate of turbulence. This
approach allows simulation of droplets-flow interaction in the most natural way.
Special attention has been given to coagulation and breakage of the droplets, which
was treated by a single particle Monte Carlo method. The droplets ensemble was
split into test droplets that were tracked through the system and target droplets
that were used for generation of a fictitious collision partner. This method is algo-
rithmically simple and does not require extra storage resources as other variants of
SPM. The fragmentation of a drop in the turbulent flow field occurs if the dynamic
pressure due to turbulence exceeds the pressure due to surface tension. The model
for droplet collision is developed in two stages. In the first stage, the collision prob-
ability due to relative motion of the droplets is calculated in the manner common in
statistical mechanics. In the second, the coalescence occurs if the time that is nec-
essary for drainage of the liquid film separating two droplets is less than the contact
time between the droplets. Finally, the results of numerical simulations have been
compared with the available experimental data. Although the proposed computa-
tional model does not contain any fitting parameters it predicts characteristic size
at the outlet of the RDC correctly, but the calculated size distribution is wider than
the measured one.
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