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Highlights

• A detailed study of the kinetics of the title reaction is presented.
• Variable reaction coordinate transition state theory and master equation calculations

are used to obtain rate constant coefficients at various pressures and temperatures.
• A comparison is made with an equivalent ethanol reaction computed at the same

level of theory.

Abstract

In this paper we use variable reaction coordinate variational transition state theory
(VRC-TST) to calculate the reaction rate constants for the two reactions, R1:
(OH)3SiOCH2 +CH3 
 (OH)3SiOC2H5, and R2: CH2OH+CH3 
 C2H5OH. The first
reaction is an important channel during the thermal decomposition of tetraethoxysilane
(TEOS), and its rate coefficient is the main focus of this work. The second reaction is anal-
ogous to the first and is used as a basis for comparison. The interaction energies are ob-
tained on-the-fly at the CASPT2(2e,2o)/cc-pVDZ level of theory. A one-dimensional cor-
rection to the sampled energies was introduced to account for the energetic effects of ge-
ometry relaxation along the reaction path. The computed, high-pressure rate coefficients
were calculated to be, R1: k1 = 2.406×10−10T−0.301 exp(−271.4/T ) cm3 molecule−1 s−1

and R2: k2 = 1.316×10−10T−0.189 exp(−256.5/T ) cm3 molecule−1 s−1. These rates differ
from each other by only 10-30% over the temperature range 300-2000 K. A comparison
of the computed rates with experimental data shows good agreement and an improvement
over previous results. The pressure dependency of the reaction R1 is explored by solving
a master equation using helium as a bath gas. The results obtained show that the reaction
is only weakly pressure dependent over the temperature range 300-1700 K, with the pre-
dicted rate constant being within 50% of its high-pressure limit at atmospheric pressure.

1



Contents

1 Introduction 3

2 Theory 5

2.1 Potential energy surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Rate constant estimations . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Results and discussion 9

3.1 Electronic structure calculations . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Temperature dependence of R1 and R2 at the high pressure limit . . . . . 10

3.3 Pressure dependence of k−1 . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Conclusions 16

References 17

2



1 Introduction

Tetraethoxysilane (TEOS) is an organosilicon material that is widely used as a precursor
for the synthesis of silica nanoparticles. There is an increasing interest in studying the
kinetics of TEOS because it offers a non-toxic and cost-effective manufacturing route [13,
16]. The most common production method is gas-to-particle conversion in flame reactors,
where the precursor molecules decompose into various intermediates which eventually
react to form solid nanoparticles [21, 48]. The focus of this paper is the kinetics of one of
the main decomposition reactions in the TEOS system.

Two generally accepted decomposition routes of TEOS are 1,2-elimination of ethylene
and C−C bond cleavage [4, 14]. Ethylene elimination channels decompose TEOS and its
intermediates in a step-wise manner, eventually producing silicic acid Si(OH)4 as a final
product. These reactions have an energy barrier which makes the prediction of their rate
constants relatively straightforward. The C−C bond cleavage reactions generate silica
and methyl radicals which may result in rapid chain decomposition processes [14]:

(OH)nSi(OC2H5)m
(OH)nSi(OC2H5)m−1OCH2 +CH3 (n+m≤ 4) (1)

These reactions are barrier-less which poses some difficulties in estimating reliable rate
coefficients. First of all, the molecules considered are quite large, making ab initio elec-
tronic structure calculations computationally expensive. Secondly, standard free-rotor
and harmonic-oscillator approximations are inadequate to accurately describe the avail-
able number of states due to the loose nature of the transition state for which the typical
distance between the two fragments is 2-4 Å[22]. A number of experimental and compu-
tational studies have been conducted to investigate the decomposition of TEOS, however,
much uncertainty still exists in the kinetics of C−C bond cleavage reactions.

Herzler et al. [14] examined the decomposition of TEOS in a single-pulse shock tube over
the temperature range of 1160-1285 K and at a pressure of 1.5 bar. The main products
were found to be ethylene and ethanol, and a preliminary mechanism describing TEOS
decomposition was proposed. The model parameters were found by fitting them against
experimental observations and making assumptions about the Arrhenius coefficients for
particular families of reactions. However, the reaction rate constant for the C−C bond
cleavage channel was derived assuming that this is the only other decomposition route
apart from 1,2-elimination of ethylene. An alternative decomposition route was proposed
by Chu et al. [4]. Experiments were carried out in a heated wall reactor and a six-center
decomposition mechanism producing equal amounts of ethylene, ethanol and silicate was
suggested as the main initiating channel. However, this reaction was found to be in dis-
agreement with Herzler’s [14] experimental observations. The importance of various re-
action channels in TEOS decomposition was assessed by Ho and Melius [15] who used
quantum chemistry to calculate thermodynamic properties of silica species. However,
the computations are considered to be incomplete as they were only performed for key
species rather than for all possible intermediates. Kraft and co-workers [34] made steps
to address this problem by calculating thermodynamic properties for 180 silica species
in the TEOS system. Equilibrium calculations were used to determine the most impor-
tant intermediates and a heuristic model describing TEOS decomposition was proposed
[42]. Subsequently, the model was coupled with a population balance equation code
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[40, 41, 43–45, 50, 53] where it was assumed that silicic acid is the inception species.
Computed particle size distributions at different temperatures were found to be consistent
with experimental data [42].

In the most recent work of Nurkowski et al. [32], a detailed kinetic mechanism for the
decomposition of TEOS was proposed based on the analogy with the decomposition of
ethanol. A flux and sensitivity analysis of the proposed mechanism was shown to be
consistent with the TEOS decomposition path proposed by Herzler [14]. Ab initio tran-
sition state theory was employed to calculate the reaction rate constants for the two most
important channels: 1,2-elimination of ethylene and C−C bond cleavage. General transi-
tion state theory (TST) was used for the 1,2-elimination of ethylene (which has a barrier)
and variational TST combined with Gorin model assumptions [35] was employed for the
C−C bond cleavage (a barrier-less reaction). The computed rate constants were found
to be similar to the equivalent ethanol reactions calculated at the same level of theory.
The results from the ethanol system for reactions with barriers compared favourably with
various modelling and experimental data, giving confidence that the chosen method was
sufficient. However, the discrepancies between the experimental and modelling results for
C−C bond cleavage in ethanol were significant, suggesting that a more accurate technique
would be beneficial.

The purpose of this study is to obtain a more reliable rate coefficient for the C−C bond
cleavage in the TEOS system and to explore the pressure dependence of this rate. To
achieve this we employ variable reaction coordinate variational transition state theory
(VRC-TST) [22–24] in combination with the master equation [30].

The current work is limited to the reaction (R1) involving silica species with only one
ethoxy branch.

(OH)3SiOCH2 +CH3
k1−⇀↽−
k−1

(OH)3SiOC2H5 (R1)

Firstly, this choice minimizes computational time and potential errors as this is the small-
est silica molecule in the TEOS system. Secondly, it gives a good starting point for the
prediction of the rate constants for the remaining channels. An analogous reaction from
the ethanol system is also calculated at the same level of theory as a measure of accuracy
and for comparison purposes.

CH2OH+CH3
k2−⇀↽−
k−2

C2H5OH (R2)

The structure of this paper is as follows. Section 2.1 presents a description of the elec-
tronic structure methods used to obtain essential parameters of the reacting system. Sec-
tion 2.2 explains how the high- and low- pressure rate coefficient are calculated. The
results from the ab initio electronic structure computations are presented in section 3.1.
The predicted high-pressure reaction rate constants for both R1 and R2 are shown in sec-
tion 3.2, while information on the pressure dependence of reaction R1 can be found in
section 3.3. Final conclusions are drawn in section 4.
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2 Theory

2.1 Potential energy surface

The internal geometries, vibrational frequencies and hindered rotor potential energies
for the reactants and products were computed with the hybrid density functional B97-1
method [2] using the 6-311+G(d,p) basis set [26] implemented in the Gaussian09 software
package [9].

The interaction potential of the two reacting radicals, as a function of their separation and
relative orientation, was obtained with the direct CASPT2 [1] method. The calculations
were performed with a double-ζ basis set (cc-pVDZ) [6] and a two electron, two orbital
active space. The internal structures of the fragments were kept fixed at their equilibrium
geometries.

In order to account for the energetic effects of the geometry relaxation of the rigid frag-
ments, a one-dimensional, orientation-independent, correction term was added to the
CASPT2 potential energy. The correction was computed as the difference between en-
ergies obtained from the geometry optimisation of the fragment-fragment complex under
two specific constraints. The first calculation optimised the structure at a given separation
while varying all coordinates except the defined C−C distance (so relaxing the structure
of each fragment). The second calculation optimised the transitional coordinates of the
fragments whilst keeping the C−C distance constant and treating the fragments as rigid
structures. All CASPT2 calculations were performed using the MOLPRO software pack-
age [52].

The C−C bond dissociation energy was obtained by employing a Gaussian-G2 method
[5], which approximates restricted coupled-cluster energies with perturbative inclusion of
the triplet contribution, RCCSD(T) [39], on a 6-311+G(3df,2p) basis set. The formula
used in the computations is as follows [5, 38]

E(G2) = E[MP4/6-311+G(d,p)]
+E[MP4/6-311G(2df)]
+E[QCISD(T)/6-311G(d,p)]
−2E[MP4/6-311G(d,p)]
+E[MP2/6-311G(d,p)]−E[MP2/6-311+G(d,p)]
+E[MP2/6-311+G(3df,2p)]−E[MP2/6-311G(2df,p)]
+1.14npair−5.95nβ −0.19nα +ZPE[HF/6-31G(d)×0.893]

(2)

where npair is the number of valence electron pairs and nα and nβ are the number of
alpha and beta electrons respectively. The zero point energy within the G2 method was
calculated by using scaled vibrational frequencies (scaling factor of 0.893) taken from the
HF/6-31G(d) model.
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(a)

(b)

Figure 1: Comparison of the interaction potential energy curves from calculations in
which the fragments’ internal geometries were allowed to relax (dashed lines)
or were held rigid (solid lines). All computations were performed at the
CASPT2(2e,2o)/cc-pVDZ level.

2.2 Rate constant estimations

High-pressure limit rate constants. The high-pressure rate constants k1 and k2 for the
barrier-less association of (OH)3SiOCH2 + CH3 and CH2OH+CH3 radicals were esti-
mated using VRC-TST [11]. Detailed descriptions of this method have been given else-
where [10, 11, 23–25]. Thus, only the most important aspects are described here.

The reaction rate constant is computed according to a variational principle where the

6



optimal dividing surface is obtained through the minimization of the reactive flux. The
reactive flux or available number of states, N‡, is calculated under the assumption of sep-
arability of the modes of motion in a reacting system into the conserved and transitional
modes [11]. The number of states for the conserved modes is evaluated quantum mechan-
ically (through a direct counting algorithm [3, 49]) whereas the number of states for the
transitional modes involves classical phase space integrals [24]. Definition of the transi-
tion state dividing surfaces in VRC-TST is expressed in terms of a fixed distance between
pivot points associated with the reacting fragments [10]. This allows the reaction coordi-
nate to be more flexible and thus better describes the system at a given separation. The
rate constant is finally computed by optimising both the position and relative separation
of the pivot points.

In this paper, two different definitions of the reaction coordinate were used depending
on the relative separation of fragments. For large interfragment distances (8-20 au), the
pivot points were located at the mass centers of the corresponding molecules (a center of
mass reaction coordinate). This was motivated by the fact that for large separations the
motion of the entire system can be thought of as only a weak perturbation of the separate
fragments. At smaller separations (4-7.5 au) the motion of the system is better understood
as a perturbation of the molecular complex. Therefore, the pivot points should be placed
close to the two atoms whose bond is going to break (a bond-length reaction coordinate
[22]). In case of the (OH)3Si(OCH2) and CH2OH the pivot points were located at the C
atoms, whereas in case of the CH3 the pivot points were placed along the C3 symmetry
axis at six possible displacements ±(0.01, 0.5, 1.0 au) with respect to the carbon atom.

Final calculations were done at the energy, E, and angular momentum, J, resolved level
where the reactive flux, N‡

EJ, was minimised by finding the optimal dividing surface for
each (E,J) pair (for energy equal or less than E and angular momentum quantum number
equal to J). Optimization of the surface was performed at evenly spaced grid points with
a spacing of 0.5 au for the small separations and at 8, 9, 10, 12, 14, 16, 18, 20 au for the
large separations.

Pressure-dependent rate constants. The pressure dependence of reaction R1 was ex-
plored with master equation simulations [29–31]. At this point it became necessary to
incorporate an additional reaction into the model. The reason for this is that in addi-
tion to the reaction R1, the molecule (OH)3SiOC2H5 can also dissociate via an ethylene
elimination channel:

Si(OH)4 +C2H4
k3−⇀↽−
k−3

(OH)3SiOC2H5 (R3)

The reaction R3 has a tight transition state that is lower in energy than the endothermicity
of the reaction R1. The dissociation via the lower energy channel changes the reactive
distribution for the excited channel, and so must be considered when calculating the rate
constant for reaction R1 at a particular pressure. The geometries, vibrational frequencies
and energies of the stable species and the transition state in R3 were obtained using the
methods described in section 2.1. An additional Eckart tunneling correction [7, 20] was
included in the computations due to the high value of the imaginary frequency (1695
cm−1) of the tight transition state. For the chosen range of the temperatures that reaction
R3 was fitted to, the correction term ranges from a factor of 3 to a factor of 1.06.
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(a) (b)

Figure 2: Two dimensional contour plots of the CASPT2(2e,2o)/cc-pVDZ interaction po-
tential for (a) (OH)3SiOCH2 + CH3 and (b) CH2OH + CH3. The plotting plane
in both figures includes the central carbon atom and oxygen atom to the left.
The plane bisects the angle between the two hydrogens to the right of the C
atom. The plane of the approaching CH3 is perpendicular to the plotting plane
with the angle between the central carbon atom and one of the CH bonds in
the methyl radical being fixed at 90◦. The solid and dashed contour lines de-
pict repulsive and attractive energies respectively. The contour increment is 1.0
kcal/mole. A zero energy contour is shown by the solid contour line with dot
markers. The circle in the middle of each plot covers an irrelevant unplotted
part of the potential energy surface.

The density of states of the stable species and the number of states of the tight transition
state in reaction R3 were evaluated on the basis of rigid-rotor harmonic-oscillator assump-
tions. The one exception from this rule was the treatment of a hindered CH3 rotor in the
(OH)3SiOC2H5 molecule that was described according to Pitzer-Gwinn approximation
[36, 37]. The number of states of the loose transition state in reaction R1 was computed
under the assumption of the separability of the modes of motion into conserved and transi-
tional modes. The density of states of the conserved modes (the vibrational modes of each
of the separate fragments) was evaluated at the harmonic-oscillator level. The number of
states of the transitional modes (the rotational modes of the two individual fragments and
the orbital motion) was computed via phase-space integrals. The final number of states
was then obtained by convoluting the former with the latter.

The collision frequency, ω , was approximated by employing a Lennard-Jones (LJ) model.
The LJ parameters were computed for (OH)3SiOC2H5 with He as the bath gas using
the one-dimensional minimisation approach implemented in the OneDMin software [18].
These computations were performed with an MP2/aug-cc-pVDZ potential and similar
calculations have shown these methods to predict Lennard-Jones collision rates at an ac-
curacy of ±10% [17].

The energy transfer probability was approximated by the exponential down model with
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the temperature-dependent average energy transferred per collision parameter described
by the following equation: 〈∆Edown〉 = 〈∆E0

down〉(T/300K)0.85. The value of the 〈∆E0
down〉

prefactor [12] was set to 400 cm−1, which is a reasonable choice considering the size
of the molecule and type of the collider (e.g., in our recent study of CxHy systems [19]
similar sized systems were found to have values of about 350 cm−1).

3 Results and discussion

3.1 Electronic structure calculations

The calculated one-dimensional interaction energies for both reactions R1 and R2 are
depicted in Figure 1. The value of the relaxation correction term (the difference between
the two curves) varies from 0.01 to 16 kcal/mol and is most significant for separations in
the range 2-3 Å. The correction is essential for barrier-less reactions, where the distance
between the fragments forming the transition state complex is typically in this range.
Additionally, for both reactions, a small saddle-point can be noticed at around 4 Å. This
is an effect of the dominant forces acting on the fragments changing from long-range van
der Waals forces to short-range chemical bonding forces as the separation between the
fragments decreases. This change is accompanied by the re-orientation of the fragments
to a different minima; hence the presence of the saddle point.

Figure 2 shows part of the potential energy surface computed at the CASPT2 level for
R1 and R2. Due to the high dimensionality of the system, the plots are restricted to a
specific orientation of the fragments. In both cases, a plotting plane was spanned by a
vector pointing from the central carbon atom towards the oxygen atom on its left and a
vector bisecting an angle between the two hydrogens attached to the carbon atom on its
right. The plane of the approaching CH3 radical was kept perpendicular to the plotting
plane with the additional restriction that the angle formed by the central carbon atom and
one of the CH bonds in CH3 is fixed at 90◦. There are two possible CH3 addition sites for
both reactions. These are the areas with strongly attractive (negative) potential. The first
site, which will be referred to as the front, is defined by the two hydrogens in the -OCH2
group pointing away from the approaching CH3. The second site, which will be referred
to as the back, is defined by the same two hydrogens pointing towards the CH3. A total
rate constant is calculated as the sum of front and back additions. It has to be mentioned
that there are also two possible ways for the CH3 radical to approach the two addition sites
of the -OCH2 group. However, due to symmetry, the total contribution is readily obtained
by evaluating the contribution for one approach and then multiplying that contribution by
a degeneracy factor of two.

Table 1 presents the zero-point corrected total energies, E0, of each species involved in
reactions R1, R2, and R3 obtained at different levels of theory. The corresponding C−C
bond dissociation energies, D0, and activation energies, E‡

0 , are also computed. It can be
noticed that the performance of the B3LYP hybrid functional is quite poor, with around 8
kcal mol−1 difference compared to the G2 calculations, where the G2 is the most detailed
of the methods used in this paper.

9



Table 1: Stationary point energies for reactions R1, R2 and R3.a

Species / Reactions G2b MP2c B97-1c B3LYPc

E0 (hartree)

(OH)3SiOC2H5 -670.6723 -670.1964 -671.4811 -671.6524
(OH)3SiOCH2 -630.7863 -630.3784 -631.5434 -631.7004
Si(OH)4 -592.2362 -591.8818 -592.9311 -593.0737
(OH)3SiO· · ·H· · ·C2H4 -670.5701 -670.0955 -671.3873 -671.5606
C2H5OH -154.7645 -154.5638 -154.9587 -155.0153
CH2OH -114.8816 -114.7489 -115.0235 -115.0654
C2H4 -78.4159 -78.2952 -78.5307 -78.5647
CH3 -39.7451 -39.6783 -39.8026 -39.8255

D0 (kcal mol−1)d

(OH)3SiOC2H5 →
(OH)3SiOCH2 + CH3

88.4 87.6 84.8 79.3

C2H5OH→
CH2OH + CH3

86.5 85.7 83.2 78.0

E‡
0 (kcal mol−1)e

(OH)3SiOC2H5 →
Si(OH)4 + C2H4

64.1 63.3 58.9 57.6

a Zero point corrections are included throughout. Units are hartree and kcal mol−1

b Gaussian G2 method estimating RCCSD(T)/6-311+G(3df,2p) energies
c MP2, B97-1, and B3LYP computations for the 6-311+G(d,p) basis set
d The zero-point corrected bond dissociation energies at 0 K for the given channels
e The zero-point corrected activation energies at 0 K for the given channels

The C−C bond dissociation energies, D0, of the ethanol reaction were compared with the
high accuracy calculations reported by Sivaramakrishnan et al. [46], who report energies
of 85.1 kcal mol−1 calculated using the QCSID(T)/CBS level of theory and 85.33 kcal
mol−1 using the Active Thermochemical Tables method. In this particular case, the data in
Table 1 shows that the MP2 estimations compare more favourably than the G2 predictions
for the ethanol reaction. However, it was decided to use the G2 results for the rate constant
calculations for both the silica and ethanol systems. This was motivated by the fact that in
general the G2 technique is more accurate than the MP2 computations [8, 47], and there
is no data available to say whether the above observation regarding the MP2 estimations
will generalise to the silica reaction.

3.2 Temperature dependence of R1 and R2 at the high pressure limit

The present theoretical predictions of the high-pressure rate constants k1 and k2 are com-
pared in Figure 3. The computed k2 rate coefficients are additionally compared with the
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Figure 3: The theoretical predictions for the high-pressure association rate constants.
Solid and dashed lines represent our results for the silica (k1) and ethanol (k2)
reactions respectively.

related ab initio TST simulations from Sivaramakrishnan et al. [46].

As shown, the rate constants k1 and k2 estimated in this work are very similar to each
other, with differences of the order 10-30% for the temperature range 800-2000 K. A
reduction from the reaction rate coefficient of reaction R2 to R1 is expected due to the
increased steric bulk of the Si group. However, this steric reduction is ameliorated to
some extent by an increased long-range attraction as illustrated in Figure 2. The net
effect is a modest reduction that may be within the error bars of the VRC-TST method
[25]. Additionally, both association rate coefficients are predicted to have small negative
temperature dependencies. They decrease by ∼ 40% from 800 to 2000 K.

For k2, the predictions of Sivaramakrishnan et al. [46] are 45-70% higher than the current
results over the studied temperature range. These differences arise from the use of a
lower level of theory in this work because of the desire to look at the bigger Si system as
compared to Sivaramakrishnan et al. [46] who only considered the ethanol system. The
level of agreement with Sivaramakrishnan et al. [46] then gives some validation of the
reduction in the level of theory used in this work.

Figure 4 illustrates the computed high-pressure rate constants in the dissociation direction
(k−1 and k−2). In Fig. 4 (a) the data for reaction R1 are compared to our previous Gorin
Model predictions [32] and the experimentally derived rates of Herzler et al. [14]. Fig. 4
(b) depicts the results for reaction R2 contrasted with experimental and modelling studies
from Li et al. [27], Park et al. [33], Marinov [28], Sivaramakrishnan et al. [46], and our
previous Gorin Model predictions [32].

As expected, the Gorin Model calculations provide rates which are much higher (around

11



0.5 0.6 0.7 0.8 0.9 1 1.1
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

(OH)
3
SiOC

2
H

5
   ⇒

(OH)
3
SiOCH

2
 + CH

3

1000/T  [K
−1

]

k
∞ −

1
  
[s

−
1
]

 

 

This work

Gorin Model

Herzler et al.

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

1000/T  [K
−1

]

k
∞ −

2
  
[s

−
1
]

C
2
H

5
OH   ⇒

CH
2
OH + CH

3

 

 

This work
Gorin model
Marinov et al.
Park et al.
Li et al.
Sivaramakrishnan et al., p=100 atm
shock tube exp − Park et al.

(b)

Figure 4: Arrhenius plots of the theoretical predictions for the high-pressure dissociation
rate constants (a) k∞

−1 and (b) k∞
−2 compared with various experimental and

modelling data.

one order of magnitude) than the current results for both R1 and R2. This supports the
suggestion in our previous paper [32] that a more detailed calculation is needed for these
reactions. The superiority of the VRC-TST technique over the Gorin model approach
is evident and lies in the proper treatment of the transitional mode contribution to the
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transition state number of states N‡
EJ. Within the VRC-TST approach the transitional mode

contribution to N‡
EJ is computed through classical phase space integrals, resulting in an

accurate description of the mode-mode couplings and angular momentum conservation.

Further examination of Figure 4 (a) indicates that the rate constant provided by Herzler et
al. [14] is a factor of 5 higher than our predictions. This difference is not surprising given
that Herzler’s rate constant was derived from a fitting of model predictions to experimental
data.

Figure 4 (b) is presented for the assessment of accuracy of the chosen method. It shows
data for the ethanol reaction R2 compared to various modelling and experimental results.
The newly predicted rate constants are about a factor of 1.5-2 higher than the theoretical
results of Park et al. [33] and the modelling values from Li et al. [27]. However, Park
et al. [33] employed a simple Morse function as an interaction potential, whereas Li et al.
[27] derived this rate from the equilibrium constant and an empirical high-pressure rate
coefficient for the reverse reaction taken from Tsang [51]. Thus, the observed discrepan-
cies are not surprising. Overall, a good agreement with the experimental measurements
of Park et al. [33] is observed, where the current computations only slightly overestimate
the experimentally determined rate coefficients. The differences slowly increase with in-
creasing temperature. Unfortunately, the uncertainties of the Park’s measurements are not
provided.

Marinov’s estimates [28] were obtained by combining the Gorin Model with parameter
fitting to match shock-tube experimental data for which the current reaction was found to
be sensitive. Not surprisingly, his results are closer to our prior Gorin Model computations
than to the current VRC-TST predictions.

The results of Sivaramakrishnan et al. [46] were obtained from the experimental mea-
surements of ethanol dissociation in a shock tube combined with ab initio transition state
theory-based master equation simulations. The rate coefficients were computed up to a
pressure of 100 atm, which was then used for the comparison to our high-pressure limit
predictions. Based on the curvature of the line representing the Sivaramakrishnan et al.
[46] data, it can be inferred that their rate coefficients are in the fall-off regime for tem-
peratures above 1100 K. This explains the differences between the results in this paper
and those of Sivaramakrishnan et al. [46] above 1100 K. A meaningful comparison can
still be made for temperatures in the range 800-1100 K. It can then be noticed that the
computations performed in the present work are within a factor of 2 of the Sivaramakr-
ishnan et al. [46] calculations. The observed discrepancies can again be explained by the
differences in the level of theory used in modelling these reactions. In the present work a
level of theory was limited by the bigger Si system. Nevertheless, the results obtained for
ethanol indicate that the resulting accuracy is satisfactory.

3.3 Pressure dependence of k−1

Pressure effects on reaction R1 were explored by solving the master equation. Figure 5
presents the rate constants k−1 (in the dissociation direction) obtained for different pres-
sures and temperatures. The plotted fall-off curves are normalised by the corresponding
high-pressure limit rate constants at a particular temperature.
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Figure 5: Fall off curves for the reaction (OH)3SiOC2H5⇒ (OH)3SiOCH2 + CH3 relative
to its high-pressure limit.

Typically, master equation calculations are tuned to reproduce experimental data. The
parameters that could vary are, for example, the pre-factor in 〈∆Edown〉 equation (if this
model is used) or the height of the dissociation energy barrier, D0, (within the error bars
of the method that was used to obtain it). Unfortunately, no experimental measurements
exist for the investigated reaction. Therefore, it was decided to simply present the results
for a fixed 〈∆E0

down〉 of 400 cm−1 and for the estimated barrier height. We expect that
the uncertainty in each of these parameters may contribute about a factor of two to the
uncertainty in the predicted rate constant.

It can be seen from Fig. 5 that the reaction R1 has a fairly weak dependence on pres-
sure. The rate constant k−1 attains more than 90% of its high-pressure limit value, k∞

−1, at
atmospheric pressure and temperatures up to 1358 K. At temperatures near 1700 K and
atmospheric pressure k−1 is still within 50% of k∞

−1. This behaviour is not surprising, be-
cause as the molecule gets larger the rate of dissociation at a given energy decreases. The
decreased rate of dissociation implies more collisions before dissociation and so a more
thermalized (i.e., closer to the high pressure limit) dissociative distribution. Therefore, a
weaker pressure-dependency is expected for larger intermediates. It should be noted that
the (OH)3SiOC2H5 molecule is the smallest silica species able to undergo a C−C bond
cleavage reaction.

Table 2 shows the temperature and pressure dependent rate constants for reaction R1
in modified Arrhenius form. In order to obtain an accurate fit for k−1 it was decided
to split the temperature range into the two shown regimes. The high-pressure limit rate
coefficients for reactions R2, R3 and the Lennard-Jones parameters used in the master
equation calculations are also reported in Table 2.

14



Table 2: Predicted rate constants at different temperatures, T, and pressures, P, in the
form of the modified Arrhenius equations k = AT n exp(E0/T ) for reaction R1,
R2 and R3. The Lennard-Jones coefficients used in the pressure-dependency
computations are also reported.a

Reaction (OH)3SiOCH2 +CH3
k1−⇀↽−
k−1

(OH)3SiOC2H5

300 - 2000 K

P A n E0

k1 ∞ 2.406×10−10 -0.301 -271.4

300 - 800 K 800 - 2000 K

P A n E0 A n E0

k−1

0.01 3.892×1019 -0.763 45144 1.207×1086 -20.436 62475
0.1 1.066×1019 -0.579 45071 4.360×1070 -15.714 59275
1 9.122×1018 -0.556 45062 2.908×1051 -10.052 54226
10 8.975×1018 -0.554 45061 3.637×1035 -5.420 49675
100 8.961×1018 -0.554 45061 1.192×1027 -2.965 47151
∞ 8.857×1018 -0.552 45060 1.351×1024 -2.114 46263

Reaction CH2OH+CH3
k2−⇀↽−
k−2

C2H5OH

300 - 2000 K

P A n E0

k2 ∞ 1.316×10−10 -0.189 -256.5

k−2 ∞ 3.989×1021 -1.390 44599

Reaction Si(OH)4 +C2H4
k3−⇀↽−
k−3

(OH)3SiOC2H5

500 - 2000 K

P A n E0

k3 ∞ 6.642×10−11 -0.141 -435

k−3 ∞ 2.527×107 1.875 30969

Lennard-Jones Parameters
(OH)3SiOC2H5-Heb ε = 53.22 cm−1 σ = 4.319 Å

a Units are atmospheres, cm3, seconds, kelvins and molecules.
b This work, computed for the MP2/aug-cc-pvdz potential, see text
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4 Conclusions

The kinetics of the C−C bond cleavage in the (OH)3SiOC2H5 molecule have been inves-
tigated by VRC-TST combined with multireference CASPT2(2e,2o)/cc-pVDZ electronic
structure calculations over a wide range of temperatures. The analogous ethanol decom-
position reaction was studied at the same level of theory for comparison and assessment
of accuracy. The results show that the current technique provides rate constant estimates
with much higher accuracy compared to a simple Gorin Model. Additionally, it was
shown that for this level of theory, a strong similarity exists between the high-pressure
limit rate constants for both systems, with differences of only 10-30%.

The pressure dependence of reaction R1 was explored by solving the master equation
while employing the VRC-TST data for the transition state number of states. The pre-
dicted fall-off curves for a wide range of different pressures show that the pressure de-
pendency is rather weak. At atmospheric pressure and combustion relevant temperatures
(1000-1700 K) the computed rate constant is still within 50-100% of its high-pressure
limit. Even weaker dependence is expected for larger silica species such as TEOS. All
computed forward and reverse rate constants for reaction R1 were fitted to modified Ar-
rhenius expressions.
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