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Abstract

This paper presents a global sensitivity analysis of the detailed population bal-
ance model for silicon nanoparticle synthesis of Menz & Kraft (2013, Combustion
& Flame, 160:947–958). The model consists of a gas-phase kinetic model, fully
coupled with a particle population balance. The sensitivity of the model to its seven
adjusted parameters was analysed in this work using a High Dimensional Model
Representation (HDMR). An algorithm is implemented to generate response surface
polynomials with automatically selected order based-on their coefficient of determi-
nation. A response surface is generated for 19 different experimental cases across a
range of process conditions and reactor configurations. This enables the sensitivity
of individual experiments to certain parameters to be assessed. The HDMR reveals
that particle size was most sensitive to the heterogeneous growth process, while the
particle size distribution width is also strongly dependent on the rate of nucleation.
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1 Introduction

Knowledge of the properties of silicon has underpinned the revolution of information
technology. A great deal of study has therefore been undertaken into its synthesis, purifi-
cation and resultant properties. Silicon nanoparticles were first made in the late 1970’s
[28] and since then, have been the subject of considerable work towards improving their
manufacture and identifying potential applications.

Gas-phase, laser and plasma synthesis of particles are the most common methods with
which silicon nanoparticles are manufactured [21]. In general, these processes begin with
silane (SiH4), which may be decomposed by thermal, laser or microwave radiation [4, 14,
29]. The decomposition of silane forms reactive silicon hydrides, which combine with
each other to nucleate into silicon nanoparticles [38].

Various models–from gas-phase kinetic to particle population balances–have been pro-
posed to describe the formation of nanoparticles from silane [24, 30, 38]. In all of these
models, it is common to find model parameters which have uncertain values. Examples
include empirical expressions for sintering [6, 24, 36].

In some cases, it is possible to estimate these values by trial-and-error [15]. However, for
a non-linear model with many unknown parameters, this process becomes difficult. Sys-
tematic parameter estimation can be used to move from by-hand guesswork to computer-
based solutions. For example, a model implemented in Excel R© could use the GOALSEEK
or SOLVER functionality to arrive at better input parameter values.

There are a range of optimisation techniques which can be used to improve model values
[17]. Low-discrepancy sampling can be used to evaluate the model response over a space
of parameter values [3]. Gradient-search methods such as the simultaneous perturbation
stochastic approximation (SPSA) algorithm can locate local and global minima [6, 24].
Response surfaces, or surrogate models, can also be generated from low-discrepancy sam-
pling, yielding a computationally-efficient approximations of the true model [13]. Then,
Markov Chain Monte Carlo (MCMC) sampling and Bayesian analyses are often applied
to assess the credible regions in which the optimal parameter values may lie [13, 27].

Recently, a detailed model for silicon nanoparticle synthesis was presented [22]. The
model incorporates a gas-phase kinetic model, fully-coupled with a particle population
balance. In its original development, systematic parameter estimation was used to op-
timise the model’s seven parameters with respect to experimental data across a range
of different process conditions. However, the relative importance of each parameter in
the objective function was not quantitatively addressed in this work. Nor was the influ-
ence of particular experiments on the objective function. These open questions should
be addressed in order to further assess the physical relevance of the model as well as its
sensitivity to input parameters.

Due to the variety of solution methods for population balance models, there are a range
of different approaches for studying the sensitivity of the model’s parameters. Vikhansky
and Kraft [40, 41] demonstrated use of a gradient search method to assess the sensitivity
of stochastic (Monte Carlo) solution methodologies as applied to population balances
equations. In complex models, a simple scan of the parameter space can also be used
[18, 36]. An excellent review of sensitivity analysis methods is given by Tomlin [39].
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Figure 1: Schematic of the information transfer between the models, the parameter esti-
mation methodology and experimental sources. The quantities highlighted in
red refer to the adjusted parameters.

The purpose of this work is to investigate the estimated parameters in model of Menz
and Kraft [22] for silicon nanoparticle synthesis. A global sensitivity analysis will be
conducted using HDMR response surfaces in order to elucidate the influence of each
parameter in the optimisation. This will illustrate an alternative approach through which
sensitivity analyses can be conducted, not as yet used in this community. Finally, the
sensitivity analysis will also be applied to gain additional physical insight into the model.

The structure of this paper is as follows. A brief description of the model is given in
Section 2, including the gas-phase (Section 2.1) and the population balance (Section 2.2).
The techniques used for parameter estimation and sensitivity analysis are presented in
Section 3. The results from the sensitivity analysis are given and discussed in Section 4.

2 Model

The model for silicon nanoparticle synthesis is composed of a gas-phase kinetic model
and a particle population balance model. A full formulation of the model is given in
[22], however a brief description is given here. In the original development of the model,
parameter estimation was used to optimise gas-phase and particle-phase parameters with
respect to experimental results from the literature. This process is illustrated in Figure 1.
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2.1 Gas-phase model

The bulk decomposition of silane can be described as the bimolecular expression [32]:

SiH4 +M→ SiH2 +H2 +M (1)

where M is a third body. It is well-understood that silane decomposition proceeds through
a series of intermediate gas-phase species, such as silylene (SiH2) and higher silenes/silanes.
For this model, the mechanism of Ho et al. [11] is adopted. The mechanism has eight core
reactions, mostly described by Lindemann falloff expressions. Pre-exponential factors for
five of the reactions were adjusted from their initial values. The equations describing the
rate of change of chemical species due to these reactions are solved using a conventional
ordinary differential equation (ODE) solver.

2.2 Particle population balance model

The binary-tree particle model of Sander et al. [34] is used in this work. Each particle Pq

is represented as:
Pq = Pq

(
p1, . . . , pnq

,C
)

(2)

where particle Pq contains nq primary particles px. C is a lower-diagonal matrix repre-
senting the common surface area between two primary particles. Each primary particle is
described by the number of silicon atoms ηSi and hydrogen atoms ηH:

px = px (ηSi,ηH) (3)

All other properties of the particle are derived from this representation. A full mathemat-
ical formulation of the model is given in [22] and [35]. Particle processes can change
the type-space of a particle in a variety of different ways. The processes included in the
model for silicon nanoparticle synthesis are listed in Table 1 and described below.

Inception
A collision of a silylene (e.g. SiH2) species with another silylene or silene species
will form a particle. The rate of inception dependent on the critical nucleus diam-
eter, a quantity which may be estimated using macroscopic properties of silicon
and the process conditions [22]. When the diameter of the particle to be incepted
is greater than the critical diameter, the rate of inception is calculated using the
transition regime coagulation kernel [25].

Surface reaction
In this context, surface reactions refer to the heterogeneous reaction of silanes
(SiH4, Si2H6, Si3H8) on the particle surface. Silanes must proceed through an en-
ergy barrier in order for the reaction to proceed [12]. Hence, the rate of surface
reaction is represented by a Arrhenius rate constant [11]. It is also proportional to
the particle surface area [22]. In the population balance model, a surface reaction
event also causes rounding of joined primaries. This is represented by the transfor-
mation C→ C′.
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Table 1: Particle processes included in the population balance model.

Process Reaction

Inception SiiH jB+SikHl → P(ηSi = i+ k,ηH = j+ l,C)

Surface reaction
P(. . ., px(ηSi,ηH), . . . ,C)+SiiH2i+2

→ P(. . . , px(ηSi + i,ηH +2), . . . ,C′)+ iH2

Condensation ( j 6= i+2)
P(. . ., px(ηSi,ηH), . . . ,C)+SiiH j

→ P(. . . , px(ηSi + i,ηH + j), . . . ,C′)

Hydrogen release
P(. . ., px(ηSi,ηH), . . . ,C)

→ P(. . . , px(ηSi,ηH−2), . . . ,C)+H2

Coagulation
Pq(p1, . . . , pnq

,Cq)+Pr(p1, . . . , pnr
,Cr)

→ Ps(p1, . . . , pnq
, pnq+1, . . . , pnq+ns

,Cs)

Sintering (n′ ≤ n) P(p1, . . . , pn,C)→ P(p1, . . . , pn′,C′)

Condensation
Silenes (e.g. H2SiSiH2) and silylenes (e.g. SiH2) react with particle surfaces through
a condensation process. That is, their rate of reaction is given by a collision kernel,
here the free-molecular kernel. It is assumed that they stick with probability 1.0 and
that there is no energy barrier to reaction.

Hydrogen release
Particles must release hydrogen in order to maintain a stable crystal structure when
growing. The rate of hydrogen desorption is proportional to the coverage of hydro-
gen on the particle surface as well as an Arrhenius rate constant [37]. In this model,
the coverage is approximated by the ratio of number of hydrogen atoms to number
of silicon atoms in each particle.

Coagulation
The rate of coagulation is dependent on the Knudsen number, and is given by the
transition kernel. In a coagulation event, the particle trees are added to each other,
preserving the particle size and connectivity information held in the state-space.

Sintering
Adjacent primary particles may sinter through a grain-boundary diffusion process.
The common surface element of connected primaries px and py, Cxy, will decrease
until it is sufficiently close to the equivalent spherical area of the two primaries.
Then, the primaries are merged into a single primary particle. This occurs as a
continuous process throughout the tree of primaries in the computational particle.

A stochastic numerical method is employed to solve the population balance model. This
method has been well-documented [1, 26, 35] and takes advantage of various features
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Table 2: Overview of adjusted parameters.

j Symbol Phase Description
1 A1,LP Gas Low-pressure pre-exponential factor for Reaction 1
2 A2,LP Gas Low-pressure pre-exponential factor for Reaction 2
3 A3,LP Gas Low-pressure pre-exponential factor for Reaction 3
4 A5,LP Gas Low-pressure pre-exponential factor for Reaction 5
5 A8,rev Gas Reverse pre-exponential factor for Reaction 8
6 ASR,SiH4

Particle Pre-exponential factor for SiH4surface reactions
7 AH2 Particle Pre-exponential factor for H2 release

such as linear process deferment [31], a binary tree cache [10] and the concept of majorant
rates with fictitious jumps [7] to accelerate the solution of the population balance model.
Coupling with the gas-phase is accomplished using the technique of operator splitting
[5, 35].

3 Parameter estimation

In the original development of the model, parameter estimation was used to obtain suitable
fit of the model response to experimental results. Seven parameters were identified for
estimation. The physical and numerical meaning of these parameters are given in Figure
1 and Table 2 respectively. This results in a parameter vector given by:

θ = (A1,LP, A2,LP, A3,LP, A5,LP, A8,rev, ASR,SiH4
, AH2) (4)

The optimal set of parameters (θ ∗) is reliant on measuring the distance of the model
response from the experimental results. To do this, a least-squares objective function,
Φ(θ), was formulated:

Φ(θ) =
Nexp

∑
i=1

(
η

exp
i −η

sim
i (θ)

)2
(5)

where η
exp
i is an experimental response, and η sim

i is obtained from the model for the
corresponding experiment. The number of experiments used in the optimisation is given
by Nexp. A staged optimisation procedure was used to find the optimal set of parameters
θ̂ , with numerical results given in [22].

3.1 High Dimensional Model Representation

In this work, we are interested in the sensitivity of the model and its parameters near
the optimal found in previous work. The global sensitivities can be calculated from a
High Dimensional Model Representation (HDMR) [33]. A HDMR is a form of response
surface, or surrogate model. Its main feature is the decomposition of the full function for
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a response η sim into a sum of functions that only depend on the input variables such that:

η
sim(θ) = f (θ) =

f0 +
Nparam

∑
i=1

fi(θi)+
Nparam

∑
i=1

Nparam

∑
j=i+1

fi j(θi,θ j)+ . . .+ f12..Nparam(θ1,θ2, . . . ,θNparam)
(6)

where Nparam is the number of parameters, i and j index the input parameters and f0 is
the mean value of f (θ). In practical applications, it is possible to truncate the above
expression to second-order terms [33]. The order of a group of terms is given the symbol
d, with the maximum order considered dmax. Thus, a response is approximated by:

η
sim(θ)≈ f (θ) = f0 +

Nparam

∑
i=1

fi(θi)︸ ︷︷ ︸
first-order terms

+
Nparam

∑
i=1

Nparam

∑
j=i+1

fi j(θi,θ j)︸ ︷︷ ︸
second-order terms

(7)

3.1.1 Calculation of sensitivities

The global sensitivities can be determined by considering the variance of the model re-
sponse. The first-order variance, σ 2

η sim,i, and second-order variance, σ 2
η sim,i j, both contribute

to this quantity, given by:

σ
2
η sim,i =

∫ 1

−1
fi(θi)

2dθi (8)

σ
2
η sim,i j =

∫ 1

−1

∫ 1

−1
fi j(θi,θ j)

2dθidθ j (9)

where the integrals are taken over the upper- and lower-bounds chosen for the parameters,
here assumed to be normalised to be [−1,1]. This is consistent with other experimental
design literature [2, 20]. The total variance is then given by:

σ
2
η sim =

Nparam

∑
i=1

σ
2
η sim,i +

Nparam

∑
i=1

Nparam

∑
j=i+1

σ
2
η sim,i j (10)

Then, the first- and second-order normalised sensitivities are given by:

Sη sim(θi) =
σ 2

η sim,i

σ 2
η sim

and Sη sim(θi,θ j) =
σ 2

η sim,i j

σ 2
η sim

(11)

That is, Sη sim(θi) represents the first-order sensitivity of model response η sim to parameter
θi, and so on. These quantities can be used to compare the influence of parameters within
a particular model response. To compare across model responses, the sensitivity should
be converted to an absolute sensitivity. Here, the absolute sensitivity is measured by the
standard deviation of the first-order model response:

S∗η sim(θi) = ση sim,i (12)

where S∗
η sim(θi) has dimensions

[
η sim

]
. Physically, this quantity represents the standard

deviation in output response η sim achievable from varying parameter θi within its specified
bounds.
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Figure 2: Algorithm for recursive fitting of the polynomials and selection of R̄2.

3.1.2 Automatic order selection

The functions f (θ) must be determined in order to evaluate the sensitivities. These func-
tions are decomposed into orthogonal basis functions [19], which are taken as Legendre
polynomials. The coefficients of these polynomials are determined through a recursive
fitting procedure. This has the advantage of being able to tailor the polynomial order to
each of the interaction order functions. Similar approaches have been adopted in the work
of Ziehn and Tomlin [43].

The algorithm to conduct this whole fitting process is given in Figure 2. The user specifies
a maximum interaction order (dmax) and maximum polynomial order for each interaction
order (Mmax,d) and the algorithm yields the first polynomial with R2 above a tolerance R2∗.
A tolerance on the minimum improvement in R2, R2

min is applied to increase the efficiency
of the process. If a new iteration is found to be worse than the previous one, the new
iteration is discarded and the algorithm moves onto the next interaction order.
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Table 3: Experimental datasets used in the present work. dtype refers to the physical quan-
tity being measured from the system: either primary (dpri) or mobility (dmob) di-
ameter. The statistical quantity measured for the particle size is given in the
column µtype. An asterisk (∗) denotes an estimated quantity.

i T ySiH4 P τ dtype µtype η
exp,µ
i η

exp,σ
i Ref.

- ◦C % kPa ms - -
1 1100 0.04 2.5 80 dpri mode 26.7 1.07 [15]
2 1100 0.04 2.5 192 dpri mean 26.0 1.11 [15]
3 1100 0.125 2.5 192 dpri mean 38.0 1.28 [15]
4 1100 0.128 2.5 80 dpri mode 31.0 1.3 [15]
5 1100 0.02 2.5 80 dpri mode 41.0 1.06 [15]
6 1100 0.08 2.5 80 dpri mode 24.0 1.25 [15]
7 1100 0.04 2.5 420 dpri mode 32.5 1.10 [15]
8 900 0.04 2.5 420 dpri mode 21.2 1.11 [15]
9 1000 0.04 2.5 420 dpri mode 28.5 1.11 [15]

10 816 0.033 51 2600 dpri mode 11.0 1.50∗ [9]
11 1047 0.033 51 2100 dpri mode 11.0 1.55∗ [9]
12 1307 0.033 51 1800 dpri mode 15.0 1.54∗ [9]
13 1200 0.01 101 1000 dmob mode 127 1.38∗ [42]
14 1050 0.214 20 6 dpri mean 43.4 - [8] ‘630S’
15 1150 0.09 20 15 dpri mean 55.4 - [8] ‘631S’
16 1000 0.06 20 53 dpri mean 23.0 - [8] ‘654S’
17 800 0.001 101 900 dmob mode 89.0 1.61∗ [29]
18 800 0.0004 101 900 dmob mode 51.0 1.55∗ [29]
19 600 0.05 39 870 dpri mean 52.0 - [30]

3.2 Analysis procedure

There is a wealth of experimental conditions at which the silicon nanoparticle synthesis
model can be evaluated [8, 9, 15, 29, 42]. These are given in Table 3. There, experiments
are described by their process conditions: representative temperature (T ), initial mole
fraction of silane (ySiH4), total pressure (P) and residence time (τ). The resultant PSDs
from such experiments, where available, are described by a modal or average particle size
(ηexp,µ

i ), and a geometric standard deviation (ηexp,σ
i ).

A low-discrepancy (Sobol) sequence was used to evaluate the model at points within the
bounds defined for the parameters. This sequence was constructed around the parame-
ter optimals identified in previous work [22]. The modal or mean particle size (η sim,µ

i )
and the geometric standard deviation (η sim,σ

i ) of the ensemble were calculated at each of
these points. HDMR response surfaces were determined from this data for the two PSD
descriptors.
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4 Results and discussion

The HDMR approach to parameter analysis yields the sensitivity of each experimental
case to each parameter (first-order) or parameter pair combination (second-order). Only
the first-order sensitivities will be discussed here, as it was observed that the only sig-
nificant second-order interactions were composed of those which were significant in the
first-order.

4.1 Breakdown of sensitivities

In Figure 3, the sensitivity of the mode or mean of a PSD is displayed. As there were
19 experimental cases, each with 7 first-order sensitivities, a representative experiment
was chosen from each experiment group to simplify visualisation of data. The absolute
sensitivities of the PSD mode or mean are first compared across the parameters for each
of the 6 groups in Figure 3(a).

It is clearly evident that the particle size is most sensitive to ASR,SiH4
, that is, the surface

reaction process. It has the largest absolute sensitivity for each of the representative ex-
perimental cases. This confirms the importance of accurately describing surface reaction
process in models for silicon nanoparticle formation. The second most sensitive param-
eter is A1,LP, the silane decomposition pre-exponential. This is not surprising, as it has
often been targeted for optimisation in previous studies [16, 24].

In Figure 3(b), the first-order sensitivities are compared within experiments. Again, it is
evident that the surface reaction pre-exponential is the dominant parameter for all cases.
However, the relative importance A1,LP and to a lesser extent, A3,LP and AH2 are seen here.
It is interesting to observe that AH2 accounts for approximately 5% of the sensitivity for the
cases of Frenklach et al. [9] and Onischuk et al. [30], as both cases were experimentally
reported to yield particles with high concentrations of hydrogen.

The sensitivities are broken-down differently when considering sensitivity of the PSD’s
geometric standard deviation, shown in Figure 4. Again, the model is most sensitive
to ASR,SiH4

, A1,LP and less so A3,LP, AH2 , depicted in Figure 4(a). However, the internal
breakdown of sensitivities is quite different. It is illustrated in Figure 3(b) that A1,LP

plays an important role for all experimental cases. Since A1,LP has a large impact on
the inception process of particles, this observation reinforces the conclusions of Nguyen
and Flagan [29] and Körmer et al. [16] that controlling the nucleation rate is critical in
controlling the dispersion of particles.

Further, the absolute sensitivities with respect to geometric standard deviation are gener-
ally greatest for the cases of Flint et al. [8], Nguyen and Flagan [29] and Onischuk et al.
[30] (Figure 4(a)). These three cases correspond to those where aggregate particles are
formed, where the coagulation rate is likely to be high. In such systems, it is common to
see a spike in geometric standard deviation prior to it reaching its final value - either con-
trolled by a finite sintering rate or primary coalescence [23]. It is therefore suggested that
by varying the parameters describing inception, the PSD’s geometric standard deviation
has been observed at different points along this process, leading to an increased sensitivity
of the distribution width for aggregate-forming cases.
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Finally, the case with the least sensitive geometric standard deviation is that of Wu et al.
[42]. In this case, spherical particles are produced in a very hot reactor. It is likely that
due to fast sintering [23] and strong particle nucleation [22], the system reaches the self-
preserving PSD for the majority of parameter combinations. Thus, while the modal point
of the PSD is very sensitive to surface growth (Figure 3(a)), the comparative width of the
distribution is relatively static (Figure 3(a)).

4.2 Sensitivities as a function of process conditions

In the previous section, the sensitivity the model at specific experimental conditions was
addressed. The HDMR results can also be used to investigate how sensitivity varies with
the process conditions across all experiments. In order to do this, the absolute sensitivities
were plotted on a bubble plot in Figure 5, where the size of the circle is proportional to
the sensitivity.

The left column of Figure 5 shows the sensitivity of the particle size descriptor, while
the sensitivity of the geometric standard deviation is given in the right column. The
choice of temperature and initial silane pressure (PySiH4) was made to clearly separate
the experimental cases, although in practice the experiments are actually functions of
more variables–such as residence time and reactor configuration–than these two. In any
case, the clear importance of the surface reaction process at all process conditions is again
demonstrated here.

It appears that A3,LP is generally more important at lower pressures. This could indicate
the the reaction pathway for forming Si2H6 becomes more important as silane pressure
decreases. This observation would be consistent with homogeneous nucleation theory,
as the critical cluster size increases as the partial pressure of silicon decreases. That is,
larger gas-phase clusters (e.g. Si2H6+) must be formed before particles are stable enough
to grow. Hence, the parameter describing one of the major pathways for this process has
a stronger effect on PSD characteristic at lower silane pressure.

There are also some trends within experimental cases. For example, it is evident in the
cases of Körmer et al. [16] that the sensitivity with respect to geometric standard devi-
ation is roughly inversely proportional to silane pressure, while direct proportionality is
observed for PSD mode sensitivity. This phenomenon is consistent with the experiments
of Körmer et al. [15], where increasing the pressure of silane would cause runaway nucle-
ation, yielding broader PSDs and larger particles. Thus, as the pressure increases and the
PSD broadens, the system nears the self-preserving distribution and the PSD’s geometric
standard deviation becomes insensitive to input parameters.

5 Conclusions

This paper has presented an adaptation of a High Dimensional Model Representation
(HDMR) to a detailed model for silicon nanoparticle synthesis. The HDMR yielded in-
formation about the sensitivity of the model outputs to various input parameters across
a range of experiments conditions and configurations. The output responses investigated
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, AH2 shown as a function of

process conditions. Each circle represents an experimental case (Table 3) and
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were the particle size and distribution width, the latter represented as geometric standard
deviation.

It was found that the particle size was most sensitive to the parameter controlling the sur-
face reaction rate. The same was observed for the geometric standard deviation, however
it was also sensitive to the initial decay rate of silane. The sensitivity analysis data could
also be linked to phenomena reported experimentally. For example, the model was shown
to be sensitive to the hydrogen release rate in cases where high concentrations of hydrogen
were experimentally reported.

The knowledge of the model’s sensitivity can now be applied to embark on an exper-
imental discrimination pathway. This can potentially indicate which experiments pull
parameter optimals in which directions. Alternatively, it can show which experiments–or
the model’s representation of them–are incorrect. Although these aspects remain to be
completed, it has been demonstrated that use of a HDMR as part of parameter estimation
procedure can reveal new layers of insight from a complex model.
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