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Abstract

A Monte-Carlo stochastic simulation algorithm based on a single-particle

method is suggested to describe steady state particle coagulation processes.

The method does not require any information on the nearby particles, instead

a fictitious coalescence partner with a given size is generated. The main

drawback that limited applicability of this method in the past is that for

each control volume the particle size distribution function has to be sampled

and stored. In the present study we applied a discrete representation of the

distribution function that requires only small memory resources and allows

fast updating.
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A Single Particle Method

Coagulation and breakage of particles, droplets and bubbles that are suspended
in complex recirculating flows are typical processes in numerous industrial and en-
vironmental systems. Due to the complexity and multidimensional nature of the
processes involved, Monte Carlo statistical simulations become one of the most ef-
ficient and maybe the only accessible numerical technique. The analogy between
particle collision in suspensions and molecular collisions enables the application of
methods previously developed for rarefied gas dynamics [7, 2, 6].

The direct simulation Monte Carlo (DSMC) method can be formulated as follows.
The flow volume is divided into cells. The particle ensemble is represented by com-
putational particles such that a group of identical particles in the physical system
is substituted by one computational particle. Provided that the particle sizes, posi-
tions and other necessary parameters are known at time t, the particle distribution
at time t + ∆t is calculated by an operator-splitting technique which comprises free
flow and a collision step.

In the free flow phase the particles move, without any collisions occurring, dur-
ing the time interval ∆t. Their positions, velocities, sizes, temperatures, etc., are
determined from the equations of motion, heat and mass transfer. In the second
splitting step a new particle ensemble is calculated by simulating spatially homoge-
neous coagulation in each cell, when binary collisions between particles are sampled
randomly. At this step, a particle can collide only with those particles that are in
the same cell irrespective of the relative positions of the particles within the cell.
The overall solution is thus accurate to first order in ∆t. This can be improved by
higher order splitting schemes, such as the Strang splitting scheme [13].

An accurate spatial discretisation ranges from 103 − 104 cells in the computational
domain in the two-dimensional case, while a typical three dimensional flow is usu-
ally resolved with 105−106 cells. For a reasonable representation of a polydispersed
particle ensemble one needs 10 − 100 computational particles in each spatial cell.
Thus modelling a spatially inhomogeneous polydispersed system requires simulta-
neous tracking of 104 − 108 particles. Given that the particle number density is
nonuniform over the flow region, it is either necessary to increase the total number
of computational particles, or use a weighted particle method with splitting and ter-
mination of particle trajectories [10] to resolve low-density regions. Both approaches
are time-consuming.

However, a significant simplification can be achieved for steady flows. A single par-
ticle (or alternatively, test particle) method (SPM) can be applied. The spatially
homogeneous coagulation step does not require any information about neighbouring
particles, instead a particle (which is referred to as test particle) coagulates with
a fictitious collision partner that is generated according to the local particle distri-
bution [12], thus, the particle always has a collision partner even in a low-density
region. As soon as the particle leaves the system, the new particle distribution
function is recalculated. Since a particle visits many cells (especially if the flow
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has recirculation zones) as it cross the flow region, a relatively small number of the
particles is sufficient in order to update the new distribution function. In our work
[14] the SPM has been used to calculate droplets coagulation and fragmentation in
an axisymmetric rotating disc contactor. Less then 5000 particles were sufficient to
reach a steady state solution.

This procedure is iterative until convergence is achieved. Note, that if the coagu-
lation submodel is integrated in a computational fluid dynamics (CFD) code, the
iterative nature of the above described method should not be considered as a draw-
back. Most CFD methods use iterations to calculate a steady solution, i.e., an
intermediate velocity field is used to calculate an approximated temperature dis-
tribution, etc. Thus the coagulation SPM step naturally fits the general iterative
strategy.
Note that SPM for the Boltzmann equation has a history longer than the DSMC
method [5]. Recently this method has been applied for spatially homogeneous
coagulation-fragmentation problem [9, 8]. The main obstacle that limited wide
application of SPM in the past was the necessity to store and update the particle
distribution function in each cell of the computation domain. This difficulty has
been resolved by Vlasov [15]. According to this approach only the number density
and parameters of few (maybe even one) particles are stored in each cell. These
particles are referred to as field (or target) particles. When a test particle crosses a
cell, one of the field particles is replaced by the test particle with a probability p that
is proportional to the residence time tres of the test particle in the cell. The number
density of the target particles is also updated according to tres. In the present study
we investigate the applicability of the SPM to coagulation processes and discuss
associated numerical issues.

To proceed further consider a control volume V . The number of particles with size
x that enter V is nin(x), and the size-dependent residence time of a particle is θ(x).
The Smoluchowski coagulation equation reads:

∂n(t, x)

∂t
=

1

2

∫ x

0

K(x− x′, x′)n(t, x′)n(t, x− x′)dx′ +
nin(x)

V
−

∫ ∞

0

K(x, x′)n(t, x′)n(t, x)dx′ − n(t, x)

θ(x)
, (1)

where n(t, x) is the number density of the particles that have mass x at time t. The
probability that two particles with masses x and x′, respectively, coalesce during a
small time interval dt is K(x, x′)dt.

Let us reformulate Eq. (1) in terms of mass density. Advantages of this for-
mulation are discussed in [9, 1, 3, 4], note also, that the description of particle
distributions according to their mass is encountered in technological applications
more frequently than number distributions. The mass density of the particles that
have mass x at a time t is m(t, x) = xn(t, x), the total mass density that V con-
tains is M =

∫
m(t, x)dx, and the mass of particles with size x that enter V is

min(x) = xnin(x). The total flow rate of particles through V is Qin =
∫

min(x)dx.
In order to reformulate the collision equation (1) in terms of mass density, we express
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n(t, x) as m(t, x)/x, substitute it into (1) and multiply the equation by x. Note,
that if K(x, x′) = 0 for x 6 0 or x′ 6 0, and so the limits of integration in (1) can
be extended from −∞ to ∞. After some algebra we obtain [8, 3]:

∂m(t, x)

∂t
=

∫
K(x− x′, x′)

x′
m(t, x′)m(t, x− x′)dx′ +

min(x)

V
−

∫
K(x, x′)

x′
m(t, x′)m(t, x)dx′ − m(t, x)

θ(x)
. (2)

The factor 1/2 before the first integral in Eq. (2) disappears because coagulation
reduces the number of particles but does not affect their mass. Eq. (2) can be solved
by the mass flow algorithm (MFA) [1, 3] which simulates evolution of N -particles
until convergence to a steady state. Below we will use the MFA to validate the
results obtained by SPM.

In order to formulate the single particle process, let us rewrite Eq. (2) as

∂m(t, x)

∂t
=

∫
K(x− x′, x′)φ(t, x′)

x′
m(t, x− x′)dx′ +

min(x)

V
−

∫
K(x, x′)φ(t, x′)

x′
m(t, x)dx′ − m(t, x)

θ(x)
, (3)

where φ(t, x) is the mass density of field particles which converges to the mass
density of test particles m(t, x) as t → ∞. Thus, formally, Eq. (3) is a linear
transport equation with respect to m(t, x) with transition probability depending on
φ(t, x). The Monte Carlo algorithm for single particle process is as follows. The test
particle enters the control volume and initially has size x that is generated according
to the distribution min(x). We denote the mass density of field particles at the nth

iteration as Φn =
∫

φndx, and represent the field particles ensemble by N particle
groups with sizes yn = (yn

1 , ..., yn
i , ..., yn

N). The total mass of the ith group is Φn/N
and number of particles in the group is Φn/(Nyn

i ). Since the probability that during
a small time interval dt the test particle coagulates with a field particle from the ith

group is K(x, yn
i )dt, the probability that the test particle coagulate with any of the

ith field particle is K(x, yn
i )(Φn/yn

i )dt. Thus, the coagulation rate ρ(x) of the test
particle is given by summation of the above formula over i:

ρ(x) =
Φn

N

N∑
i=1

K(x, yn
i )

yn
i

. (4)

The test particle leaves V with probability dt/θ(x). Then the simulation algorithm
reads:

1. Set Φn+1 = 0, yn+1 = yn.

2. Generate a test particle according to the distribution min(x).

3. Generate an exponentially distributed time increment τ with parameter ρ(x)+
1/θ(x).
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4. Recalculate the future field particles mass as Φn+1 := Φn+1 + τQin/V .

5. With probability

α1
τQin

ΦnV
(5)

replace an uniformly chosen yn+1
i by x, where α1 is a constant.

6. With probability ρ(x)/(ρ(x) + 1/θ(x)) choose a coagulation step, overwise go
to step 8.

7. Choose a collision partner according to the distribution

K(x, yn
i )Φn

Nρ(x)yn
i

, (6)

and replace x by x + yn
i . Go to step 3.

8. The test particle leaves the system. Underrelax the field particles mass density
as

Φn+1 := α2Φ
n+1 + (1− α2)Φ

n, (7)

where α2 is a constant, n := n + 1. Go to step 1.

In order to underline the connection between the above described algorithm and
coagulation equation (2) note that steps 4, 5, and 8 are equivalent to the following
equations with respect to Φ and φ:

∂Φ

∂t
=

1

τ1

(M − Φ),
∂

∂t

φ

Φ
=

1

τ2

(
m

M
− φ

Φ
), (8)

where τ1,2 are relaxation times. Eqs. (8) together with Eq. (3) provides solution of
(2) in a steady state limit.
In order to complete the description of the algorithm one needs to specify the ap-
propriate values of the constants, namely, N and α1,2. The probability that a test
particle will leave the control volume without being registered in the field particles
array is given by the product of Eq. (5) over all time steps:

∏
j

(1− α1
τjQin

ΦnV
) ≈ 1− α1

Qin

ΦnV

∑
j

τj = 1− α1
Qin

ΦnV
tres. (9)

In the above formula we used the assumption that τ ¿ tres. Since Φ ∼ tresQin/V ,
in order to keep Eq. (9) positive one needs α1 < 1. In our calculations we used
α1 = 0.1− 0.5. The specification of the other parameters is as follows. Our numeri-
cal experiments reveal that in order to represent φ adequately and avoid correlation
between consecutive collisions one needs the number N of field particles to be ap-
proximately equal to the number of collisions that a test particle undergoes before it
leaves the control volume. Thus, for CFD applications where the size of the control
volumes is chosen in such a way that the probability of more than one collision in a
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Figure 1: Comparison of SPM (symbols) and MFA (lines).

cell is small, even one field particle per cell is sufficient. The parameter α2 gives the
interval which is used to calculate Φ. According to Eq. (7), the mass density at the
nth step of the algorithm is averaged over approximately 1/α2 previous iterations.
Usually, a choice of α2 = 0.01− 0.1 prevents large oscillations of the particles mass
density in the control volume.

In order to check the performance of the proposed method, we compared the results
obtained by SPM with the results by constant particle number version of MFA [11],
[3]. The version of MFA used in the present investigation is as follows. The particle
ensemble is represented by N groups with sizes x = (x1, ..., xi, ..., xN). The total
mass of the ith group is M/N and number of particles in the group is M/(Nxi).
A particle leaves V with probability dt/θ(x). A new particle enters V with proba-
bility dt(QinN)/M , the size of this particle is distributed according to min(x) and
this particle represents a group of identical particles with total mass M/N . The
coagulation rate ρ, exit rate ϑ and influx rate µ are given by the formula:

ρ =
M

N

N∑
i,j=1

K(xi, xj)

xj

, ϑ =
N∑

i=1

1

θ(xi)
, µ =

NQin

M
.

Then the simulation algorithm reads:

1. Generate an exponentially distributed time increment τ with parameter ρ +
ϑ + µ.

2. With probability ρ/(ρ + ϑ + µ) choose coagulation step, overwise go to step 4.
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3. Choose collision pair according to the distribution

M

N

K(xi, xj)

ρ(x)xj

,

and replace xi by xi + xj. Go to step 1.

4. With probability µ/(ϑ+µ) a new particle enters the system. Increase the total
mass density of the system M by the factor (N + 1)/N . Uniformly choose an
ith particle. Generate a new particle according to distribution min and replace
the ith particle by this newly generated particle. Go to step 1.

5. A particle leaves the system. Decrease the total mass density of the system
M by the factor (N − 1)/N . Choose the particle according to the distribution
θ(xi)/ϑ. Uniformly choose an jth particle (i 6= j), and replace the ith particle
by the duplicate of the jth particle. Go to step 1.

We simulated coagulation of particles in a stirred reactor. The particles that enter
the reactor are uniformly distributed on [0, 1]. The collision kernel is K(x, y) =
(xy)1/3, and the probability that a particle with mass x leaves the reactor during
small time interval dt is 0.1 × dt. The calculations have been performed with 100
field particles for SPM and MFA. Other constants are α1 = 0.5 and α2 = 0.01. The
results of the calculations for different mass flowrates Qin are presented on Fig. (1).
The initial conditions are Φ1 = 1, y1

i = 1. After a short transient period of n = 1/α2

iterations, the mass density of the particles reaches a steady state limit. Then,
every time when a particle leaves the system we register its size and mass density
of the particles in the reactor. The numerical experiments show a good agreement
between the two methods. The computational times for both methods are the same,
provided the same number of particles is used in the simulations.

In conclusion, we have introduced a single particle method for a steady state coagu-
lation process. Due to the discrete representation of the distribution function of the
particles, the method is computationally and algorithmically simple and gives the
same results as direct simulation. Generalization of this method for multidimen-
sional population balance and spatially inhomogeneous problems is straightforward.
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