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Abstract

We calculate the derivatives of best estimates of kinetic parameters of an n-propyl-
benzene shock tube oxidation model, as determined by a weighted least-squares opti-
misation, with respect to experimental observations and compare these derivatives to
some influence diagnostics based on omission of data points which are widely used in
linear regression analysis. The considered data set comprises of 2378 measured con-
centrations of 37 stable species at various temperatures, pressures, and equivalence
ratios. The methods studied are computationally affordable, as they require only a
single optimisation and do not require the use of surrogates. We find that the di-
agnostics offer many insights into how individual observations influence parameter
estimates, such as which observations determine which parameters to what extent.
Additionally, the significance of non-linearities is investigated. While we observe
that they can be of substantial importance to the derivatives, and improve the nu-
merical conditioning of the involved matrix inversion, we find that results obtained
from the linear omission-based diagnostics frequently agree, at least qualitatively,
with those obtained from the derivatives.
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1 Introduction

The goal of all experimentation is to gain knowledge about a physical system. Mod-
els can be regarded as a formalisation of such knowledge [20]. Assuming the form of
a model, or several models, is fixed, the knowledge is then condensed in the parame-
ters of the model(s). The following questions then arise naturally: Which parameters are
determined by existing observations, and by which ones to what extent? And closely re-
lated to that, under which conditions should the next experiment be carried out in order
to increase our knowledge most? The latter question is traditionally the subject of experi-
mental design [15]. It is the former question we are concerned with in this paper, applied
in particular to gas-phase combustion kinetic modelling.

One approach is uncertainty propagation [28, 32], which studies how errors in exper-
imental measurements propagate through to model parameters (and responses). Those
parameters with larger resulting errors are deemed less well determined by the data, and
some methods allow inspection of the relative contribution of each data point, and its un-
certainty, to the error in particular parameters. For example, in the Data Collaboration
framework, a rigorous measure for data set consistency [16] has been developed. It has
been used to analyse pairwise consistency of data set units, and for outlier identification.

There exists extensive literature on linear regression diagnostics. Several quantitative
measures of the influence of observations on parameter estimates in linear regression, in
order to detect influential data points, high-leverage points, and statistical outliers, have
been proposed [12, 29]. An overview and comparison can be found in [3, 4]. One of
the most popular ones is Cook’s distance [6, 7, 9]. The basic idea underlying many of
these measures is to carry out a regression using the full data set, and then repeating the
regression with individual observations removed, for each of the observations. It is clear
that this procedure becomes computationally prohibitive for large numbers of data points.
For higher order exclusions, i.e. deletion of two or more observations, in order to study
compensation effects for instance, the problem is aggravated by combinatorial explosion.
In order to alleviate this, grouping of data points into sets is possible, but ultimately ar-
bitrary and the selection of groupings may not be obvious. For linear models, however,
it is possible to derive simplified expressions which require only a single regression to
calculate the influence of removing each of the observations. The success and popularity
of these diagnostics is largely due to this highly desirable property.

Another approach originates from sensitivity analysis in non-linear programming. Re-
sults on the so-called perturbation of the optimum for the more general situation of con-
strained optimisation can be traced back to at least 1968 [18, p. 34]. This approach,
based on the implicit function theorem, is discussed extensively in [17]. The main re-
sults are expressions for the sensitivities of parameter estimates with respect to any other
quantity in the objective function (or in constraints), which includes in particular exper-
imental data. Essentially a special case of these methods was developed independently
for unconstrained least-squares optimisation [14, 22], which was also applied in chemical
kinetics [27, 34, 35]. Fiacco’s work [18] appears to have gone unnoticed in the linear
regression influence diagnostics community, even though methods based on sensitivities
or derivatives are considered [4]. Neither the regression influence literature nor Fiacco’s
perturbation of the optimum appears to have been noticed in the area of combustion. Nat-
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urally, very similar ideas have also found application in optimal experimental design [11].

The purpose of this paper is to apply and compare a number of diagnostic techniques for
the influence of experimental observations on parameter estimates to an extensive set of
n-propylbenzene shock tube data. In particular, we give a theoretical exposition that is
both accessible and shows the relationship between the methods. We test the methods
by determining the influence of the observations on estimates of some Arrhenius pre-
exponential factors in the kinetic mechanism used to model the data.

2 Theoretical background

We begin by presenting sensitivity analysis with respect to experiments [14, 27] in a way
which illustrates the connection to the perturbation of the optimum [18], and to some
linear regression diagnostics.

2.1 Problem formulation

Consider a vector ϑ of P model parameters whose ‘best’ values are estimated through
minimisation of some objective function Φ(τ, ϑ), where τ ∈ RN denotes the vector of
experimental observations:

ϑ̂ = argmin
ϑ

Φ(τ, ϑ) ∈ RP (1)

At a (local) minimum, we necessarily have

∂Φ

∂ϑj
= 0. (2)

The question is then how the optimum, i.e. the best estimate of the parameters, depends
on the observations τ .

2.2 The Implicit Function Theorem

The Implicit Function Theorem states that, given a function

F : RN × RP → RP ; (τ, ϑ) 7→ F (τ, ϑ)

and a point (τ0, ϑ0) ∈ RN × RP with F (τ0, ϑ0) = 0 and

det

(
∂F

∂ϑ
(τ0, ϑ0)

)
6= 0, (3)

then ϑ can be expressed locally as a function of τ . In (3), ∂F
∂ϑ
∈ RP×P denotes the ma-

trix of partial derivatives of F , with components
(
∂F
∂ϑ

)
jk

=
∂Fj

∂ϑk
. The derivatives of ϑ
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with respect to τ can then be obtained by differentiating F (τ, ϑ) = 0 with respect to τ
whilst considering ϑ as a function of τ and applying the chain rule. The resulting expres-
sion can be solved for the sought-after derivatives of the parameters with respect to the
observations:

∂ϑj
∂τi

= −
P∑
k=1

(∂F
∂ϑ

−1)
jk

∂Fk
∂τi

(4)

2.3 Application

Now, choosing

Fj(τ, ϑ) =
∂Φ

∂ϑj
(τ, ϑ) (5)

allows calculating the derivatives of the model parameters ϑ with respect to experimental
observations τ via (4).

We note that any constant added to F does not affect the derivatives (4), implying that any
non-extremal point on the objective function surface can be used as well. It is conceivable,
though, that a non-extremal point has a different dependence on (and hence different
derivatives) the experimental observations than the (nearest) minimum. We furthermore
note that for the choice (5) condition (3) becomes detH 6= 0 with Hjk = ∂2Φ

∂ϑj∂ϑk
, i.e.

the determinant of the Hessian must not vanish. If the considered point is at the bottom
or on the slope of a valley [19] one might expect the Hessian to be (at least close to)
degenerate, so the procedure outlined may be numerically ill-conditioned, but this turns
out to be unproblematic.

Consider now the objective function

Φ(τ, ϑ) =
(
τ − η(ϑ)

)>
Σ−1

(
τ − η(ϑ)

)
, (6)

with Σ ∈ RN×N denoting the (symmetric and positive definite) covariance matrix of the
responses η ∈ RN . We note that, for an objective function, it does not matter whether a
model is single or multi-response – the difference is merely notational. Then, (5) implies

Fj(τ, ϑ) = −2
∑
li

∂ηl
∂ϑj

(Σ−1)li
(
τi − ηi(ϑ)

)
(7)

and
∂Fj
∂τi

= −2
∑
l

∂ηl
∂ϑj

(Σ−1)li (8)

and
∂Fj
∂ϑk

= 2
∑
li

∂ηl
∂ϑj

(Σ−1)li
∂ηi
∂ϑk
− 2

∑
li

∂2ηl
∂ϑj∂ϑk

(Σ−1)li
(
τi − ηi(ϑ)

)
(9)

One may be concerned that (4) appears to be local with respect to τ , and thereby be led
to consider global methods [32]. However, it should be noted that (7) is an affine-linear
function in τ . Further, (9) is affine-linear and (8) is constant with respect to τ , the latter
implying ∂2F

∂τi∂τl
= 0.
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We notice that ∂η
∂ϑ

>
Σ−1 ∂η

∂ϑ
is the (Fisher) information matrix familiar from experimental

design [15, 24].

The second term in (9) is zero if the residuals are zero, i.e. if the model agrees with ex-
periment perfectly, even for a non-linear model. As we shall see below, this second term,
originating from model non-linearities due to the presence of the second order derivatives,
can however also be dominant.

2.4 Linear regression influence diagnostics

In order to introduce the diagnostics and to see the relationship to (4), it is instructive
to recall the general linear model, i.e a model which is linear in its model parameters ϑ
but not necessarily in the process conditions ξ. That means its (single) response is given
by g>(ξ)ϑ, with g a vector of arbitrary functions of the process conditions, i.e. g(ξ) =(
g1(ξ), g2(ξ), . . . , gP (ξ)

)>. It is assumed that the relationship between the collections of
experimental and model responses is well-described by τ = Xϑ + ε, with ε ∼ N (0,Σ).
The design matrix X ∈ RN×P has components Xij = gj(ξ

(i)), where ξ(i) is the process
condition at which the ith observation has been made. Then, the maximum likelihood
estimate ϑ̂ of ϑ can be obtained from (1) and (6) as

ϑ̂ =
(
X>Σ−1X

)−1
X>Σ−1τ. (10)

Furthermore, ϑ has covariance matrix
(
X>Σ−1X

)−1. From (10), we obtain the deriva-
tives of the parameter estimates with respect to experimental observations as

∂ϑ̂

∂τ
=
(
X>Σ−1X

)−1
X>Σ−1. (11)

Now, realising that for the linear model ∂η
∂ϑ

= X and that the second derivatives of η with
respect to ϑ vanish, we obtain for (8) ∂F

∂τ
= −2X>Σ−1, and for (9) ∂F

∂ϑ
= 2X>Σ−1X .

Thus, for the linear model (4) is identical to (11).

We now consider the effect of deleting a single observation from a data set. One of the
simplest statistics for assessing this effect is called DFBETAi [2, p. 13]. It is defined as
the difference between the best estimate of the parameters and the best estimate with the
ith data point removed:

DFBETAi := ϑ̂− ϑ̂−i ∈ RP (12)

Definition (12) is meaningful for any non-linear model, however, direct use would require
one regression or optimisation per data point, which is in general infeasible. Simplified
formulae which do not require multiple additional regressions can be derived as follows,
but these are strictly valid only for linear models. For this, it is necessary to restrict from
a Generalised Least Squares (GLS) problem, i.e. with Σ an arbitrary positive definite
matrix, to Weighted Least Squares (WLS), which assumes Σil = σ2

i δil, i.e. uncorrelated
but possibly heteroskedastic data. While it is possible to transform a GLS into a WLS
problem, omitting the ith data point from the GLS is not equivalent to omitting the ith data
point from the transformed problem. Defining I := X>Σ−1X , we can write

ϑ̂ = I−1X>Σ−1τ and ϑ̂−i = I−1
−iX

>
−iΣ

−1
−i τ−i, (13)
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where X−i ∈ R(N−1)×P denotes X with its ith row removed, Σ−i ∈ R(N−1)×(N−1) de-
notes Σ with its ith row and column removed, and I−i := X>−iΣ

−1
−iX−i. We then obtain

I−i = I − σ−2
i x(i)x(i)>,

where x(i) ∈ RP is the column vector containing the ith row of X . The key step is then
to express I−1

−i in terms of I−1 by means of the Sherman-Morrison-Woodbury formula.
Inserting the result into (12) then, after some algebra, yields

ϑ̂− ϑ̂−i =
I−1x(i)

σ2
i − x(i)>I−1x(i)

(
τi − x(i)>ϑ

)
. (14)

This formula allows calculating DFBETAi for all observations i with only a single regres-
sion involved. We note that (14) is proportional to the residuals, so will be zero whenever
the model agrees with experiment.

A scaled variant DFBETASi can be defined by dividing each of the components of DFBETAi
by the square root of the variance of the corresponding parameter, or, perhaps more use-
fully, by the square root of the empirical variance with the ith data point removed [2, p.
13]. The motivation for such scaling is that a change in a parameter, and the significance
thereof, should be assessed with respect to the magnitude of its uncertainty. For this rea-
son, in this work, we consider

Bji :=
(ϑ̂− ϑ̂−i)j√

(I−1)jj
(15)

as one of the diagnostics, with the numerator given by (14).

Another statistic can be obtained by differentiating the best parameter estimates (10) with
respect to the weights in the objective function [2, pp. 24 & 66], i.e. the diagonal entries of
the (WLS) covariance matrix Σ (see also [26]). The resulting expression is essentially (11)
multiplied by the residuals. Up to normalisation, this is the same as DFBETA(S), which
is why it has been suggested as an alternative for the latter.

One of the most well-known influence diagnostics is Cook’s distance. The motivation for
its definition originates from joint confidence regions of the parameters. Joint 100(1−α)%
confidence ellipsoids can be defined as

(ϑ̂− ϑ)>X>Σ−1X(ϑ̂− ϑ) ≤ Ps2F (P,N − P, 1− α),

with s2 := 1
N−P r

>Σ−1r = Φ/(N − P ), residuals r := τ −Xϑ̂, and F (P,N − P, 1− α)
the 1−α point of the F -distribution. See [13, pp. 94 & 108] and [19]. Cook’s distance is
defined as

Di :=
(ϑ̂− ϑ̂−i)>X>Σ−1X(ϑ̂− ϑ̂−i)

Ps2
. (16)

Large values of Di mean large differences in the parameter estimates when case i is
deleted. The original definition [6, 7] was given for ordinary least squares, and later
generalised to weighted [9, p. 209]. While definition (16) is applicable to general least
squares, simplified formulas require a WLS formulation. As with (12), direct use of def-
inition (16) would require one optimisation per data point, which is infeasible in general.
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Using (14), we can obtain a simplified expression for Cook’s distance (16) which requires
only a single regression for all observations:

Di =
vii
Ps2

( ri
σ2
i − vii

)2

, (17)

where vii := x(i)>I−1x(i). We use Eqn. (17) as one of the diagnostics in this paper.

We note that Cook’s distance is a measure of the overall influence of an observation and
does not allow studying parameters individually. Influence measures for the deletion of
data points on subsets of parameters, which includes individual ones as a special case,
have been proposed (see [3] for an overview). A notable example is the following. Cook
and Weisberg [8] have presented a version of Cook’s distance which quantifies the effect
of deletion of (sets of) data points on subsets of the estimated parameters. As the original
distance, it is only applicable to linear models, but in addition requires one extra regression
per considered parameter subset. That is, if all parameters are of interest individually, P
additional regressions are required.

Measures quantifying non-linearity based on local curvature, distinguishing intrinsic from
parametrisation-related curvature, have been proposed [1, 30], but it is beyond the scope
of the paper to explore this.

3 A note on implementation

Calculating (9) numerically involves calculating the second derivatives of the model re-
sponses. This can be done analytically when polynomial surrogates are used for example,
but more generally requires either the direct method of integrating the set of ordinary dif-
ferential equations governing the second order sensitivity coefficients or finite-difference
approximations [27, 34]. In this work, we employ the latter.

The standard method is to expand different perturbations of a function f into their multi-
variate Taylor series and then take appropriate linear combinations. This yields for exam-
ple

∂2f

∂x∂y
≈ f++ + f−− − f+· − f−· − f·+ − f·− + 2f

2∆x∆y
(18)

with a second-order error term, where we have used notations such as f++ := f(x0 +
∆x, y0 + ∆y) and f−· := f(x0 −∆x, y0). While stencil (18) may not be the simplest, it
involves only two function evaluations with perturbations in both variables per pair. This
implies that for this stencil a total of 1 + 2P + 2

(
P
2

)
= P 2 + P + 1 evaluations are

required. Finite difference scheme (18) also has the added advantage that the univariate
second-order derivatives as well as the first-order derivatives with a higher order in the
error term can be approximated without further evaluations. For the univariate second-
order derivatives appearing in (9), we use the standard central difference scheme.
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4 Experimental data

The data set considered here [21] (available online) was obtained using the high-pressure
single-pulse shock tube at the University of Illinois at Chicago [31, 33]. Process con-
dition variables comprise of initial temperature, initial pressure, initial composition, and
reaction time. In all cases, the initial mixture is composed of n-propylbenzene, oxygen,
and argon. The system is highly dilute, and hence can be considered isothermal. An
overview of the conditions is given in Table 1. Concentrations of stable species were

Table 1: Overview of experimental process conditions.

pavg [atm] T [K] Fuel [ppm] Φ treac [ms]
28 907-1551 86 0.54 1.40-2.05
51 959-1558 90 0.55 1.27-1.90
49 838-1635 90 1.0 1.21-1.95
24 905-1669 89 1.9 1.36-2.93
52 847-1640 90 1.9 1.26-1.95

determined via gas chromatography in gases sampled from the shock tube. Measured
species include O2, CO, CO2, 14 saturated as well as unsaturated aliphatic hydrocarbons,
16 aromatic hydrocarbons with up to three rings including benzene, toluene, phenylacety-
lene, 1-propenylbenzene, 2-propenylbenzene, and n-propylbenzene, and four oxygenated
aromatics. Measurement errors range between 1.7% and 25%, with an average of about
12%. In total, there are 2378 experimental observations of 37 species at 74 points in
process-condition space.

5 Model and optimisation

The shock tube is modelled as a homogeneous, adiabatic, constant pressure reactor. As
software to solve the governing equations, which we shall not repeat here, kinetics v8.0 [5]
was employed. A chemical kinetic mechanism containing 191 species and 1127 reac-
tions [10, 21, 23] was used. All experimentally measured species mentioned above are
present in the mechanism.

In a previous paper [25], we optimised 64 Arrhenius pre-exponential factors, which were
chosen through conventional sensitivity analysis, against the above data set.

6 Results

We conduct the influence analysis on three parameter sets: one including all of the P = 64
parameters used for the optimisation, one with a subset of P = 39 parameters, and one
with an even smaller subset of P = 5 parameters. The corresponding simulations involve
P 2+P+1 objective function evaluations, i.e 4161, 1561, and 31 respectively. We find that
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Table 2: Contribution of non-linearities to derivatives of best estimates with respect to
observations (Eqn. 4).

P = 5 P = 5 P = 39 P = 64
Quantity ϑ = A ϑ=lnA ϑ=lnA ϑ=lnA

‖∂F
∂ϑ
− 2I‖/‖∂F

∂ϑ
‖ 4.9% 3.8% 10.5% 11.1%

cond ∂F
∂ϑ

1.1×1032 179 1.5×105 1.3×105

cond I 1.0×1032 175 7.6×107 1.4×108
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Figure 1: Influence on pre-exponential factor of reaction 555 as measured by derivatives
of best estimates with respect to observations (Eqn. 4) for phenylacetylene data
at an average pressure of 24 atm and Φ = 1.9. The full expressions (labelled
‘non-linear’) as well as the ones with the second derivatives omitted (labelled
‘linear’) are shown for the three considered parameter sets.

both the information matrix and the Hessian matrix are typically highly ill-conditioned. In
the 5-parameter case, their condition numbers, i.e. the ratio of the largest to the smallest
eigenvalue, denoted by cond(·), are of order 1032 – runs with more parameters failed
altogether. This is dramatically improved by considering the logarithms of the model
parameters instead, i.e. ϑj = lnAj . Details are given in Table 2.

In order to assess the significance of non-linearities, we compare the two terms in (9) by
means of the Frobenius norm, i.e. the square root of the sum of the squares of all matrix
elements, denoted by ‖ · ‖, and matrix condition numbers. We find that the second term,
which involves the second derivatives, i.e. the contribution from model non-linearities, is
small (up to ≈ 11% Frobenius norm), but it can significantly improve the conditioning of
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Figure 2: Variation of influence measures with considered parameter set for 1-
propenylbenzene observations at an average pressure of 24 atm and Φ = 1.9.

the Hessian matrix (by up to three orders of magnitude, see Table 2).

Figure 1 shows the derivatives of the best estimates of pre-exponential of reaction 555
with respect to phenylacetylene observations for each of the three considered parameter
sets. Two versions are shown for each set: The full expression, i.e. Eqn. (4) with (9),
labelled ‘non-linear’, and the linearised one, i.e. with the second term in (9) involving
the second derivatives omitted, labelled ‘linear’. While there is virtually no difference
between the two for the 5-parameter set, differences become appreciable for P = 39 and
considerable for P = 64.

Figure 2 shows the three considered influence measures, Eqns. (17), (15), and (4), for
each of the three parameter sets. While for each of the diagnostics there is some variation
from set to set, it is mostly in magnitude – the relative significance of observations is
largely similar. For Cook’s distance as well as Bji (Eqn. 15), the proportionality to the
residuals is clearly visible, whereas the derivatives (Fig. 2d) indicate that observations at
about 1100 K are equally important. We note that some dependence on the parameter set
should be expected since even for a linear model, the derivatives of a particular parameter
are affected by the presence of other parameters. Similarly, the Hessian matrix, i.e. the
curvature of the objective function, which appears in (4), is of course dependent on the
choice of parameters. One should also be aware that, more generally, the results depend on
the local geometry of the objective function surface and hence on the choice of objective
function and the chosen local minimum.
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(d) Influence as measured by derivatives of best es-
timates with respect to observations (Eqn. 4).

Figure 3: Influence on pre-exponential factors of five selected reactions for benzene ob-
servations at an average pressure of 52 atm and Φ = 1.9 (P = 64).

The largest contribution to the value of the objective function for the original model prior
to optimisation comes from 1- and 2-propenylbenzene due to a relatively large difference
between experiment and model, and relatively small experimental error bars (implying a
large weight). The most influential observation overall, interestingly, by Cook distance is
also 2-propenylbenzene, followed by phenylacetylene and 1-propenylbenzene. According
to the derivatives, for most parameters, it is 1-propenylbenzene, and for the remaining
ones 2-propenylbenzene (all at intermediate temperatures).

Figure 3 shows the relative influence of benzene observations at an average pressure of
52 atm and Φ = 1.9 on the pre-exponential factors of the five most sensitive reactions.
In contrast to the derivatives, the omission-based diagnostics do not deem the data points
around 1150 K to be significant. Once again, as in Fig. 2, this is a reflection of the fact
that Cook’s distance and Bji are mostly proportional to the residuals.

Figure 4 shows the influence of all observations of toluene overall and on the pre-exponential
factor of reaction 555, grouped by pressure and equivalence ratio. All three diagnostics
agree that the observations at lean mixtures are most influential, and that measurements
at higher pressures are more influential (for fixed Φ).
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Figure 4: The three considered influence measures for all observations of toluene (P =
64).

7 Conclusions

We have applied and compared some diagnostic measures for the influence of experimen-
tal observations on parameter estimates to an n-propylbenzene shock tube data set. For
the model and data considered here, we found that non-linearities can be significant, and
in particular improve the conditioning of the matrix inversion involved in calculating the
derivatives with respect to observations. We furthermore found that, in spite of that, the
three considered diagnostics give roughly similar results. Given that omission of an ob-
servation is much more ‘drastic’ than perturbation of the value of an observation, which
is what derivatives measure, the similarity of the diagnostics is perhaps surprising. More
generally, the additional information available through the derivatives needs to be weighed
against the computational cost associated with their evaluation, which may be substantial
for large numbers of parameters. The two linear diagnostics considered in this paper can
be calculated from the first-order sensitivities of responses with respect to model param-
eters alone. As none of the diagnostics stands out as clearly superior to the others, we
conclude overall that it is advisable to consider multiple ones. A natural next step is to
compare the diagnostics with model-based experimental design techniques such as [24].
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