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Abstract

In this paper we present an experimental investigation of the effects of the shape
of the initial powder distribution on a granulation system. Experimental data was
produced by granulating designed powder distributions of lactose monohydrate with
deionised water acting as the binder. Three initial powder distributions were con-
structed from sieve cuts such that the mean volume particle diameters are similar
while the shapes of the distributions differ. The initial distribution shapes consist of
a narrow unimodal distribution, a wide unimodal distribution and a wide bimodal dis-
tribution. The resulting product distributions are characterised and compared using a
variety of statistical metrics. The product distributions are found to show markedly
different characteristics. Increasing the variance while maintaining a unimodal ini-
tial powder distribution produced a broader, more evenly distributed end-product
with the mode of the resulting distribution being the same as the narrow distribution
case. In comparison to the unimodal cases, the bimodal distribution produced an
end-product with an even larger variance, an increase in oversized particles, a de-
crease in fines and a right-shift of the product distribution of one sieve class. These
results were found to be independent of the methods of characterising the product
distributions.
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1 Introduction

Particle granulation encompasses a vast collection of agglomeration techniques wherein
a fine powder and a binder are mixed to cause the particles to grow in size. Particles are
agglomerated to improve flowability, dispersibility, bulk density and dusting behaviours
while decreasing caking. The pharmaceuticals industry makes extensive use of granula-
tion for these reasons, as well as to mix active pharmaceutical ingredients with excipients
to produce particles that are easier to dispense. Granulation is also used in the manufacture
of fertilisers, detergents and is used in food processing concerns.

Granulation is performed by mixing a powder with either a liquid binder or by melt gran-
ulation. The powder is placed inside a mixer, which may be any one of a rotating drum,
a fluidised bed or a high shear mixer. The binder is added to the mixing chamber and the
agglomeration process commences; where the properties of the end-product are depen-
dent upon the equipment process conditions and the materials employed. The system of
interest in this paper is a high-shear wet granulation process using lactose monohydrate
and deionised water in a horizontal axis plough-share mixer. Lactose, due to its wide use
as an excipient, has been used in granulation experiments to investigate many aspects of
particle granulation; to study the influence of droplet size on particle granulation [3], the
influence of granulation method on compactability [30], scaling-up of granulation in high
shear mixers [2], the sensitivity of the process conditions on the end-product [5] and the
importance of spray flux on the nucleation stage of granulation [20], among others.

While on a cursory level this is a simple process, on a kinetic level it is very complex
and poorly understood. Hence, the use of models and computer simulations has been
incorporated into the study of granulation to further understanding of the systems while
avoiding extensive experimentation [6, 8–11, 22]. In [17] a detailed population balance
model [7, 12] was found to exhibit sensitivity to the initial powder size distribution to
such an extent that the uncertainty attached to the values characterising the initial powder
were directly related to the ability of the model to reproduce the experimental results. The
work in this paper is designed to experimentally investigate the behaviour indicated by
the model.

The effect of the initial powder size distribution has been studied under a variety of con-
ditions and initial material characterisations. The majority of the existent work is based
on effects caused by changing the mean particle size, or similar values, e. g., the median
particle size [15, 21, 25, 28]. Other studies focus on the effect of the spread of the initial
particle distribution [14, 26].

It was found that the changes in initial particle size distribution affected the resulting
product size distribution [1, 4, 21], porosity [4, 5, 15, 28], strength [19], compactability
[4] and intergranular forces [21]. Moreover, changes to the initial particle size have been
found to not only affect the growth mechanism directly [4, 5, 19, 21, 25], but also have
been found to interact with other process conditions such as the binder viscosity [15, 28],
the droplet size [1] and liquid requirements [18].

Additionally, work has been reported in which two powder substances have been blended,
which inherently will be combinations of different size distributions. Altering the mixture
ratio of the two materials was found to affect the end-product particle distribution [13],
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the particle strength [23] and granule shape [27]. However, as more than one substance
was involved, it is not possible to make a clear statement about the impact of the initial
size distribution.

With a few notable exceptions [21, 25], the descriptions of the initial powders used are
typically reported in terms of one or two single-value characterisations, such as a mean
particle size and the span of the distribution. The shape of the initial powder distributions
has not been the focus of any of these studies and the commonly reported characteris-
tic values do not contain enough information to make inferences about the shape of the
distribution.

The question of how to adequately describe the initial powder is of particular concern
to pharmaceutical process development, where ICH Q8 [29] requires the identification
of a multidimensional design space which is the combination of material attributes and
process parameters that have been demonstrated to provide assurance of quality. If the
initial powder is inadequately described, it may not be possible to correctly identify the
design space, nor to determine the reasons for any variability in the process output.

The purpose of this paper is to experimentally investigate the impact of the shape of
the initial powder distribution on a granulation process. For this purpose, three initial
powder distributions have been constructed with a narrow unimodal distribution, a wide
unimodal distribution and a wide bimodal distribution, all with a single fixed volume mean
diameter. The resulting product distributions are characterised to show that increasing the
variance alters the end-product. Further, introducing a bimodality to increase the variance
has a different effect on the product size distribution than increasing the variance while
maintaining a unimodal distribution.

The structure of this paper is as follows: Section 2 contains a description of the experimen-
tal system and details on how the initial powder distributions are constructed. Section 3
contains details of how the end-product is described in quantitative terms. In section 4 we
show the results of the granulation experiments and compare the results for the three end-
product distributions. In section 5 we draw conclusions and discuss recommendations for
future work.

2 Experiment

2.1 Powder distribution construction

Manufacture step. The powder used to construct the initial powder distributions was first
separated into size fractions by sieving. A single tier of six sieves and a bottom pan were
used with sieve apertures of 150, 106, 90, 75, 53, and 45 µm. Quantities of approximately
150 g of lactose monohydrate (Granulac 230, Granulac 200 and Granulac 140, Meggle,
Germany) were subjected to 30 minutes at 2.0 mm amplitude on a sieve shaker (model
EVL1, Endecotts, UK). Material retained in each sieve class was separately collected until
sufficient quantities of each type had been collected to construct new distributions. The
final accumulated powder samples of interest are referred to as M45, M53, M75, M90, and
M106 which represents powder collected in the 45µm, 53µm, 75µm, 90µm and 106µm

4



20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sieve aperture [µm]

Q
3 

[−
]

M45
M53
M75
M90
M106

Figure 1: M[.] initial size distributions.

aperture sieves, respectively.

Powder analysis step. An approximately 75 g sample of powder was taken from each M[.]

sample and was sieved under the same conditions as the manufacturing step. As can be
seen in Figure 1, the cumulative mass measurements, or Q3, found for each powder type
are easily distinguishable. While each sample includes a notable proportion of smaller
sized particles, a significant amount of the mass is in the appropriate size class and each
distribution has a distinct median value.

Pn; Narrow unimodal distribution creation step. With the measurements found in the
sieving process, we used the midpoints of each sieve class to calculate the arithmetic
mean particle size and variance for the M90 powder to be 84.89µm and 386.93µm2. The
Pn initial powder consists of only powder taken from M90.

Pb; Bimodal distribution creation step. The measured distribution values for the M53

and M106 powders were used to construct a second distribution, Pb which would have the
same arithmetic mean particle size as Pn, but a larger variance induced by a bimodality.
Specifically:
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N∑
i=1

q3i(M90)xi =
N∑
i=1

c1q3i(M53)xi + c2q3i(M106)xi , (1)

c1 + c2 = 1 ,

where q3i(M[.]) is the ith element of the mass frequency distribution, q3, for the powder
sample M[.], xi is the midpoint of the aperture of the ith sieve class and N is the number
of sieving measurements.

Using this method of creating a distribution, we calculated a blended distribution by solv-
ing for values of c1 and c2 such that:

q3i(Pb) = 0.431q3i(M53) + (1− 0.431)q3i(M106) , (2)

which has an arithmetic mean particle size and variance of 84.89µm and 1387.56µm2,
respectively. We then blended 431 g of powder from the M53 bag and 569 g from the M106

bag to create 1000 g of Pb powder.

Pu; Uniform wide variance distribution creation step.

Following a similar procedure we constructed a distribution Pu where

N∑
i=1

q3i(M90)xi ≈
N∑
i=1

c1q3i(M45)xi + c2q3i(M53)xi + c3q3i(M75)xi+

c4q3i(M90)xi + c5q3i(M106)xi , (3)
5∑
j

cj = 1 ,

with the further restriction that the resulting distribution be unimodal with a maximal
variance. This was accomplished by imposing ranges upon the ci’s which would force a
unimodal distribution and then optimising over these ranges to minimise the difference
from the mean particle size while maximising the variance. Thus we constructed a distri-
bution such that:

q3i(Pu) = 0.11q3i(M45)+0.06q3i(M53)+0.24q3i(M75)0.29q3i(M90)+0.3q3i(M106) , (4)

which gives a unimodal distribution with an arithmetic mean particle size of 81.39 µm
with a variance of 1014.10µm2. The powders from the individual M[.] sieve cuts were
then blended with 110 g, 60 g, 239 g, 290 g and 300 g from samples M45, M53, M75, M90,
and M106, respectively.

Thus we have three 1000 g bags of powder for granulation with approximately the same
arithmetic mean particle size where Pn is unimodal with a small variance, Pu unimodal
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Table 1: Constructed distribution defining (arithmetic) values.

Standard
Distribution Mean Variance Deviation

Pn 84.89µm 386.93µm2 19.67µm
Pb 84.89µm 1387.56µm2 32.24µm
Pu 81.39µm 1014.10µm2 31.84µm

with a large variance and Pb is bimodal with a large variance. The final calculated mass
fractions and cumulative mass fractions of the initial powder distributions are shown in
Figure 2 and Figure 3, respectively. The arithmetic values used to define the distributions
are summarised in Table 1.

2.2 Granulation of constructed powder distributions

A wet granulation process using lactose monohydrate in a bench-scale mixer shall be the
system of interest in this study. The equipment and procedures used in this system are
identical to those used in [17], from which the following description is taken.

Experimental setup The equipment setup that was used is shown in Figure 4. The
experiments were performed using a horizontal axis 5 litre ploughshare mixer (Kemeutec)
which is described in detail in Jones and Bridgwater [16]. The mixer shaft is driven by a
variable speed DC motor with a torque meter (DRBK-20-n, ETH Messtechnik, Germany)
mounted between the shaft and the motor.

The binder is drawn from a reservoir by a magnetic drive gear pump (model DG.19,
Tuthill Corporation, USA) to a single fluid nozzle (model 121, orifice � 0.5 mm, 60 ◦

spray angle, Düsen-Schlick, Germany) which is suspended at a fixed height above the
powder bed. The pump speed is controlled by an inverter (model Altivar 31, Teleme-
canique, France). The inverter frequency is determined by pulses from a flowmeter (OG1,
Nixon Flowmeters, UK) that is mounted between the pump and the nozzle. The equipment
is controlled and monitored by a Labview application that allows for the specification of
flow rate, mixer speed, and all timing elements of the granulation process. Controlling, as
well as monitoring and recording the operating status of the equipment, is facilitated by
two data recording cards (6009 and 6601, National Instruments, USA).

Materials Each granulation run was performed using 1000 g of lactose monohydrate
material from Pn, Pb or Pu using 150 ml deionised water as the binder.

Procedure Upon loading the mixer with the powder, the nozzle is suspended at a fixed
height above the mixing chamber with a drip cup immediately below it collecting the

7



60 80 100 120 140

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Particle size [µm]

q 3
 [−

]

Pn
Pb
Pu

Figure 2: Initial constructed powder distribution mass fractions.

8



60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Particle size [µm]

Q
3 

[−
]

Pn
Pb
Pu

Figure 3: Initial powder cumulative mass fractions distributions.

9



inverter mixer

monitoring
and control

torque
meter

binder
reservoir

pump
flowmeter

M

motor

Figure 4: Experimental setup.

binder flow. After two minutes of dry mixing to aerate the powder, the drip cup is re-
moved. When the allotted amount of time for the binder addition has passed, the binder
stream is automatically shut off by the controller program and the drip cup is placed under
the nozzle again to prevent any additional droplets from reaching the powder bed. The
mixer continues to run at the specified speed until the desired amount of time has elapsed.

The resulting product is removed from the mixer and distributed onto metal trays. The
trays are placed in an atmospheric pressure drying cabinet (INC 95SF, Genlab, UK) at
50 ◦C with 55 ◦C designated as the overheat temperature, until no significant change in
mass is recorded. The dried product is recombined and samples for analysis are chosen
by putting the entire dried product through a sample splitter until a sample between 60–
100 g is obtained.

Particle size analysis is performed on each end-product sample by sieving. Three tiers,
each consisting of six sieves and a bottom pan, were constructed using a

√
2 progression

from 53–16000 µm. Each tier was subjected to 25 minutes at approximately 1.5 mm am-
plitude on a sieve shaker (model EVL1, Endecotts, UK). Material in each of the sieves,
as well as the bottom pan of the third tier, was weighed and recorded giving 19 mass
measurements per sample. The data set of measured mass values is included as a supple-
mentary .csv file to this paper.

Measurement precision. A preliminary granulation run was performed in order to de-
tect any sources of error or sub-optimal procedures. Prior to each granulation run, the
binder flow rate was tested for 150 ml of binder over the specified addition time. Each
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Figure 5: Measured speed of mixer during Pb material granulation run. Mean speed is
119.28 rpm with a variance of 18.55 rpm2.

granulation run was performed using control conditions that produced 150 ml ± 2 ml of
binder under the relevant process conditions immediately prior to each run. The sieving
analysis of the preliminary run allowed the selection of an appropriate range of sieves.
Through this preliminary work it was determined that three samples taken from a sin-
gle granulation run would yield acceptable results for the product size distribution. To
minimize sampling error in this case, five samples were taken for each of the Pn, Pb and
Pu granulation runs. The balance employed for the material and sieving measurements
(XB 3200C, Precisa) is precise to 0.01 g. The motor controller, in conjunction with the
torque meter, monitors and adjusts the impeller speed at least once per second. Analysis
of the recorded measurements during the granulation runs indicate that the average devi-
ation from the specified speed for all the granulation runs is less than ± 2 rpm. Figure 5,
Figure 6 and Figure 7 show the measured speed values for individual experimental con-
ditions. As can be seen, while there are fluctuations, the speed does stay centred on the
designated value, in this case 120 rpm.

Previous experiments [17] were used to select process conditions which would have the
most apparent impact on the end-product. Aside from the initial powder distribution, all
other process conditions, including the binder to powder ratio of 150 ml:1000 g, are held
constant:

1. Binder addition flow rate of 75 ml/min (flow rate);

2. Impeller speed of the mixer of 120 rpm (impeller speed) and

3. Allowing the mixer to continue after all the binder had been added for 5 minutes
(wet massing time).
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119.17 rpm with a variance of 26.28 rpm2.
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3 Methodology

In this section, the methods and calculations used to quantify the measurements obtained
from the experimental system are described in detail. It should be noted that unless explic-
itly stated otherwise, the sieve diameter values, x, used in this section are the midpoints of
the experimental sieve cuts, e. g., particles collected in the 75µm aperture sieve are treated
as having a diameter of (75 + 106)/2 = 90.50µm. Since any given sieve measurement is
associated with a diameter range, using the midpoint for calculation purposes represents a
compromise between the known upper and lower boundaries and is intended to minimise
over- or under-estimation.

3.1 Physical measurements

The complete end-product for each of the three experimental cases was run through the
sample splitter until five samples of 60–100 g were obtained for each case. Each of these
samples was subjected to sieving analysis giving a mass associated with one of N = 19
sieve cuts. Each sieve cut mass is then expressed as a mass fraction by dividing the sieve
cut mass by the total sample mass. This is expressed as a vector wk, where the ith element
is defined as:

wki =
mki∑N
j=1mkj

, (5)

where mki is the mass measured of the kth sample in the ith sieve class. In this case
k = 1, . . . , 5 and i = 1, . . . , 19. Each mki directly corresponds to the measured mass in a
sieve cut for a given sample.

As each granulation run has five samples associated with it, we calculate a vector of
averaged mass fractions, or probability density function (pdf), d, for a given granulation
run across the k samples for each sieve class where each element di is defined as:

di =
1

k

k∑
j=1

wji . (6)

From this point, we convert the values into an empirical cumulative distribution function
(ECDF) by summing all fractions of mass that are smaller than a given sieve class. This is
equivalent to sieving measurements in terms of the proportion of material that has passed
through any given sieve aperture. The ECDF, D, is calculated directly from the averaged
mass fractions as:

Di =
i∑

j=1

dj , (7)

where i = 1, . . . , 19.
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The inverse process, to derive mass fractions from a given ECDF is performed by mea-
suring the jumps between the sieve cuts values or:

di =

{
Di i = 1 ,
Di −Di−1 i > 1 .

(8)

Further, we construct error bars around the averaged mass fractions and ECDF using 95%
confidence intervals with the Student’s t distribution based on the k samples for each
measurement.

Using the mass fractions, d and the ECDF, D, we are able to calculate a wide variety of
characterisations to describe the results.

3.2 Mean particle diameters

Describing a particle size distribution in terms of a mean diameter is a common practice.
There are a variety of methods to calculate this value, but overall it is intended to portray
an average particle size. Here, we briefly describe the methods used in this paper.

3.2.1 Empirical arithmetic mean particle size

The empirical arithmetic mean particle diameter, Ma, is the simplest single value expres-
sion used to describe particle size distributions. The empirical arithmetic mean particle
diameter is calculated by first multiplying the mass fraction, d, by the associated sieve
diameter, x, and then summing the results:

Ma =
N∑
i=1

dixi , (9)

where di is the ith element of the density vector d, and xi is the midpoint of the ith sieve
class.

3.2.2 Empirical geometric mean particle size

The empirical geometric mean particle diameter, Mg, is an alternative to the arithmetic
mean. In this context, we transform the sieve aperture values, x, by taking the natural
logarithm, x′ = ln(x). This transformation is used so that the larger particle size classes
are not disproportionately represented. In the sieve series that we use, the range of the
sieve classes is 53–16000 µm which, by taking the natural log, transforms into the range
3.97–9.68. The empirical geometric mean particle size is calculated by first multiplying
the density by the transformed sieve class and then taking the exponential of the summed
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the results:

Mg = exp

(
N∑
i=1

dix
′
i

)
, (10)

where each di is the ith element of the density vector, d, and x′i is the natural logarithm of
the midpoint of the ith sieve class.

3.3 Dispersion and shape of distribution

3.3.1 Variance and standard deviation

The variance, σ2
[.] is a single value expression of the spread of the resultant particle size

distribution. For this value, we shall use the untransformed midpoints of the sieve class
values. The arithmetic variance, σ2

a , is calculated as:

σ2
a =

N∑
i=1

dix
2
i −

(
N∑
i=1

dixi

)2

, (11)

where each di is the ith element of the density vector d and xi is the midpoint of the ith

sieve class.

The standard deviation, σa, is the square root of the variance, or:

σa =
√
σ2

a . (12)

Alternately, we can calculate an empirical geometric standard deviation, or σg by using the
x′ = ln(x) transformation, as before. In this paper, we calculate the empirical geometric
standard deviation as:

σg = exp


√√√√ N∑

i=1

di(x′i − lnMg)2

 . (13)

3.3.2 Skewness

The skewness, or γ1, of a distribution quantifies the deviation from symmetric, or how
lopsided the distribution is, where larger values indicate more lop-sidedness. Using only
the arithmetic-based values skewness is calculated as:

γ1 =

(∑N
i=1 dix

3
i

)
− 3Maσ

2
a −M3

a

σ3
a

. (14)
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3.3.3 Kurtosis

The kurtosis, or β2, of a distribution quantifies the peakedness of the distribution. An
arithmetic based calculation for kurtosis is defined as:

β2 =

∑N
i=1 dix

4
i − 4Ma

∑N
i=1 dix

3
i + 6M2

a

∑N
i=1 dix

2
i − 4M3

a

∑N
i=1 dixi +M4

a

σ4
a

. (15)

3.4 Percentile and span by interpolation

Another common metric is the percentiles of the distribution, specifically the 10th, 50th
or median and 90th percentiles, or d̃10, d̃50 and d̃90, respectively. In this context, the pth
percentile is a diameter value where p percent of the mass belongs to particles with a
diameter less than the percentile diameter. Here, we estimate the percentile diameter by
linear interpolation between the upper and lower bounds of the relevant sieve class.

Further, the spread of a particle size distribution is often expressed in terms of the span of
the distribution, which is defined as:

Span =
d̃90 − d̃10

d̃50

. (16)

3.5 Lognormal curve fitting

As the mass fractions and ECDF are of the form of probability distributions, it is common
practice to fit a probability curve to the results and describe the results in terms of the
characteristics of the fitted curve. For particle size distributions, a lognormal distribution
is frequently used. This curve fitting can be accomplished using either the ECDF or the
mass fractions. The density of a lognormal distribution has two parameters, µfit and σfit,
and is defined as:

lnN (x, µfit, σfit) =
1

x
√

2πσ2
fit

exp−(lnx− µfit)
2

2σ2
fit

, (17)

The curves are fit by minimising a defined objective function, here the Euclidian distance
between two N -element vectors F and G:

Dist =

√√√√ N∑
i=1

(Fi −Gi)2 . (18)

A lognormal curve can be fit to the mass fractions by substituting the density vector d
for F and lnN (x, µfit, σfit) for G in Equation 18. Similarly, a lognormal curve can be fit
to the ECDF by substituting the empirical ECDF D for F and a lognormal cumulative
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distribution with parameters µfit and σfit for G. In either case, the objective function
Dist can then be minimized with respect to values for µfit and σfit using an optimisation
technique, here the optim function in R [24]. While the ECDF is most commonly used
for curve fitting in this context, in this paper curves are fit to both forms of the distribution
for the purpose of comparison. When making this comparison, it is important to note the
density d is defined in terms of the midpoints of the sieve cuts, whilst the empirical ECDF
D is defined in terms of the upper bounds of the sieve classes.

Further, the fitted curves have metrics, such as mean and standard deviation which can
be used to describe the distribution, in lieu of the empirically computed values. The
lognormal distribution, with parameters µfit and σfit in particular, has defined values of:

d̃50 = exp (µfit) (19)

Ma = exp (µfit +
σ2

fit

2
) (20)

Mg = exp (µfit) (21)

σa =

√(
exp(σ2

fit)− 1
)
exp

(
2µfit + σ2

fit

)
. (22)

4 Results

In this section we present the experimental results as measured and as quantified by the
methods described in Section 3.

4.1 Particle size distribution measurements

The measured mass fractions are averaged for each sieve class over the five samples taken
from each granulation run using Eqn. 6. The resulting averaged size distributions are
shown in Figure 8. From this figure it is apparent that the resultant distributions are
different. As all process conditions were constant, except for the construction of the
initial particle size distribution, this indicates that the initial powder distribution has a
significant effect on the size distribution of the end-product. Some cursory observations
which can be made from this data set are that the Pb bimodal distribution is right-shifted in
comparison to the others. The Pb and the unimodal Pn distributions have the largest peaks,
while the unimodal Pu distribution has a lower primary peak and more widely spread end-
product distribution when compared to Pn. All three distributions have a small amount
of fines and additional modes in the larger particle sizes. Further, it is interesting to note
that, while the largest sieve aperture used for the initial powder was material collected in
the 106 µm sieve, the product 106 µm sieve class is the first product sieve class to have a
substantial amount of material, with the first significant jump in mass in the 150 µm sieve.
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Figure 8: Experimental results of sieving particle size analysis. Density distribution with
error bars representing 95% confidence intervals.

This suggests that most, if not all, of the material in the powder bed has been involved in
the granulation process, particularly when one considers the attrition inherent in sieving
analysis.

Based on these observations, it is of interest to quantify what effects altering the initial
powder distribution has on the end-product.

4.2 Curve fitting to distribution results

It is common practice to fit particle size distributions to lognormal curves for analysis.
Two lognormal curves are fit to the experimental data, one by fitting to the empirical
cumulative distribution, the other by fitting to the mass fractions. As a side note, a number
of alternate distributions were considered, and all such alternatives were found to deviate
from the data points more than the lognormal distributions.
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4.2.1 Lognormal fit to ECDF

The parameters of the curves fitted to the measured ECDF using Eqn. 18 can be seen
in Table 2. Figure 9 shows the empirical cumulative size distribution of the three end-
product distributions and the lognormal curves fit to the data points. From these figures,
we can observe that, to varying degrees, the data points are initially overestimated, then
underestimated around the primary mode by the curves. The good agreement occurring at
the upper end of the distributions can be largely disregarded as a positive feature because,
by definition, an ECDF will always asymptote to 1. This attribute, as well as the cumula-
tive form, may conceal flaws in the fitting process. The systematic deviation of the curves
fitted to the ECDF implies that they may not be suitable for this data.

Another feature to notice is the variance attached to the experimental data points when
expressed as an ECDF. The Pb bimodal case appears to have noticeably larger sample
variance from the five measurements taken to obtain the averaged ECDF, than either of
the unimodal cases.

Table 2: ECDF lognormal curve fit parameters.

Pn Pb Pu

Lognormal curve µfit parameter 6.18 6.73 6.39
Lognormal curve σfit parameter 1.25 1.33 1.38

4.2.2 Lognormal fit to mass fractions

The parameters of the lognormal curves when fit to the measured mass fractions using
Eqn. 18 can be seen in Table 3. The change in values from Table 2 to Table 3 is indicative
of an aspect of using the ECDFs as a form of analysis. Whilst the changes in µfit can be
ascribed to the use of the mid-points, as opposed to the upper bounds of the sieve classes in
the definition of the mass fraction density d, the Pb and Pu distributions show a significant
increase in σfit, whereas the Pn distribution shows a decrease in σfit. This indicates that
the mass fractions are being fitted to a wider distribution than the ECDF, while Pn is being
fitted to a narrower distribution.

Table 3: Mass fractions lognormal curve fit parameters.

Pn Pb Pu

Lognormal curve µfit parameter 5.85 6.60 6.20
Lognormal curve σfit parameter 1.19 1.55 1.42
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We can observe the outcome of these changes in Figure 10. Of particular interest is the
increase in the tail-weight of the distributions such that Pb has more probability allocated
to the upper tail than the other distributions. Regarding the initial upward spike in the
fitted curves in the lower tail, this is an artefact of the discrete sieve class structures im-
posed upon the continuous lognormal function. The fitted distributions are universally
right-shifted with respect to the highest point of the experimental distributions and the
probability is not allocated to the primary modes in correct magnitudes. Overall, the
quality of the density fitted curves is debatable.
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Figure 10: Lognormal curves fit to mass fractions.
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4.3 Single value characterisations

A number of widely used single value characterisations are presented in this section using
both the original experimental data and the fitted curves.

4.3.1 Mean particle diameter

As discussed in the methodology section, the manner of calculating a mean particle diam-
eter can vary. In Figure 11 we can observe how the various methods of calculating a mean
diameter are realised. As expected from the methods of calculation, the arithmetic based
means, even when based on the lognormal distribution fit parameters, are significantly
larger than the values which have been transformed to reduce the influence of the larger
sieve aperture classes. However, the qualitative behaviour is the same for all calculations,
insofar that the smallest to largest mean diameters for the granulation runs are in the order
of Pn, then Pu with the largest mean diameter belonging to Pb, independent of method
of calculation. The different calculation methods all give noticeably different values and
affect the magnitude of the differences; however the overall trend is not affected.
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Figure 11: Calculated forms of mean diameter particle size.
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Figure 12: Median diameter particle size.

4.3.2 Median particle diameter

In Figure 12 we can observe the median, or d̃50 of the characteristic distributions follow
the same pattern as the means of the distributions. The product from Pn is the smallest
followed by Pu, with the Pb having the largest median particle diameter. We can further
observe the effects of the fitting process, as the fit values are significantly larger than the
experimentally found values for the EDCF fit, while the mass fraction based fit is only
significantly off for the Pb case.

4.3.3 Particle size distribution spread and shape

The spread, or how narrow or wide the distribution is can be characterised in multiple
ways. As the variance and standard deviation are expressions of the same feature of a
distribution, we shall neglect reporting the variance in favour of the more widely used
empirical standard deviation. In Figure 13 the standard deviation as calculated using the
arithmetic values, and the values derived from the lognormal fit curves are displayed. Here
we observe the same qualitative agreement in the methods as seen with the mean particle
sizes for the experimental and the mass fraction fit curve. From smallest to largest, the
particle size distributions follow the order of Pn, Pu, with Pb having the largest standard
deviation where the magnitude of the differences is strongly dependent upon the calcula-
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Figure 13: Calculated forms of particle size distribution standard deviation.

tion technique. The mass fraction fit curve seems to particularly exaggerate the standard
deviation.

There are other metrics which can be used to further describe the found particle size dis-
tribution. In Table 4 multiple measurements are presented based on the experimental
measurements and the curve fits for consideration. The span, interestingly, changes the
order of the granulation run with respect to size of the spread. Although Pb still is clearly
the largest, Pn is attributed to having a larger span then Pu, contrary to all other metrics,
although the values are fairly close numerically. The geometric standard deviations main-
tain the same pattern as the arithmetic standard deviations, except for the ECDF fit curve,
where Pn is the smallest but Pu is larger than Pb. Bearing in mind the poor fit of the curves,
and the changes when the mass fractions were used to fit the curves, this can be attributed
to failure of the lognormal ECDF fitted curve to match the behaviour of the data points.
The 10th and 90th percentiles also maintain the established pattern; however these metrics
have the additional values of addressing oversized and undersized materials. The lower
10% of the material in the Pn run is within the range of the starting material, while the
Pb is larger than any of the starting materials and the Pu just crosses the borderline of the
upper size boundary of the initial materials. The Pn and Pu have a similar amount of over-
sized materials, however the Pb has a marked increase in the size for the 90th percentile.
This indicates that that Pb has significantly more oversized material.
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Table 4: Single value empirically computed characterisations of the end-product distri-
butions.

Pn Pb Pu

Mode 212 300 212
Span 8.34 10.83 8.13
Exp. geometric std 3.49 3.95 3.71
ECDF fit geometric std 3.48 3.78 3.95
Mass fraction fit geometric std 3.28 4.72 4.14
10th percentile (d̃10) 141 177 151
90th percentile (d̃90) 3167 6294 3819
Skewness 3.21 2.91 4.03
Kurtosis 13.54 11.64 23.63

The skewness and kurtosis are more descriptive of the shape of the product distributions.
The experimentally based calculations for the skewness indicate that the Pb distribution
is the least skewed, with the Pu being the most skewed. Similarly, the kurtosis indicates
that the Pb distribution is the most peaked, while the Pu distribution is the least. This
suggests that merely increasing the variance in the initial powder creates a wider and
more skewed distribution, while increasing the variance by introducing bimodality causes
a more central symmetric distribution at a larger central point.

5 Conclusions

We have presented an investigation of the effects of the shape of the initial powder dis-
tribution on a wet granulation system. Experimental data was produced using carefully
constructed distributions of lactose monohydrate for the initial powder and deionised wa-
ter as the binder. Initial powder distributions were constructed from sieve cuts to have
the same arithmetic mean particle diameter while the shapes of the entire distributions
are narrowly unimodal, widely unimodal and widely bimodal. The resulting end-product
distributions are characterised and compared by a variety of metrics.

The product distributions were found to show markedly different characteristics. Increas-
ing the variance while maintaining a unimodal initial powder distribution demonstrated a
broader, more evenly distributed product with the peak of the resulting distribution being
in the same size class as the peak of the product distribution resulting from the initial nar-
row unimodal distribution. The end-product from the bimodal distribution showed an even
larger variance, an increase in oversized particles, a decrease in fines and a right-shift of
the peak product distribution of at least one sieve class when compared to both unimodal
cases. These results were found to be independent of the methods of characterising the
product distributions.
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These findings are of particular relevance to pharmaceutical process development. The
failure to adequately describe the initial powder may prevent the correct identification of
the design space for a granulation process, and may impede the ability to determine the
reasons for any variability in the process output.

Future work will use this experimental data with a population balance model to investi-
gate the physical mechanisms for this observed behaviour. Further, with the significance
of the shape of the initial powder distribution being established, methods to experimen-
tally establish and mathematically describe the initial material will be investigated, as the
current standard methods do not encompass the distribution shape.
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Nomenclature

Roman symbols

� Diameter mm
ci ith constant [-]
d Averaged density function [-]
di ith element of density function [-]
d̃10 10th percentile µm
d̃50 50th percentile or median µm
d̃90 90th percentile µm
D Cumulative mass function [-]
Di ith element of cumulative mass function [-]
Dist Euclidian distance objective function [-]
ECDF Empirical cumulative density function [-]
F vector of values for objective function [-]
G vector of values for objective function [-]
lnN (x, µ, σ) Lognormal distribution with parameters µ and σ [-]
mki measured mass of kth sample in the ith sieve class [-]
M[.] Powder accumulated in any single given aperture sieve. [-]
M45 Powder accumulated in 45 µm sieve [-]
M53 Powder accumulated in 53 µm sieve [-]
M75 Powder accumulated in 75 µm sieve [-]
M90 Powder accumulated in 90 µm sieve [-]
M106 Powder accumulated in 106 µm sieve [-]
Ma Arithmetic mean particle size µm
Mg Geometric mean particle size µm
N Number of sieving measurements for a single sample [-]
p percentile [-]
Pb Constructed powder distribution, bimodal large variance [-]
Pn Constructed powder distribution, unimodal small variance [-]
Pu Constructed powder distribution, unimodal large variance [-]
q3 Mass density distribution [-]
q3i(M[.]) the ith element of the mass density function for the powder sample

M[.]

[-]

Q3 Cumulative mass distribution [-]
rpm Revolutions per minute [-]
wk vector of normalised mass fractions of kth sample [-]
wki normalised mass fraction of kth sample in the ith sieve class [-]
xi ith sieve class diameter µm
x′i Natural log of ith sieve class [-]

Greek symbols
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β2 Kurtosis [-]
γ1 Skewness [-]
µfit Lognormal distribution location parameter [-]
σfit Lognormal distribution shape parameter [-]
σ2

a Arithmetic variance µm2

σa Arithmetic standard deviation µm
σg Geometric standard deviation [-]
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