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Abstract

We apply a Bayesian parameter estimation technique to a chemical kinetic mecha-
nism for n-propylbenzene oxidation in a shock tube in order to propagate errors in
experimental data to errors in model parameters and responses. We find that, in or-
der to apply the methodology successfully, conventional optimisation is required as
a preliminary step. This is carried out in two stages: firstly, a quasi-random global
search using a Sobol low-discrepancy sequence is conducted, followed by a local
optimisation by means of a hybrid gradient-descent/Newton iteration method. The
concentrations of 37 species at a variety of temperatures, pressures, and equivalence
ratios are optimised against a total of 2378 experimental observations. We then apply
the Bayesian methodology to study the influence of uncertainties in the experimental
measurements on some of the Arrhenius parameters in the model as well as some
of the predicted species concentrations. Markov Chain Monte Carlo algorithms are
employed to sample from the posterior probability densities, making use of polyno-
mial surrogates of higher order fitted to the model responses. We conclude that the
methodology provides a useful tool for the analysis of distributions of model param-
eters and responses, in particular their uncertainties and correlations. Limitations
of the method are discussed. For example, we find that using second-order response
surfaces and assuming normal distributions for propagated errors is largely adequate,
but not always.
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1 Introduction

The quantification of uncertainties in experimental as well as computational data has long
been recognised as essential across all areas of science and technology. The field of
combustion modelling is no exception [20, 58]. It is well-established [49, 72] that making
chemical models reliable and predictive requires calculation results to be accompanied by
uncertainty bounds – with greater predictive power corresponding to smaller error bounds.

Various techniques for uncertainty quantification and propagation have been used in com-
bustion kinetic modelling. An elementary way to relate uncertainties in model parameters
to uncertainties in model outputs is via local sensitivity coefficients [62, 65]. The same
idea can be extended to global sensitivities in order to be able to treat strong model non-
linearities combined with large uncertainties [57, 73]. For example, global sensitivity
methods have been used to propagate uncertainties from parameters in first-principles
calculations to reaction rate coefficients [23]. Uncertainties of the three parameters in the
Arrhenius rate law, with particular emphasis on their joint distribution and its temperature
dependence, have been investigated in detail [40, 41, 66, 67]. Given that error propa-
gation is intrinsically part of parameter estimation, frequently in the sense of optimising
with respect to an objective function in one form or another, it is also natural to consider
confidence regions defined by the contours of the objective function surface [21, 37].

In the Data Collaboration framework [20, 49, 51, 72], uncertainties are specified through
deterministic upper and lower bounds rather than probability distributions. It employs
optimisation techniques in conjunction with solution mapping [21] in order to quantify
prediction uncertainties [22], rigorously measure data set consistency [16], quantitatively
discriminate between multiple candidate models [17], and to conduct sensitivity analy-
ses of uncertainties in responses with respect to experimental errors and uncertainties in
model parameters [48].

Spectral uncertainty quantification is a technique based on polynomial chaos expansions
[69, 70], in which uncertain quantities, such as model parameters, are represented as se-
ries of basis random variables. The essence of the method consists in determining the
coefficients of the expansion, the spectral modes, which can be used to reconstruct the
probability density, at least to the finite order of the truncated series. The spectral method
has been introduced to combustion research, specifically in the areas of reacting flows
and chemical kinetics, in the form of a post-processing step to conventional Monte Carlo
analysis [45–47] in which the spectral modes are determined. The technique has been
adapted, using quadratic response surfaces, to derive an analytic expression for the vari-
ance of model responses and combined with optimisation such that experimental errors
can be propagated simultaneously into rate coefficients and their uncertainties [52–54].

Bayesian methods are based on a systematic probability-theoretic treatment of all involved
quantities including in particular experimental data as well as model parameters, and cen-
tre around applying Bayes’ theorem to update knowledge represented in the form of dis-
tributions [4]. Bayesian methods have been used in chemical kinetics for at least half a
century [2], but their popularity in this and other fields [1] has increased significantly in
recent years due to an influential paper by Kennedy and O’Hagan [30]. In particular, the
use of Markov Chain Monte Carlo (MCMC) sampling has become wide-spread, at least
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to some extent as a consequence of readily available powerful computers. For example,
Bayesian uncertainty quantification using MCMC has been applied to rate coefficients of
single reactions, such as H+O2→OH+O using shock tube data [36], and hydrogen ab-
straction from isopropanol using ab initio calculations [43]. The same methods, as well
as polynomial chaos expansions, have also been employed for quantifying uncertainties
in entire reaction mechanisms, focusing specifically on correlations between the three pa-
rameters in the Arrhenius law [42]. Bayesian parameter estimation also naturally extends
to and is closely related to experimental design [27, 28, 39]. Although Bayesian tech-
niques are not new as such, and some applications exist, there continues to be a need for
case studies which demonstrate the performance of the methods.

The purpose of this paper is to apply a Bayesian method for parameter estimation and er-
ror propagation as a case study to a detailed chemical kinetic model for n-propylbenzene
oxidation in a shock tube and report on the experience gained with the method. n-
propylbenzene has been suggested as a potential surrogate for the alkylbenzene class
of components of commercial aviation fuels [10, 14]. The kinetic model contains 191
species and 1127 reactions. Prior to using Bayesian methods, for reasons explained be-
low, we perform optimisation with conventional techniques. We conduct a quasi-random
global search in a parameter space spanned by 64 Arrhenius pre-exponential factors, se-
lected by means of sensitivity analysis, and then use a set of best points found to initiate
local gradient-descent optimisation from those points. A standard least-squares objective
function weighted by experimental errors is utilised to assess agreement with experimen-
tal data, which comprise of 2378 individual observations of 37 species concentrations
at 74 different experimental process conditions with varying pressure, temperature, and
equivalence ratio. For the best point resulting from the optimisation, we apply Bayesian
parameter estimation for a small number of parameters, and use an MCMC method to ob-
tain posterior probability densities. For this purpose, we fit a surrogate model that consists
of polynomials of various orders to the responses. We discuss strengths and weaknesses
of the method.

2 Methodology

In this section, we briefly describe the experimental data set and combustion model used
in this work, and give details of each of the steps involved in performing the error prop-
agation, namely, sensitivity analysis, global search, local optimisation, and Bayesian pa-
rameter estimation.

2.1 Experimental data

The data set we consider here [24] was obtained using the high-pressure single-pulse
shock tube at the University of Illinois at Chicago [56, 61]. Process condition variables
comprise of initial temperature, initial pressure, initial composition, and reaction time.
In all cases, the initial mixture is composed of n-propylbenzene, oxygen, and argon.
The mixture is highly diluted, with an n-propylbenzene mole fraction of about 90 ppm
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throughout, so the system can be considered isothermal to a good approximation. An
overview of the conditions is given in Table 1.

Table 1: Overview of experimental process conditions.

Average shock Temperature Fuel mole Reaction time
pressure [atm] range [K] fraction [ppm] Φ range [ms]

28 907-1551 86 0.54 1.40-2.05
51 959-1558 90 0.55 1.27-1.90
49 838-1635 90 1.0 1.21-1.95
24 905-1669 89 1.9 1.36-2.93
52 847-1640 90 1.9 1.26-1.95

Species concentrations were determined by means of gas chromatography in gases sam-
pled from the shock tube. Measured species include O2, CO, CO2, aliphatic hydrocar-
bons such as methane, ethane, propane, acetylene, ethene, propene, propadiene, propyne,
1,3-butadiene, 1,2-butadiene, 2-butyne, vinylacetylene, diacetylene, and cyclopentadi-
ene, aromatic hydrocarbons such as benzene, toluene, phenylacetylene, styrene, ethyl-
benzene, 1-propenylbenzene, 2-propenylbenzene, n-propylbenzene, indene, naphthalene,
2-ethynylnaphthalene, bibenzyl, diphenylmethane, stilbene, fluorene, and anthracene, and
the oxygenated aromatics phenol, benzylalcohol, benzaldehyde, and benzofuran. Mea-
surement errors are given for each species and range between 1.7% and 25%, with an
average of about 12%.

In total, there are 2378 experimental observations of 37 species across 74 points in process-
condition space. The complete data set is available online as supplementary material to a
previous publication [24].

2.2 Shock tube and chemical kinetic model

The shock tube is modelled as a homogeneous, adiabatic, constant pressure reactor. The
corresponding governing equations are standard and shall not be repeated here. As soft-
ware to solve the equations, kinetics v8.0 [9] was employed.

As chemical kinetic model, a mechanism developed previously [24], extending earlier
work [11, 32], was used. It contains 191 species and 1127 reactions. All species men-
tioned in subsection 2.1 are present in the mechanism.

2.3 Sensitivity analysis

As it is neither feasible nor necessary to tune all kinetic parameters present in a reaction
mechanism simultaneously, a subset needs to be chosen. It is natural to use sensitivity
analysis for this [37, 44, 59, 62, 64, 65]. The basic idea is to calculate the normalised
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sensitivity coefficients of chosen responses with respect to all Arrhenius pre-exponential
factors and then rank the reactions according to the modulus of their coefficients.

The normalised sensitivity coefficient of the ith response ηi (evaluated at a particular point
ξ in process condition space) with respect to the j th model parameter θj is defined by

θj
ηi(ξ, θ)

∂ηi(ξ, θ)

∂θj
.

One way to determine these coefficients is through a finite difference approximation [44,
62, 65]. If we denote the vector of model parameters perturbed in the j th direction by

θ̃j := (θ1, . . . , θj−1, (1 + r)× θj, θj+1, . . . , θn),

where r is a (small, positive) number representing a relative perturbation, then this can be
written as

θj
ηi(ξ, θ)

ηi(ξ, θ̃
j)− ηi(ξ, θ)

(θ̃j − θ)j
=
ηi(ξ, θ̃

j)− ηi(ξ, θ)
rηi(ξ, θ)

. (1)

Now, the present data set has been obtained at numerous points ξ(1), . . . , ξ(Np.c.) in process
condition space. We find that the sensitivity coefficients, of any particular response with
respect to any particular parameter, vary considerably between these points. There are
two contributions to this: the parametric derivative, and the value of the response. If the
value of the response approaches zero, which is common in this data set, the sensitivity
coefficient can become unduly large, in some circumstances amplifying numerical noise
to an extent that it becomes dominant. For this reason, we normalise not by the local
value ηi(ξ(n), θ) of the response, but by its maximum value maxn{ηi(ξ(n), θ)} across all
points in process condition space. It is then possible to compare the resulting coefficients
between different process conditions. More on the subject of dependence of sensitivities
on process conditions can be found for example in [75]. Thus, instead of (1) we consider

Sij :=
maxn

{
|ηi(ξ(n), θ̃j)− ηi(ξ(n), θ)|

}
rmaxn

{
ηi(ξ(n), θ)

} . (2)

In order to obtain a single quantity which can be applied to ranking the reactions we use
the largest value maxi{Sij} among the responses.

We note that this analysis is local in parameter space but global in process condition space
in the sense that sensitivities at every considered point in process condition space are taken
into account.

2.4 Global search and local optimisation

In order to quantify agreement between experiment and model, we use the least-squares
objective function

Φ(θ) =
74∑
n=1

∑
responses i

[ηi(ξ(n), θ)− ηexp
i (ξ(n))

σ
(n)
i

]2
, (3)
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where n indexes the points in process condition space. For the weights σ(n)
i of the in-

dividual terms, we choose the maximum value of each response within each of the five
sets of points in process condition space, multiplied by twice the percentage experimental
error. The maximum is chosen rather than individual values since, by reasoning similar
to the previous subsection, most responses approach zero in every set, and these points
would receive a dominant weight within each set, leading to counter-intuitive results. We
apply this for each set separately rather than for the entire collection of points in process
condition space as the magnitude of some of the responses can vary considerably from set
to set, with equivalence ratio in particular.

Optimisation of the above objective function is carried out in two stages, namely a quasi-
random global search as first stage, followed by a local optimisation as second stage.
For the global search, a Sobol low-discrepancy sequence [55] is employed. For the local
optimisation, an implementation of the Levenberg-Marquardt [31, 34] method, which is a
hybrid between a gradient-descent method and a Newton iteration, is used.

Extensive work has been carried out on uncertainty bounds of Arrhenius parameters [40,
41, 67], feasible sets in such parameter spaces [16, 22, 49, 71], and optimisation of pa-
rameters beyond the basic Arrhenius ones, such as third-body efficiencies [13]. However,
in order to explore the performance of the Bayesian methodology for parameter estima-
tion and error propagation, which is the principal aim of this paper, it is sufficient to find
any local minimum with respect to whichever parameters are considered. Therefore, for
simplicity, we restrict ourselves in the present work to pre-exponential factors within a hy-
percube. We find that optimisation is necessary, though, as direct application of Bayesian
methods to the original, unoptimised mechanism proved to be too problematic mainly re-
garding surrogate fidelity over sufficiently wide ranges in parameter space. We point out
that the global search and local gradient-based optimisation in this work are conducted
using the actual model, rather than a surrogate.

2.5 Bayesian parameter estimation

In this section, we briefly summarise the Bayesian methodology [1, 30] which we have
applied previously in a different context [29, 39], and extend the formulation to het-
eroskedastic. This further builds upon our earlier work on parameter estimation and un-
certainty propagation in the areas of granulation [5–7, 33] and combustion [50].

2.5.1 Bayes’ Theorem

The current knowledge about the values of the model parameters θ can be represented by a
probability density p(θ), called the prior distribution. When additional experimental data
is obtained, represented as a probability density p(ηexp|θ), then the knowledge about the
model parameters can be updated, resulting in a posterior distribution p(θ|ηexp). Bayes’
Theorem states how the posterior can be calculated:

p(θ|ηexp) ∝ p(ηexp|θ)p(θ),
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or in words, ‘Posterior∝ Likelihood× Prior’. In order to estimate the values of the model
parameters using the posterior distribution, likelihood and prior need to be specified.

2.5.2 Likelihood

For the likelihood, i.e. the distribution of the experimental responses, we assume a Gaus-
sian centred at the model response:

ηexp,(n) = η
(
ξ(n), θ

)
+ ε(n) with ε(n) ∼ NL(0,Σ(n)), (4)

where ε(n) is the vector of the measurement errors which are normally distributed with
zero mean and covariance matrix Σ(n), and L denotes the total number of responses. The
covariance matrix Σ(n) of the experimental errors is allowed to vary from point to point
in process condition space, i.e. the system can be heteroskedastic. We note here that (4)
does not include a model inadequacy term, which accounts for any systematic discrepancy
between experiment and model [8, 26, 30].

Equation (4) implies that, as ηexp,(n) ∼ NL
(
η(ξ(n), θ),Σ(n)

)
, the probability density of

observing a particular response ηexp,(n) in the nth experiment is given by

p
(
ηexp,(n)

∣∣θ,Σ(n)
)

= (2π)−L/2
(

det Σ(n)
)−1/2

exp
(
− 1

2
ε(n)

>(
Σ(n)

)−1
ε(n)
)
,

and hence, assuming independent experiments, the likelihood becomes

p
(
ηexp,(1), . . . , ηexp,(N)

∣∣θ,Σ(1), . . . ,Σ(N)
)

=

= (2π)−NL/2
[ N∏
j=1

(det Σ(j))−1/2
]

exp

(
− 1

2

N∑
n=1

ε(n)
>(

Σ(n)
)−1

ε(n)
)
.

2.5.3 Prior distributions

For the prior of θ, we consider a constant, i.e. uniform, distribution over a hypercube C
which is defined as the region in P -dimensional space such that θj ∈ [−1, 1] for all
j = 1, . . . , P . This gives as prior probability density p(θ) = |C|−11{θ∈C}, where | · |
denotes the volume of a set and 1{·} is the indicator function.

2.5.4 Posterior distributions

The posterior density for θ can now be obtained from Bayes’ Theorem as

p
(
θ
∣∣ηexp,(1), . . . , ηexp,(N)

)
∝ exp

(
− 1

2

N∑
n=1

ε(n)
>(

Σ(n)
)−1

ε(n)
)
· 1{θ∈C}. (5)
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2.5.5 Markov Chain Monte Carlo sampling

In order to derive useful information about the unknown parameters from the posterior
density (5), we employ the Markov Chain Monte Carlo sampling algorithms of Metropolis-
Hastings [25, 35] and Wang-Landau [68]. The collection of samples can be used to plot
(marginal) distributions and obtain quantities such as ‘best’ parameter estimates, i.e. the
points of highest probability density, and high probability density regions, whose bounds
can serve as error bars.

The large numbers of samples typically required by these types of algorithm render the
direct use of the model infeasible due to computational expense. For this reason, surrogate
models are widely used in this situation. Examples for the use of such models in the field
of combustion include quadratic response surfaces [15, 18, 19, 21, 37, 39, 60], third order
polynomials [12], higher order orthonormal polynomials [63], cubic natural splines [38],
and High-Dimensional Model Representation (HDMR) [74]. We use polynomials of ar-
bitrary order in this work.

3 Results

3.1 Sensitivity analysis

As described in subsection 2.3, we conduct a sensitivity analysis of all 37 responses with
respect to the Arrhenius pre-exponential factors of all of the 1127 reactions, across all
of the 74 points in process condition space, through finite differencing. This simulation
involves 74 × (1 + 1127) = 83472 model evaluations. We find that using a relative
perturbation of r = 1% (see Eqn. (2)) represents a good trade-off between avoiding both
rounding error issues and the onset of non-linearities in the model responses. This agrees
with recommendations in the literature [65]. The coefficients, with their sign restored,
are shown in Fig. 1 for the 64 most sensitive reactions. We find that the obtained ranking
differs appreciably, though not substantially, from those carried out at single points in
process condition space for individual responses [24].

3.2 Global search and local optimisation

We arbitrarily choose to include all of the reactions listed in Fig. 1 into this step. For each
of the reactions, we define the lower and upper bounds of the Arrhenius pre-exponential
factor to be given by the nominal value divided and multiplied by 5 respectively. We
evaluate 104 points of a Sobol sequence, involving 7.4 × 105 model evaluations, in this
hypercube.

We then run Levenberg-Marquardt optimisations starting from some of the best points, i.e.
those with lowest objective function value. Due to the random nature of the global search,
and the extreme sparsity of the points in high dimensions, it is advisable to consider not
just one but several of the best points, as the best point found in the global search does
not guarantee the best result overall after further optimisation. All results shown in the
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R___1: H+O2<=>O+OH
R1116: C6H5CH2C6H5=FLUORENE+H2
R1115: C6H5+C6H5CH2=C6H5CH2C6H5
R_148: C3H8(+M)<=>CH3+C2H5(+M)
R1022: BPHC3H6=C6H5C3H5+H
R_818: C6H5O+H(+M)=C6H5OH(+M)
R_589: C6H5CH2+OH=C6H5CH2OH
R_859: C5H5+OH=C4H6-13+CO
R_989: PHC3H7=C6H5CH2+C2H5
R_340: C2H2+CH3<=>PC3H4+H
R_555: C6H5CH3(+M)=C6H5CH2+H(+M)
R1012: BPHC3H6=C6H5C3H5-2+H
R1124: C6H5CH2+CO=>C8H6O+H
R1096: INDENYL+C5H5=>A3+2H
R_793: C6H5+O2=C6H5OO
R_152: H+C2H4(+M)<=>C2H5(+M)
R1013: BPHC3H6=C6H6+AC3H5
R1006: PHC3H7+OH=CPHC3H6+H2O
R_616: C14H14+OH=C14H13+H2O
R1058: INDENE+H=INDENYL+H2
R1087: A2+C2H=A2C2H+H
R1000: PHC3H7+OH=BPHC3H6+H2O
R_998: PHC3H7+H=BPHC3H6+H2
R1071: 2C5H5=>A2+2H
R_592: C6H5CH2+CH3=C6H5C2H5
R__35: CH3+CH3(+M)<=>C2H6(+M)
R__13: HO2+OH<=>H2O+O2
R_155: C2H4+O<=>CH3+HCO
R_839: C5H5+H(+M)=C5H6(+M)
R_591: C6H5CH2+HO2=C6H5CH2O+OH
R__25: CO+OH<=>CO2+H
R_585: C6H5CH2=C5H5+C2H2
R1057: INDENE=INDENYL+H
R_162: C4H6-13+H<=>C2H4+C2H3
R_282: AC3H5+H(+M)<=>C3H6(+M)
R1052: C6H5C2H+H=C6H5+C2H2
R_357: H2CCCH+CH3(+M)<=>C4H6-12(+M)
R1125: C6H5CH2+HCO=>C8H6O+H2
R__54: HCO+M=H+CO+M
R_820: C6H5O=CO+C5H5
R_587: C6H5CH2+O=C6H5CHO+H
R_388: C4H4+OH<=>C4H3-I+H2O
R_768: C6H5C2H3+OH=C6H5CCH2+H2O
R__31: CH3+H(+M)<=>CH4(+M)
R_390: C4H4+H<=>C4H5-N
R_655: C6H5CHO+OH=C6H5CO+H2O
R_321: AC3H4+H<=>AC3H5
R_992: PHC3H7+H=APHC3H6+H2
R_844: C5H6+H=C5H5+H2
R_653: C6H5CHO+H=C6H5CO+H2
R_134: C2H6+OH<=>C2H5+H2O
R_791: C6H5+O2=C6H5O+O
R1127: C6H5O+C6H5O=DIBZFUR+H2O
R_981: HCCO+O2=HCO+CO+O
R_588: C6H5CH2+O=C6H5+CH2O
R_507: C4H6-12<=>C4H6-13
R_535: C4H5-N+O2<=>CH2CHCHCHO+O
R1040: C6H5C3H5+H=C6H5CH2+C2H4
R1105: A3+OH=>A2C2H+CH2CO+H
R1093: INDENYL+H2CCCH=>A2C2H+2H
R_804: C6H5OH+OH=C6H5O+H2O
R_387: C4H4+OH<=>C4H3-N+H2O
R1118: OH+FLUORENE=>P2+CO+H
R_176: C2H2+O<=>HCCO+H

Normalised sensitivity coefficient

Figure 1: Normalised sensitivity coefficients for the 64 most sensitive reactions across all
considered points in process condition space.
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Table 2: Square roots of the ratios of partial sums of objective function terms for the
optimised and original mechanisms. The majority of contributions has improved
(highlighted).

Average pressure [atm]: 28 51 49 24 52
Equivalence ratio Φ: 0.54 0.55 1.0 1.9 1.9

n-Propylbenzene 1.378 1.419 4.808 1.015 0.969
O2 1.052 0.651 0.654 0.128 0.211

CO 0.421 0.403 0.660 0.257 0.274
CO2 0.405 0.138 0.224 0.236 0.302

Methane 2.130 2.885 0.889 0.645 0.868
Ethene 0.663 1.984 0.903 0.356 0.403
Ethane 1.875 2.375 1.809 1.214 0.728

Acetylene 1.057 1.048 1.380 1.156 1.125
Propadiene 0.777 3.582 1.898 0.437 0.510

Propyne 0.730 0.494 1.018 0.708 0.457
Vinylacetylene 0.735 0.764 0.813 0.776 0.580

Diacetylene 0.464 0.445 0.140 0.615 0.324
Benzene 0.915 0.855 1.077 0.897 0.737
Toluene 1.395 1.355 1.004 0.245 0.361

Phenylacetylene 0.076 0.170 0.349 0.139 0.168
Styrene 0.415 1.554 0.747 0.452 0.927

Cyclopentadiene 0.292 0.433 0.342 0.889 0.632
Ethylbenzene 0.481 0.252 0.333 0.360 0.244
Benzaldehyde 1.989 5.544 5.334 0.277 0.346

Phenol 0.151 0.775 0.078 0.133 0.115
1-Propenylbenzene 0.048 0.027 0.042 0.148 0.028

Indene 1.077 1.107 1.190 1.625 1.291
Naphthalene 0.630 0.598 0.806 1.083 0.995

1,3-Butadiene 0.902 1.236 0.688 0.191 0.281
Bibenzyl 0.927 1.134 0.560 0.722 0.759

Benzofuran 0.957 0.976 0.960 0.931 0.926
Diphenylmethane 0.570 0.833 0.581 0.637 0.627

Propane 0.737 0.690 0.598
1,2-Butadiene 0.941

2-Butyne 0.836
2-Propenylbenzene 0.019 0.108

Benzylalcohol 0.797 0.784
2-Ethynylnaphthalene 0.676 0.669 0.929 0.922

Fluorene 0.989 0.870 1.152
Stilbene 0.428 0.554 0.505

Anthracene 0.277 0.381 0.250
Propene 4.480 3.185
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(a) n-Propylbenzene (average
pressure 49 atm, Φ = 1.0).
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(b) O2 (average pressure 24 atm,
Φ = 1.9).
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(c) CO (average pressure 24 atm,
Φ = 1.9).

Temperature [K]

C
O

2 
m

ol
e 

fr
ac

tio
n 

[p
pm

]

● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

1000 1200 1400

0
20

0
40

0
60

0
80

0 ●
Experiment
Model (original)
Model (orig., avg.)
Model (optimised)
Model (opt., avg.)

(d) CO2 (average pressure 51 atm,
Φ = 0.55).
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(e) Acetylene (average pressure
28 atm, Φ = 0.54).
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(f) Propyne (average pressure
51 atm, Φ = 0.55).
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(g) Vinylacetylene (average pres-
sure 52 atm, Φ = 1.9).
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(h) Diacetylene (average pressure
49 atm, Φ = 1.0).
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(i) 1,3-Butadiene (average pres-
sure 24 atm, Φ = 1.9).

Figure 2: Comparison of selected responses of the original as well as the optimised model
with experiment. Each graph corresponds to an entry in Table 2.
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(a) Benzene (average pressure
52 atm, Φ = 1.9).
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(b) Toluene (average pressure
24 atm, Φ = 1.9).
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(c) Benzaldehyde (average pres-
sure 49 atm, Φ = 1.0).
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(d) Phenol (average pressure
49 atm, Φ = 1.0).
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(e) 1-Propenylbenzene (average
pressure 52 atm, Φ = 1.9).
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(f) 2-Propenylbenzene (average
pressure 24 atm, Φ = 1.9).
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(g) Phenylacetylene (average
pressure 28 atm, Φ = 0.54).
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(h) Indene (average pressure
24 atm, Φ = 1.9).
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(i) Naphthalene (average pressure
51 atm, Φ = 0.55).

Figure 3: Comparison of selected responses of the original as well as the optimised model
with experiment. Each graph corresponds to an entry in Table 2.
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Figure 7: Correlations between benzene and toluene mole fractions at different temper-
atures (average pressure 52 atm, Φ = 1.9). As the temperature increases, the
correlation becomes stronger and turns from negative to positive. The error
bars for the model response in Figs. 7a and 7b are the 2σ HPD regions derived
from the one-dimensional marginal distributions.
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following are for the best point overall which was found with the Levenberg-Marquardt
optimisation run initiated from the second-best Sobol point.

In order to assess in more detail the improvement or deterioration of the agreement be-
tween experiment and model, we consider the partial sums of those terms in the objective
function (3) belonging to each species and each of the five sets of conditions as sum-
marised in Table 1. Table 2 lists, for each measured species and for each of the five sets
of conditions, the square root of the ratios of the value of the corresponding partial sum
for the optimised mechanism and the original one. Ratios less than one, i.e where the
agreement has improved, are highlighted. Most of the contributions – 120 out of 159,
more than 75% – have improved.

Figures 2 and 3 show a comparison of selected responses of the original as well as the
optimised model with experiment. Each model data point displayed is evaluated at its
exact condition, i.e. at the experimental pressure and reaction time, whereas the curves
labelled ‘average’ are temperature sweeps evaluated at an average pressure and reaction
time. The average curves, included as a visual aid but also because they were used in
previous work [24], differ somewhat from the values obtained at the exact conditions
mainly due to the fact that many species concentrations change significantly over the
observed time-scale. Each graph in these figures corresponds to an entry in Table 2. For
example, for O2 at an average pressure of 24 atm and and equivalence ratio of 1.9 (Fig. 2b),
the sum of those terms in the objective function corresponding to the data points in the
graph has decreased by a factor of 0.128−2 ≈ 61.

Some species have improved considerably, such as 2-propenylbenzene, 1-propenylbenzene,
and phenylacetylene (Figs. 3e, 3f, and 3g). This is mostly a consequence of the fact that
the value of the objective function of the original model is dominated by a few responses
including 2- and 1-propenylbenzene. The reason for that is that these agree much less
well with experiment, relatively speaking, than most others, and that the experimental
values have small error bars, which leads to a large weight of the corresponding terms
in the sum in Eqn. (3). The agreement of some responses has worsened. For example,
n-propylbenzene (Fig. 2a) and benzaldehyde (Fig. 3c) are two of the worst cases. In case
of n-propylbenzene, the worsening of the corresponding objective function contributions
manifests itself in the fact that the decomposition curve has shifted by about 20 K to-
wards lower temperatures. In general, worsening agreement of some model responses
with experimental observations, while others improve, can be indicative of not including
sufficiently many model parameters in the optimisation. While it is clear that not all of
the 2378 experimental observations determine or at least constrain a model parameter,
due to strong correlations in the data, the question of how many ‘true’ degrees of freedom
this optimisation problem has is a non-trivial one [21], and we shall make no attempt to
address this question here.
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3.3 Bayesian parameter estimation and error propagation

In order to compute posterior densities, the covariance matrices of the (experimental)
responses need to be defined. The most natural choice is

N∑
n=1

ε(n)
>(

Σ(n)
)−1

ε(n) = Φ(θ),

with Φ(θ) defined by Eqn. (3), i.e. Σ(n) = diag
(
(σ

(n)
1 )2, . . . , (σ

(n)

L(n))
2
)
. The following

points should be noted:

1. This choice assumes the responses are uncorrelated.

2. The fact that not every response is measured at every point in process condition
space rules out homoskedasticity, i.e. using the same covariance matrix at every
point in process condition space.

3. This highlights the close relationship between the form of the objective function
and the distribution of experimental data: using a non-least-squares objective func-
tion generally implies that the experimental error can no longer be assumed to be
normally distributed (see also [53]).

With the above choice, we find that the resulting errors in model parameters and responses
are very optimistic – much smaller than what one would anticipate by visual inspection
of the responses (Figs. 2 and 3). It is known that a main reason for this is the fact that
the model discrepancy is not taken into account (in Eqn. (4)) [8, 26, 30]. In order to
compensate for this, we arbitrarily multiply each of the σ(n)

i by a factor of 20. We note
that rescaling the objective function by an overall (positive) constant does not affect the
location of any minimum.

We select the pre-exponential factors of reactions 989, 1006, 1022, 555, and 592 for the
Bayesian analysis, which are among the most sensitive ones and which are all involved
in the decomposition of the fuel molecule (see Fig. 1). The chosen parameters have well-
defined minima in the interior of the hypercube, in contrast to 25 of the 64 parameters
whose minimum lies on the boundary. This phenomenon is characteristic of combustion
kinetic systems [21], as a consequence of valley-shaped objective functions [18]. For
presentational purposes, we have chosen to include only five parameters into the analy-
sis. While some constraints on the number of parameters are imposed by the computing
hardware, such as the memory required for post-processing the samples, other constraints
originate from the scaling behaviour with dimension for the number of samples required
for convergence of the MCMC algorithm, which needs to be assessed on a case-by-case
basis. Another difficulty stems from the need for surrogates with large numbers of inde-
pendent variables. In higher dimensions, it would be necessary to exploit that the number
of active parameters is typically small, as a consequence of effect sparsity [3, 21].

When sampling from the posterior (5), it is critical to ensure the results are free from
numerical artefacts. In particular, it needs to be established that the obtained distributions

19



are independent of the numbers of samples as well as the number of initial samples dis-
carded (burn-in). Related to that, autocorrelations should be near zero, sample trace plots
should be essentially time-translation invariant, and acceptance rates should be near their
theoretically recommended values. Finally, we test whether two different, albeit related,
sampling algorithms, namely Metropolis-Hastings and Wang-Landau, give comparable
answers. These issues are described in more detail in [29, 39]. All posterior densities
shown in the following have been produced with the Metropolis-Hastings method us-
ing 105 samples with a burn-in of 104.

Whenever a surrogate is used instead of the actual model, it needs to be demonstrated
that the former accurately reproduces the behaviour of the latter. To this end, we test the
dependence of the predictions on the order of the polynomial surrogate, which we least-
squares fit to 103 Sobol points. Recalling that a kth order polynomial in n dimensions has(
n+k
k

)
degrees of freedom, we note that, in five dimensions, this number of Sobol points

is sufficient for a polynomial order of up to six without running into problems with over-
fitting. We find that most responses at most of the points in process condition space are
captured accurately by polynomials of second order: 2226 out of 2378 are represented
with an R2 of 0.99 or higher, but the R2 of some of the remaining 152 can fall as low
as 0.57. At sixth order, only 3 fail to reach R2 ≥ 0.99, with the lowest being about 0.92.
All results presented here are for sixth order polynomials.

Figure 4 shows two-dimensional marginal posterior probability densities for the above-
mentioned five reactions. The pre-exponential factors are coded logarithmically (denoted
by a prime) to a range from −1 to +1, where the lower bound of −1 corresponds to the
nominal value divided by a factor and the upper bound of +1 corresponds to the nominal
value multiplied by the same factor. The factors for the reactions 989, 1006, 1022, 555,
and 592 are 1.6, 4.0, 2.0, 1.8, and 1.6 respectively. The pre-exponentials appear to be
normally distributed to a good approximation. Some correlations can be seen, such as a
negative one between reactions 592 and 1006.

As every sample in model parameter space shown in Fig. 4 is nothing but a model evalu-
ation, one can, of course, produce analogous plots for the responses. Figure 5 shows the
correlations between benzene, toluene, indene, naphthalene, and anthracene mole frac-
tions at an average pressure of 52 atm, an equivalence ratio of Φ = 1.9, and a temperature
of T = 1286 K. We observe that deviations from Gaussian behaviour are not negligi-
ble in some cases, although assuming normal distributions should still give reasonable
approximations.

Figure 6 shows the correlation of the benzene mole fraction with itself at various temper-
atures, for an average pressure of 52 atm and an equivalence ratio of Φ = 1.9. While, as
expected in general, nearby temperatures tend to be strongly positively correlated and less
and less so with increasing separation, two modes can be identified. The fact that there
is a negative correlation between the response at 1286 K and at 1449 K suggests that the
response is controlled by different pathways in different temperature ranges.

Figure 7 shows correlations between the benzene and toluene mole fractions at various
temperatures, for an average pressure of 52 atm and an equivalence ratio of Φ = 1.9. The
error bars for the model response in Figs. 7a and 7b are the 2σ High Probability Density
(HPD) regions derived from the one-dimensional marginal distributions. As the temper-
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ature increases (Figs. 7c to 7h), we observe that the correlation becomes stronger and
turns from negative to positive. Also, we note that an assumption of normally distributed
responses can be problematic in some circumstances, such as at T = 1374 K (Fig. 7f)
where a crescent-shaped distribution is obtained. This is consistent with reports in the
literature [2, 37]. One should bear in mind, though, that the shape of the distributions
directly reflects the local geometry of the objective function surface at the point in param-
eter space where the analysis is carried out (see also [37]), and thereby in general depends
on the location of that point, i.e. the chosen (local) minimum. We note, however, that this
is an intrinsic property of the problem, and not of the method used to study it.

4 Conclusions

We have applied a Bayesian parameter estimation method to error propagation in a chem-
ical kinetic model for n-propylbenzene oxidation in a shock tube as a case study. Even
though the Bayesian parameter estimation method includes optimisation in the sense that
the points of highest posterior density correspond to the local minima of the objective
function, we found that, for the model and data considered, it was necessary to perform
a conventional optimisation before applying the Bayesian method. This is essentially due
to the challenges associated with producing surrogates of sufficient fidelity over large
ranges in parameter space. The use of surrogates is inevitable due to large numbers of
evaluations required for MCMC sampling from the posterior densities. We observed that
response uncertainties are significantly underestimated, which has been noted previously
and is at least partially attributable to systematic model inadequacy. Furthermore, we have
found that second-order response surfaces are sufficiently accurate in general, but not al-
ways. Similarly, assuming normal distributions for propagated errors is largely adequate,
but not in all cases. We hope the observations reported here may be useful to practitioners
who consider using Bayesian techniques for uncertainty quantification.
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