
Cambridge Centre for
Computational Chemical

Engineering

University of Cambridge
Department of Chemical Engineering

Preprint ISSN 1473 – 4273

Stochastic solution of ordinary differential

equations

Sebastian Mosbach1, Markus Kraft1

submitted: December 4, 2003

1 Department of Chemical Engineering
University of Cambridge
Pembroke Street
Cambridge CB2 3RA
UK
e-Mail: sm453@cam.ac.uk,
markus kraft@cheng.cam.ac.uk

Preprint No. 13

c4e

Key words and phrases. ODE, Markov process, combustion.

Edited by
Cambridge Centre for Computational Chemical Engineering
Department of Chemical Engineering
University of Cambridge
Cambridge CB2 3RA
United Kingdom.

Fax: + 44 (0)1223 334796
E-Mail: c4e@cheng.cam.ac.uk
World Wide Web: http://www.cheng.cam.ac.uk/c4e/

Abstract

In this paper new stochastic algorithms for the numerical solution of sys-
tems of ordinary differential equations (ODEs) are proposed. Furthermore, a
correspondence principle is established between these algorithms, which are
based on the theory of Markov jump processes, and deterministic schemes.

For one of the proposed stochastic algorithms, a detailed numerical study
of some of its properties is carried out using homogeneous gas-phase re-
action mechanisms describing the combustion of hydrogen, carbon monox-
ide, methane, n-heptane, iso-octane and n-decane. Fuels like mixtures of
n-heptane and iso-octane can contain up to a thousand species and several
thousand reactions and are of practical relevance to industrial combustion
processes.

One deterministic method yielded by our correspondence principle has
been proposed and studied in a previous paper and is used here in order to shed
light on various aspects of the considered stochastic algorithm. In addition,
we use the widespread state-of-the-art stiff ODE-solver package DASSL for
comparison.

Advantages of our methods include among others their exceptional sim-
plicity of implementation, negligible start-up costs and, as shown by numerical
experiments, a linear scaling behaviour of the computational time with the
number of equations.

It is also shown that for large systems, the proposed algorithms exhibit
computational efficiency similar to conventional implicit solvers, assuming
multiple runs in the stochastic case. In view of the stiffness of the considered
systems and the explicit nature of our algorithms, this is rather surprising.

These properties suggest as typical application large operator-splitting
problems requiring moderate accuracy, such as PDF transport models.

1

Contents

1 Introduction 3

2 Theoretical background 4

2.1 The initial value problem . 4

2.2 Approximation by Markov processes 4

2.3 The master equation . 5

2.3.1 One-dimensional form . 6

2.3.2 General form in S dimensions 7

3 Algorithms 8

3.1 General method . 8

3.2 Applications . 9

3.2.1 Solution of ODEs . 9

3.2.2 Direct simulation of chemical reactions 11

3.3 Deterministic versions of stochastic algorithms 11

3.3.1 Alternative 1 - Expectation 11

3.3.2 Alternative 2 - Average . 14

3.4 Stochastic versions of deterministic algorithms 15

4 Numerical experiments 17

4.1 The ODE systems . 17

4.2 The considered algorithms . 19

4.3 Confidence intervals and error bounds 20

4.4 Results . 21

5 Conclusion 26

References 27

2

1 Introduction

Turbulent combustion is ubiquitous in today’s technology, for example in gas tur-
bines, diesel and spark-ignition engines. An important issue in combustion tech-
nology in general is its detrimental impact on the environment through unwanted
emissions of combustion products and by-products. Industry employs numerical
modelling of these processes to achieve a deeper understanding in order to reduce
combustion emissions. One modelling approach that has been shown to be success-
ful is based on the probability density function (PDF) transport equation of the
physical quantities of interest [28]. In the special case of spacial homogeneity these
PDF methods reduce to stochastic reactor models (SRMs), which can be found in
many industrial applications (see for example [1, 19, 23]).

Some of the earliest works on stochastic methods applied to chemical kinetics include
[22, 5, 12] and [31]. In these papers, stochastic direct simulation algorithms are
presented, which predict the time evolution of homogeneous chemically reacting gas
mixtures. As pointed out in [13], such algorithms of stochastic nature are able to
account for inherent microscopic fluctuations. In [14], a derivation of the chemical
master equation is given showing that this equation describes exactly any well-
stirred and thermally equilibrated gas-phase chemical system. More recently, in [20]
a direct method to calculate the combustion of practically relevant fuels is used.
Improvements of the direct simulation strategy in physical and chemical problems
are indicated for instance in [4] and [15].

The application of the theory of Markov processes to the solution of ODEs was
initiated by [21], though from a purely theoretical point of view without numerically
exploiting any of the ideas. We are not aware of any attempts to investigate the
numerical solution of ODEs by stochastic methods.

A good recent review of available solvers for stiff initial value problems is given in
[6]. There, the solver DASSL, which is also used in this paper, is referred to as a
very powerful method and is recommended for general use when approaching stiff
ODEs or differential/algebraic equations.

In [30] it is noted that combustion mechanisms, which are expected to become
increasingly large in the near future, are rather sparse, due to the fact that each
species reacts at most with a small fraction of the total number of species. Also,
sparse routines for DASSL are developed.

The purpose of this paper is to present numerous algorithms for the solution of sys-
tems of ODEs by means of sequences of Markov processes. In addition, we propose
a scheme that establishes a correspondence between conventional and stochastic al-
gorithms yielding numerous examples of deterministic as well as stochastic methods,
all of which are explicit and therefore remarkably simple to implement. However, it
is beyond the scope of this text to explore all possible aspects. Our main intention
is to present the algorithms, their underlying principles and to demonstrate for a
particular one its performance in practically relevant applications. This is put into
practice by studying one of the proposed stochastic algorithms and a version of its
deterministic analogue numerically in the context of some homogeneous gas-phase
reaction mechanisms describing the combustion of small hydrocarbons. We also

3

show how our algorithms compare to DASSL, a state-of-the-art solver package for
stiff systems.

This paper is structured as follows. In section 2 we give some theoretical background
of stochastic ODE solution. Subsection 2.1 specifies which class of ODEs we intend
to solve by a stochastic approach and subsection 2.2 elucidates how an ODE can
be approximated by a sequence of Markov processes. A formal derivation of how to
specify Markov processes which describe ODEs is given in subsection 2.3. Based on
the understanding of a Markov jump process, one can easily write down algorithms
that produce approximate solutions, which is done in a number of ways in section 3.
In subsection 3.1, the general scheme is explained with a number of example ap-
plications in subsection 3.2. We then elaborate on connections between stochastic
and deterministic approaches in subsections 3.3 and 3.4. In the course of the paper,
we come across a variety of different algorithms, whose performance (i.e. the ratio
between accuracy and computational expense) remains to be investigated. Due to
time and space limitations, we had to restrict our numerical experiments, whose re-
sults are presented in section 4, to two algorithms. First, we specify the considered
test systems of ODEs in subsection 4.1, for which we chose the combustion systems
hydrogen, carbon monoxide, methane, n-heptane, iso-octane and n-decane. In sub-
section 4.2, we then write down the precise algorithms studied. In subsection 4.3 we
give various definitions concerning numerical errors that are used for assessing the
quality of approximations. We then discuss the performed experiments and their
results in section 4.4. Finally, in section 5 we draw some conclusions.

2 Theoretical background

2.1 The initial value problem

Consider the system of S ∈ N ordinary differential equations

d

dt
λj(t) = Qj

(
λ(t)

)
; j ∈ {1, . . . , S} (2.1)

with the initial condition
λ(0) = λ0 ∈ RS.

The numerical algorithms presented in this work can be applied to problems with
Lipschitz continuous right hand side Q : RS → RS, which is a weaker requirement
compared to the differentiability needed by most conventional solvers. We further-
more assume that the initial value problem possesses a unique solution on some
compact interval. Also, we consider only problems without explicit time depen-
dence.

2.2 Approximation by Markov processes

Given a physical system whose states can be described by S quantities x1, . . . , xS.
In other words, the states x = (x1, . . . , xj, . . . , xS) of the system are represented by

4

vectors in the state space RS. Assume furthermore that there exist I different jumps
J1, . . . , Jα, . . . , JI describing transitions from a current state x to a new state Jα(x),
where the α-th jump occurs at the rate (number of jumps per unit time) Rα(x) > 0.

Jα : RS 3 x 7→ Jα(x) = x + yα(x) ∈ RS (2.2)

Greek indices refer to the jumps whereas Latin indices refer to the quantities them-
selves. The transitions between the states occur at random with probability distri-
bution determined by the rates. Mathematically, such a system is modelled by a
Markov jump process Z with generator

(AΦ)(x) =
I∑

α=1

Rα(x)
[
Φ

(
Jα(x)

)− Φ(x)
]

; x ∈ RS, (2.3)

which contains all of the above information. In this formula, Φ denotes a test
function from RS to R. The index α in the sum runs over all possible jumps which
the process can perform, starting from the current state x.

The question which rates and jumps have to be used in order to specify a Markov
jump process that approximates an ODE is answered in subsection 2.3. In section
3 it is shown how to translate this description into an algorithm.

Usually, the system given by (2.3) is just an approximation of a problem of interest,
which requires a means for controlling the accuracy of the approximate solutions.
In many applications, the jumps Jα and the rates Rα depend on some error control
parameter, for instance the local absolute error tolerance ATOL in the ODE case, or,
if the system contains a particle ensemble, the particle number n. In probability
theory, this is summarized under the concept of a sequence (Z(n))n∈N of Markov jump
processes, where the index n can be regarded as the approximation parameter. In
the limit n →∞ a sample path of the Markov process “is” the exact solution of the
considered problem. This notion of convergence of a sequence of Markov processes to
the solution of an ODE-system is made precise by the so-called fluid limit theorem,
originally published by Kurtz [21], then extended and generalized by Darling and
Norris [10]. For introductory approaches, the reader is referred to [9] or [27], and
further material can be found for example in [11].

2.3 The master equation

The master equation describes the time evolution of the probability density function
f(x, t) of a Markov process. It is assumed to be given by

∂

∂t
f(x, t) = A∗f(x, t), (2.4)

where the formal adjoint A∗ of the generator is defined via∫
ϕ(x)(AΦ)(x)dx =

∫
(A∗ϕ)(x)Φ(x)dx. (2.5)

Starting from equation (2.4), we motivate a number of generators, first in their
one-dimensional form. Then, these considerations are generalized to an arbitrary
number of ODEs in order to be utilized later on to construct stochastic algorithms
and their deterministic counterparts.

5

2.3.1 One-dimensional form

Exact case

Consider the generator

(AΦ)(x) = Q(x)
d

dx
Φ(x) (2.6)

of a Markov process Z corresponding to the master equation

∂

∂t
f(x, t) = − ∂

∂x

(
Q(x)f(x, t)

)
. (2.7)

with initial probability density function f(x, 0) = δ(x − λ0). This initial condition
represents the fact that we always start with a single, fixed initial value λ0. One can
show by integrating with respect to x against a test function that a weak solution
of equation (2.7) is given by

f(x, t) = δ
(
x− λ(t)

)
. (2.8)

Therefore, the expectation of the process at time t equals the value of the solution
λ at time t:

EZ(t) =

∫
xf(x, t)dx = λ(t).

The variance of the Dirac delta distribution is zero of course, which means that the
sample path (there exists only one, no randomness) of the process generated by (2.6)
is the exact solution.

First order finite difference approximation

We now approximate (2.6) by the first order finite difference quotient

(AΦ)(x) = Q(x)
Φ(x + h)− Φ(x)

h
, (2.9)

which looks very similar to the general generator (2.3). However, interpreting (2.9)
as a jump process only makes sense if the rates are non-negative, which implies
that h has to be positive/negative whenever Q is. This will become relevant when
algorithms are derived in section 3.

Second order finite difference approximation

The derivative of a suitably differentiable function can be approximated up to second
order by

Φ′(x) =
−Φ(x + h) + 4Φ(x + h/2)− 3Φ(x)

h
+ O(h2).

Combining this with (2.6) yields

(AΦ)(x) = Q(x)
−Φ(x + h) + 4Φ(x + h/2)− 3Φ(x)

h
. (2.10)

Higher order approximations are motivated by the following idea: Assume that the
master equation corresponding to a k-th order generator possesses as solution a

6

probability density function which equals that of the exact equation up to a k-th
order correction in h. Then the moments

mj(t) =

∫
xjf(x, t)dx

of the exact distribution equal those of the approximate distribution also up to k-th
order in h. In particular, this implies that the variance

Var Z(t) = m2(t)−
[
m1(t)

]2

of the approximate process Z differs from that of the exact process by terms of k-th
order in h. More specifically, since in our case the variance of the exact process
vanishes, the variance of the approximate process is proportional to hk.

2.3.2 General form in S dimensions

Exact case

The S-dimensional version of (2.6) reads

(AΦ)(x) =
S∑

j=1

Qj(x)
∂

∂xj

Φ(x). (2.11)

As in the one-dimensional case, this has zero variance for an initial delta distribution,
i.e. the sample path is the exact solution of the ODE.

First order finite difference approximation

There are numerous ways to extend generator (2.9) to S dimensions, one of the
simplest being given by

(AΦ)(x) =
S∑

j=1

Qj(x)
Φ(x + hej)− Φ(x)

h
.

Here, ej denotes the j-th unit vector in RS, i.e. (ej)k = δjk, with

δjk =

{
1 for j = k

0 otherwise

the Kronecker delta. This expression can be generalized such that each component
possesses “its own h”, which may even depend on the current state x, i.e.

(AΦ)(x) =
S∑

j=1

Qj(x)

hj(x)

[
Φ

(
x + hj(x)ej

)− Φ(x)
]
. (2.12)

As noticed above, the positivity of the rates is taken into account via an appropriate
choice of hj (see subsection 3.2.1).

7

3 Algorithms

In this section, a variety of algorithms is presented including a (non-rigorous) cor-
respondence principle between stochastic and deterministic methods.

3.1 General method

Equipped with the knowledge of the rates Rα and the jumps Jα describing a system,
in other words knowing generator (2.3), one readily deduces a simulation procedure
that creates sample paths of the process, i.e. approximations to the solution of the
considered problem.

1. Initialise the state vector x, i.e. set it equal to the given initial values, set t = 0
and fix a stopping time tstop > 0.

2. Wait an exponentially distributed time τ with waiting time parameter

π =
I∑

β=1

Rβ. (3.1)

That means, advance the time t 7→ t + τ such that the waiting time τ is
distributed according to1

P(τ > s) = exp(−πs) ∀s > 0. (3.2)

3. If t > tstop then stop.

4. Choose a jump index α ∈ {1, . . . , I} according to the probability

Pα =
Rα∑I

β=1 Rβ

= Rα/π. (3.3)

5. Perform the jump according to

x 7→ Jα(x) = x + yα(x),

where α is the index chosen in the previous step.

6. Go to step 2.

Methods to generate pseudo-random numbers with a given distribution are standard
knowledge in computer science and can be found in many introductory textbooks
on numerics, for instance [29].

1Probabilities and expectations are denoted throughout by sans serif letters P and E respectively.

8

3.2 Applications

3.2.1 Solution of ODEs

The results obtained in subsection (2.3.2) suggest one jump for each component
(i.e. I = S), which means Greek and Latin indices can be used interchangeably.
Strictly speaking there are twice as many jumps as components (one positive and
one negative for each component), but since at a fixed time for each component at
most one jump has non-zero probability, it suffices to work with I = S. The jump
in generator (2.12) can then be written as

x 7→ Jα(x) = x + yα(x) with yα(x) = hα(x)eα,

where α ∈ {1, . . . , S}. The hα’s, which are required to have the same sign as the
right hand side Q, are called weights in this context. The corresponding algorithm
reads as follows.

1. Fix the error control parameter(s), the stopping time tstop > 0, set t = 0,
choose weights hα(x) and initialise the state vector according to x = λ0 ∈ RS.

2. Wait an exponentially distributed time with waiting time parameter

π(x) =
S∑

β=1

Qβ(x)

hβ(x)
.

3. If t > tstop then stop.

4. Choose a component index α ∈ {1, . . . , S} according to the probability

Pα(x) =
Qα(x)

hα(x)

/
π(x).

5. Perform a jump according to

x 7→ Jα(x) = x + yα(x) =
(
x1, . . . , xα + hα(x), . . . , xS

)
,

where α is the index chosen in the previous step.

6. Go to step 2.

Examples

In the following, a number of examples for possible choices of the weights are pre-
sented.

A) We specify the weights to be

hα(x) = ATOL sgn Qα(x). (3.4)

9

The constant parameter ATOL > 0 is introduced having in mind the absolute
local error tolerance commonly used in the field of numerical ODE solution
(see for example [17]). The waiting time parameter then becomes

π(x) =
S∑

β=1

Qβ(x)

hβ(x)
=

S∑

β=1

|Qβ(x)|/ATOL. (3.5)

In other words the step size is automatically adapted in the sense that, if
the magnitude of the right hand side is large/small (i.e. the solution changes
quickly/slowly) the time step is comparatively small/large. The component
probability is

Pα(x) =
Qα(x)

hα(x)π(x)
=

|Qα(x)|∑S
β=1 |Qβ(x)| , (3.6)

i.e. quantities whose (modulus of the) component of the right hand side is
large are relatively likely to be chosen.

B) Another choice is given by

hα(x) = ATOLQα(x),

which means the jump distance varies according to the rate of each component
of the right hand side. The waiting time parameter becomes

π(x) =
S∑

β=1

Qβ(x)

hβ(x)
= S/ATOL, (3.7)

which means the average time step size is constant. The component probability
is

Pα(x) =
Qα(x)

hα(x)π(x)
=

1

S
,

i.e. all quantities are equally likely to be chosen. Numerical experiments indi-
cate that this method suffers from stability problems.

C) We introduce scaling functions Fα with Fα(x) > 0 by choosing the weights to
be

hα(x) =
Qα(x)

nFα(x)
.

The waiting time parameter is

π(x) =
S∑

β=1

Qβ(x)

hβ(x)
= n

S∑

β=1

Fβ(x)

and the component probability becomes

Pα(x) =
Qα(x)

hα(x)π(x)
=

Fα(x)∑S
β=1 Fβ(x)

.

The main advantage of this method is that the computational expense is
shifted from the evaluation of Q to that of F so in general one would ap-
ply this to problems with a very expensive right hand side and try to find a
cheap F .

10

3.2.2 Direct simulation of chemical reactions

Chemical reactions have previously been modelled stochastically for instance in [13]
and [20]. Consider a reaction mechanism consisting of I elementary irreversible
chemical reactions

να = (να1, . . . , ναS) −→ ν∗α = (ν∗α1, . . . , ν
∗
αS) ; α ∈ {1, . . . , I}

involving S different species, whose particle numbers are denoted by x1, . . . , xS.
The stoichiometric coefficients ναj, ν∗αj as well as the species xj themselves are non-
negative integers. The jump, being simply a single reaction event, is given by

x 7→ Jα(x) = (x1 + ν∗α1 − να1, . . . , xS + ν∗αS − ναS),

which can be written down more concisely in the form

yα = ν∗α − να.

The rates are determined by the reaction rate functions

Rα(x) = γ(x)1−∑S
j=1 ναjkα

S∏
j=1

ναj∏
i=1

(xj − i + 1), (3.8)

where γ(x) is a normalization factor and the kα’s are reaction rate constants.

The corresponding elementary algorithm can be enhanced in numerous ways, e.g.
see subsection 3.3.2 or introduce weights hj such that yαj = hj(ν

∗
αj−ναj). A method

similar to the latter in a slightly different context has been proposed in [4], and other
related ideas can be found in [15].

3.3 Deterministic versions of stochastic algorithms

When attempting to construct a deterministic counterpart of a stochastic algorithm,
one faces the problem of how to represent the non-uniform probability distribution
of the jumps. We present two slightly different ways to achieve this goal.

3.3.1 Alternative 1 - Expectation

The first step is to note that the jump index α is a random variable with probability
distribution Pα = Rα/

∑
β Rβ. Consequently, the jump Jα and the jump size yα

are also random variables, since they are functions of α. From this, a deterministic
algorithm is obtained in the most natural way by replacing the jump and the waiting
time by their expectation values:

stochastic

x 7→ Jα(x) = x + yα(x)

t 7→ t + τ

⇒
deterministic

x 7→ EJα(x) = x + Eyα(x)

t 7→ t + Eτ

(3.9)

11

In other words we introduce a deterministic scheme

x 7→ x + ∆x ∈ RS

t 7→ t + ∆t ∈ [0,∞)
with

∆x := Eyα

∆t := Eτ
. (3.10)

The expected jump is simply the sum of the jumps weighted by selection probabili-
ties:

EJα =
I∑

α=1

Jα(x)Pα =

∑
α Jα(x)Rα∑

β Rβ

or equivalently

Eyα =
I∑

α=1

yα(x)Pα =

∑
α yα(x)Rα∑

β Rβ

=
1

π

∑
α

yα(x)Rα, (3.11)

where (3.1) has been used in the last step. The exponential distribution (3.2) of the
waiting time τ implies

Eτ =
1

π
. (3.12)

Combining this with (3.11) and applying the definitions in (3.10) one obtains

∆x

∆t
=

I∑
α=1

yαRα, (3.13)

which can be used to derive the limiting equations of a given process.

Examples

A) Applying the above procedure to example A of subsection 3.2.1 simply yields
Euler’s algorithm as follows. Using weights (3.4), the jump can be written as

yα = hαeα = (ATOL sgn Qα)eα, (3.14)

which implies for the rates

Rα =
Qα

(yα)α

=
Qα

hα

=
|Qα|
ATOL

.

Note that the time step (cf. (3.5))

∆t = Eτ =
1

π
=

1∑S
β=1 Rβ

=
ATOL∑
β |Qβ| (3.15)

is dictated here by the theory and, in contrast to conventional adaption tech-
niques, does not include direct error-estimation. For the expectation of the
jump one obtains

Eyα =

∑
α yαRα∑

β Rβ

=

∑
α(ATOL sgn Qα)eα|Qα|/ATOL∑

β |Qβ|/ATOL =
ATOL∑
β |Qβ|Q = ∆tQ.

12

The resulting propagation step

x 7→ EJα(x) = x + Eyα(x) = x + ∆tQ

is precisely the standard explicit Euler method except for the automatic time
adaptation. As a consequence of this step adaption, the magnitude of the
changes of the components is bounded: |∆xj| = |∆tQj| 6 ATOL. The selec-
tion probability of the components is represented here in the fact that each
jump size ATOL is multiplied by its associated probability |Qj|/

∑ |Qi|, which,
adapting ∆t according to (3.15), gives the change ∆x = ∆tQ.

An analogous calculation can be performed for example B of subsection 3.2.1
(weights hα = ATOLQα), which also yields Euler’s algorithm, i.e. ∆x = ∆tQ,
but with constant time steps ∆t = ATOL/S (cf. (3.7)).

B) The deterministic methods obtained from simple stochastic schemes via the
recipe introduced above are usually well-known explicit algorithms. Since the
latter, such as Euler’s method, are known to perform poorly for stiff systems,
this raises the question why the stochastic algorithms are found to be relatively
efficient (see section 4). Experience suggests that the concept of changing only
one component of the approximate solution in each step is the reason for the
robustness of the method. The following prescription imitates this feature.

1. Fix ATOL > 0, a stopping time tstop > 0, set t = 0, initialise the solution
vector x = λ0 and the change vector ∆x = 0.

2. Update t 7→ t + ∆t with ∆t = 1/
∑

Rβ.

3. If t > tstop then stop.

4. Update the change vector

∆x 7→ ∆x + Eyα = ∆x +

∑
yα(x)Rα∑

Rβ

.

5. For each j ∈ {1, . . . , S}, if |∆xj| > ATOL then update

xj 7→ xj + ATOL sgn ∆xj

∆xj 7→ ∆xj − ATOL sgn ∆xj.

6. Go to step 2.

For the case of the explicit Euler method with automatic time step adaption
(jump (3.14)), this algorithm is used for comparison in the numerical exper-
iments in section 4 and is examined in more detail in [25]. The fifth step of
this algorithm, which could evidently be added to every conventional solver,
turns out to substantially improve its robustness.

C) When constructing a deterministic version of the second order algorithm, one
obtains a method very similar to the Runge-Kutta one. The right hand side
Q is replaced by some weighted average of Q evaluated at different points.

13

3.3.2 Alternative 2 - Average

This approach is based on the idea that on average, after a large number of steps
N , the α-th jump will have occurred approximately NRα/

∑
Rβ times, assuming

constant rates, which is reasonable for small time steps. Therefore, we accumulate
the probabilities Pα = Rα/

∑
Rβ until they surpass unity, and whenever this is the

case, the corresponding jump is performed.

1. Fix the error control parameter(s), a stopping time tstop > 0, set t = 0, initialise
the solution vector x = λ0 ∈ RS and the change vector ∆P = 0 ∈ RI .

2. Update t 7→ t + ∆t with ∆t = 1/
∑

Rβ.

3. If t > tstop then stop.

4. Update the change vector

∆P 7→ ∆P +
R∑
Rβ

.

5. For each α ∈ {1, . . . , I}, if ∆Pα > 1 then update

x 7→ Jα(x) = x + yα(x)

∆Pα 7→ ∆Pα − 1.

6. Go to step 2.

Example

As a slightly generalized application, consider the following “hybrid” method for
combined forward/reverse chemical reactions. Analogously to subsection 3.2.2, con-
sider a chemical reaction mechanism containing I reversible reactions. In this case,
there are two types of jumps, namely forward and reverse ones corresponding to
single forward/reverse reaction steps respectively. The forward/reverse rates are
denoted by Qα,f and Qα,r respectively, each given by expression (3.8) with for-
ward/reverse rate constants. Then we have I jumps Jα with (now no longer nec-
essarily positive) rates Rα = Qα,f − Qα,r such that the forward (x + yα) or reverse
(x− yα) reaction is performed whenever Rα is positive or negative respectively.

This description leads to the following deterministic algorithm, where the role of the
error control parameter ATOL is played now by the total particle number n.

1. Fix n > 0, a stopping time tstop > 0, initialise the solution vector x = λ0 ∈ RS

and the change vector ∆P = 0 ∈ RI .

2. Update t 7→ t + ∆t with ∆t = 1/
∑ |Rβ|.

3. If t > tstop then stop.

14

4. Update the change vector

∆P 7→ ∆P +
R∑ |Rβ| .

5. For each α ∈ {1, . . . , I}, if |∆Pα| > 1 then update

x 7→ x + yα(x) sgn ∆Pα

∆Pα 7→ ∆Pα − sgn ∆Pα.

6. Go to step 2.

An advantage of this method is that compared to conventional direct simulation
techniques fewer events occur because forward and reverse reaction steps can com-
pensate such that they are not actually performed, thereby saving computational
effort. Also, since only the jumps themselves are needed, this method is preferable
if the expectation of the jumps is not readily available.

This method is examined numerically in detail in [], further improved by various
approximations to speed up the evaluation of the rates.

3.4 Stochastic versions of deterministic algorithms

In this subsection, we adopt a point of view opposite to the previous one, namely
stochastic versions of conventional algorithms, illustrated by a number of examples.
The main motivation to transform a given deterministic scheme into a stochastic one
is provided by the fact that in some cases, statistical fluctuations constitute essential
features of the system not visible at the deterministic level. A stochastic version can
potentially exhibit additional properties, which can be used for modelling purposes,
in order to describe the actual system more accurately (for example [2]).

Transferring experience from the deterministic solution of ODEs to stochastic meth-
ods has been suggested for chemical kinetics by [15].

Given a conventional (deterministic) solver of a system of ODEs. Most generally
speaking, a deterministic algorithm calculates in each step the change ∆x ∈ RS (as a
function of the right hand side of the system) in all quantities x ∈ RS together with
a (usually adaptive) step size ∆t and propagates the approximate solution according
to

x 7→ x + ∆x ∈ RS

t 7→ t + ∆t ∈ [0,∞).

We now define a stochastic algorithm specified by generator (2.3) to be a stochastic
version of the deterministic scheme just described if the expectation of the jump
process reproduces the deterministic method. In detail, we seek I, yα and Rα such
that

Eyα = ∆x

Eτ = ∆t

15

is satisfied (cf. (3.9) and (3.10)). Analogously to (3.13), this leads to the restriction

I∑

β=1

yβRβ = π∆x (3.16)

imposed on the jumps and the rates. In addition, the rates are required to fulfill the
condition

∆t = Eτ
3.12
= π−1 3.1

=

(I∑

β=1

Rβ

)−1

. (3.17)

Due to the arbitrariness of the set of jumps, there exists a whole class of stochastic
processes whose elements all satisfy the above conditions and are therefore stochastic
versions of the given deterministic algorithm.

Note in particular that performing direct stochastic simulation of chemical reactions
and solving the reaction rate ODEs stochastically are simply two different choices
of the jumps. Therefore, one can say that chemical reactions provide a “natural”
set of jumps.

Examples

A) As an example for how any solver can be interpreted as “stochastic” algorithm,
we simply notice that the Euler method can be regarded as Markov process
characterized by the generator

(AΦ)(x) =
1

∆t

[
Φ

(
x + ∆tQ(x)

)− Φ(x)
]

; x ∈ RS.

But since all quantities are propagated in each jump there is no randomness
(apart from the waiting time). Evidently, all ODE-solvers can be regarded as
stochastic processes by the trivial choice I = 1.

B) As shown in subsection 3.3, the examples A and B of subsection 3.2.1 are both
stochastic versions of the standard explicit Euler scheme (up to time step
adaption). Example A is precisely the algorithm for which the numerical ex-
periments in section 4 have been performed. There, the relative suitability for
stiff problems and robustness of this algorithm compared to the conventional
Euler method are demonstrated.

C) More generally, noting that in order to satisfy the ODE we necessarily need
asymptotically

∆x ∼ ∆t ·Q (3.18)

for ∆t → 0, we consider – motivated by (2.12) – the generator

(AΦ)(x) =
S∑

α=1

∆xα

∆thα

[
Φ(x + hαeα)− Φ(x)

]
,

for some choice of hα consistent with (3.16).

16

As an example, consider the classical explicit 4th-order2 method by Runge and
Kutta (for a definition, see e.g. [29]), where the changes ∆x are given by

∆x =
1

6

(
k1 + 2k2 + 2k3 + k4

)
∆t

with

k1 = Q(x), k2 = Q
(
x +

∆t

2
k1

)
, k3 = Q

(
x +

∆t

2
k2

)
, k4 = Q(x + ∆tk3),

which of course satisfies (3.18).

4 Numerical experiments

4.1 The ODE systems

Table 1: Considered reaction mechanisms.

Name Species Reactions Reference Website

hydrogen 10 27 [24] www-cms.llnl.gov/combustion/

combustion2.html

CO 13 35 [33] www.galcit.caltech.edu/EDL/

mechanisms/library/library.html

methane 34 164 [32] a

n-heptane 107 808 [7] a

iso-octane 857 3606 [8] www-cms.llnl.gov/combustion/

combustion2.html

n-decane 1218 4825 [16] www.ensic.u-nancy.fr/DCPR/

Anglais/GCR/softwares.htm

a The corresponding websites are no longer active. Contact the authors of the refer-
ences or of this article in order to obtain the Chemkin source files.

As test systems for our algorithms we chose a number of examples for a model
describing homogeneous gas-phase reaction processes at constant pressure and tem-
perature.

The considered system of ODEs is given in each case by the reaction rate equations

d[Xi]

dt
=

I∑
α=1

(ν∗αi − ναi)
(S∑

j=1

Bαj[Xj]
)(

kα,f

S∏
j=1

[Xj]
ναj − kα,r

S∏
j=1

[Xj]
ν∗αj

)
(4.1)

with i ∈ {1, . . . , S}, so the number of equations simply equals the number of species
(one equation for each molar concentration). The right hand side is simply the molar
production rate which can be written as a summation of the rate of progress variables

2Note that this order is very different from the order we refer to in the context of the approxi-
mation of the derivative in the expressions for generators.

17

Table 2: Initial conditions for the test systems.
Mechanism Species Mole fraction Temp. [K]

hydrogen H2 0.29728 1200
O2 0.14864
N2 0.55408

CO CO 0.26755 1750
H2O 0.10000

O2 0.13378
N2 0.49867

methane CH4 0.09564 1800
O2 0.19129
N2 0.71307

n-heptane nC7H16 0.01870 1500
O2 0.20610
N2 0.77520

iso-octane iC8H18 0.01664 1500
O2 0.20800
N2 0.77536

n-decane nC10H22 0.01346 1500
O2 0.20867
N2 0.77787

for all reactions involving the i-th species. [Xi] denotes the molar concentration of
species i, kα,f and kα,r are the forward and reverse reaction rate constants for reaction
α and Bαj accounts for third-body reactions. This notation essentially agrees with
the one used in [18].

In this paper, we decided to keep temperature constant, because its inclusion as
a dependent variable would simply add one equation to the system, which, apart
from introducing (even more) stiffness, would not make a conceptual difference from
the numerical point of view. Note, however, that one would have to choose an
appropriate ATOL-vector, because if the same ATOL were used for all components
virtually all jumps would occur in the temperature component and only few in the
remaining ones.

Table 1 lists the considered test mechanisms including their number of species,
number of reactions and references. For all systems, we used an approximately
stoichiometric fuel/air ratio as initial conditions, and for the CO-combustion, we
added some water. The precise values together with the temperatures are given
in table 2. In each case, we set the pressure equal to one physical atmosphere
(p = 1.01325× 105 Pa).

18

4.2 The considered algorithms

In our numerical experiments, we considered the following algorithm, which will
be referred to as “the stochastic algorithm” later on. It is simply the first order
algorithm presented in example A of subsection 3.2.1, which uses equation (3.4)
for the weights, (3.5) for the waiting time parameter and (3.6) for the selection
probabilities. Recall that in this version, the jump size is ATOL for all components
and all times, whereas the time step is adapted according to the magnitude of the
right hand side.

1. Fix ATOL > 0, a stopping time tstop > 0, set t = 0 and initialise the state vector
according to x = λ0 ∈ RS.

2. Wait an exponentially distributed time with waiting time parameter

π(x) =
S∑

β=1

|Qβ(x)|/ATOL.

3. If t > tstop then stop.

4. Choose a component index α according to the probability

Pα(x) =
|Qα(x)|∑S

β=1 |Qβ(x)| .

5. Perform a jump according to

x 7→ Jα(x) =
(
x1, . . . , xα + ATOL sgn Qα(x), . . . , xS

)
,

where α is the index chosen in the previous step.

6. Go to step 2.

For comparison, we also considered the deterministic algorithm given in example B
of subsection 3.3 with hα = ATOL sgn Qα (which is the algorithm proposed in [25]):

1. Fix ATOL > 0, a stopping time tstop > 0, set t = 0, initialise the solution vector
x = λ0 and the change vector ∆x = 0.

2. Update t 7→ t + ∆t with ∆t = ATOL/
∑ |Qβ|.

3. If t > tstop then stop.

4. Update the change vector

∆x 7→ ∆x + Eyα = ∆x + ∆tQ = ∆x +
ATOL∑ |Qβ|Q.

5. For each j ∈ {1, . . . , S}, if |∆xj| > ATOL then update

xj 7→ xj + ATOL sgn ∆xj

∆xj 7→ ∆xj − ATOL sgn ∆xj.

6. Go to step 2.

This will be referred to as “the deterministic algorithm” later on.

19

4.3 Confidence intervals and error bounds

The purpose of this subsection is to give some definitions (following [20]), which are
used in our numerical experiments to measure the precision of numerical solutions.

Usually, quantities of interest can be written as some function

ξ(t) = Ξ
(
λ(t)

)

of the (exact) solution λ of the initial value problem. Such a function ξ is approxi-
mated in the stochastic approach by a random variable

ξ̃(n)(t) = Ξ
(
λ̃(n)(t)

)
, (4.2)

where λ̃(n) denotes a sample path. In this subsection, the superscript n indicates the
dependance on some error control parameter (e.g. n = 1/ATOL) such that n → ∞
reproduces the exact solution.

In order to estimate the magnitude of the fluctuations and to calculate a confidence
interval for the approximation (4.2), L independent sample paths with different
random seed are generated. The corresponding values of the random variable are
denoted by ξ̃

(n)
1 (t), . . . , ξ̃

(n)
L (t), from which one can deduce the empirical mean

η
(n,L)
1 (t) :=

1

L

L∑

l=1

ξ̃
(n)
l (t)

and the empirical variance

η
(n,L)
2 (t) :=

1

L

L∑

l=1

[
ξ̃

(n)
l (t)

]2

−
[
η

(n,L)
1 (t)

]2

.

For a fixed n, the limit L → ∞ does not yield the exact solution in general, which
implies, since we naturally have to use a finite n, that the systematic error

∣∣Eξ̃(n)(t)− ξ(t)
∣∣

is non-zero. Clearly, we also have to use a finite L, so in practice we have to work
with ∣∣η(n,L)

1 (t)− ξ(t)
∣∣,

which is now in part statistic, because of its L-dependence. Therefore, as an estimate
of the absolute overall (i.e global) deviation of the mean from the exact solution of
the ODE after the calculation has been performed (i.e. a posteriori) we employ

c
(n,L)
tot :=

1

M + 1

M∑
j=0

∣∣η(n,L)
1 (tj)− ξ(tj)

∣∣, (4.3)

where the time interval [0, tstop] is split into M subintervals of equal length via

tj := j × tstop

M
. (4.4)

20

Apart from the systematic error, there is of course also a statistical error at each
point in time given by the difference between the empirical mean η1(t) and the
expectation Eξ̃(t). As a consequence of the central limit theorem, one can show that
the probability that the expectation of the random variable ξ̃(n)(t) lies within the
confidence interval

[
η

(n,L)
1 (t)− c(n,L)

p (t), η
(n,L)
1 (t) + c(n,L)

p (t)
]

is asymptotically (L →∞) equal to the confidence level p, where

c(n,L)
p (t) := ap

√
η

(n,L)
2 (t)

L
(4.5)

and the value of ap can be determined from statistical tables. Hence, we use as
global (a posteriori) estimate of the statistical error

c
(n,L)
stat := max

j∈{0,...,M}

{
c(n,L)
p (tj)

}
, (4.6)

again applying splitting (4.4). Note that c
(n,L)
stat depends on both n and L and con-

sequently, because of its n-dependence, it is also systematic in nature, not purely
statistic, which shows that the discrimination of systematic and statistic error is to
some extent arbitrary.

4.4 Results

We created a single FORTRAN program that includes the stochastic and the de-
terministic algorithm as well as the state-of-the-art stiff ODE-solver DASSL (see
below). The chemistry related subroutines were provided by the Sandia Chemkin
package [18], which was also used to implement the mechanisms whose source files
can be obtained from the websites given in table 1.

All simulations for this paper have been performed on an Intel Pentium III PC
at 866 MHz running Microsoft Windows 2000. For the solution output we used
M = 29 = 512 (see (4.4)) and for the error calculations a confidence level of p = 0.999
corresponding to ap ≈ 3.29 (see (4.5)). Throughout, we used tstop = 10−3 s, which
was found to be suitable in the sense that on the one hand ignition takes place and
on the other hand we avoid integrating over large time intervals in which the system
is close to chemical equilibrium.

In order to assess how our algorithms perform compared to conventional implicit
solvers, we chose the well-known and widely used solver DASSL, which is particularly
suitable for stiff systems. It is based on a backward differentiation formula and de-
signed for the solution of linearly-implicit differential-algebraic systems. For detailed
technical background information, the reader may consult reference [3]. The FOR-
TRAN source code can be obtained from the website www.engineering.ucsb.edu/%7Ecse/.
In order to keep the results as comparable as possible, we set RTOL = 0 so that
there remains only ATOL as single degree of freedom for the error control. Note that
the computation time required by DASSL depends only very weakly on ATOL for

21

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

-12
, L=50)

-9
, ATOL=10

-15
)

H
O

2
m

o
le

fr
a
c
ti
o
n

[1
0

]

Time t [ms]

(a) Time dependance of the stochastic
mean HO2 mole fraction with confidence
bounds (for L = 50 repetitions) and ref-
erence solution.

0

0.04

0.08

0.12

0.16

0.2

0.24

0 0.2 0.4 0.6 0.8 1

stoch. (L=2)

C
O

2
m

o
le

fr
a
c
ti
o
n

Time t [ms]

(b) Time dependance of the CO2 mole
fraction for the stochastic (for various
numbers of repetitions) and deterministic
algorithm (ATOL = 5× 10−11 throughout).

Figure 1: Time evolution of some quantities for the CO mechanism.

RTOL = 0. Both these parameters can be chosen scalar, because one can reasonably
assume equal error tolerances for all quantities. The nature of large chemical reac-
tion systems suggests to employ sparse methods for the manipulation of the Jacobi
matrix. However, this requires quite some effort [30] and for the sake of generality,
we chose not to investigate this further. We are also aware of the existence of various
other methods specialised to chemical systems, but since DASSL is one of the most
widespread ODE-solvers, it may serve as a benchmark and therefore facilitates the
comparison to solvers developed by other authors.

The deterministic algorithm is used in this paper mainly for comparative purposes.
For a more thorough investigation of its properties see [25]. Since there, the per-
formance of the deterministic algorithm has already been compared to DASSL, we
focus here on the comparison of the stochastic and the deterministic algorithm.

It turns out that stochastic algorithms are generically ill-suited to problems requir-
ing high accuracy, mostly due to the intrinsic fluctuations. Even in the absence
of the latter, as in the deterministic case, competitive efficiency is only reached in
the regime of rather moderate precision [25]. But as argued in [26], for many ap-
plications, e.g. chemical kinetics coupled to fluid dynamics, such precision of the
order of one percent suffices, because CFD calculations are usually similarly accu-
rate. Therefore, we can safely take as reference solution one produced by DASSL
with sufficiently small error control parameters, for instance RTOL = 10−9 and
ATOL = 10−6 × RTOL. This will be referred to as “the exact solution” in the fol-
lowing.

As an example for the output generated by the stochastic algorithm consider the

22

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-11

10
-10

10
-9

10
-8

deterministic

a*ATOL
b

S
te

p
s

ATOL

(a) Number of steps as a function of the
error tolerance ATOL.

10
-8

10
-7

10
-6

10
-5

10
-12

10
-11

10
-10

10
-9

T
o
ta

l
e
rr

o
r

c
to

t
[g

/c
m

3
]

ATOL

(b) Total error ctot of the mass density % as
a function of the error tolerance ATOL.

Figure 2: Convergence of the stochastic and deterministic algorithm for the CO
mechanism.

combustion of CO (figure 1). Under the given conditions (see table 2), after roughly
0.2 ms, ignition takes place, during which the number of reaction events increases
rapidly due to a chain-branching mechanism. As a consequence, the mole fractions
of radicals like HO2 reach their maximum during this period, which can be seen in
figure 1(a). There, the time evolution of the HO2 mole fraction is shown, computed
using ATOL = 2×10−12 and L = 50 (number of repetitions), together with the upper
and lower confidence bounds and the solution created by DASSL. As expected, the
exact solution lies within the confidence interval.

Figure 1(b) displays the time evolution of the CO2 mole fraction as calculated by
the stochastic and the deterministic algorithm, where ATOL = 5 × 10−11 has been
used for all curves. Four stochastic curves are shown, each with a different number
of repetitions L, which indicates that the limit L → ∞ does not reproduce the
deterministic result. This is due to the fact that in the stochastic case the average is
taken over sample paths, whereas in the deterministic case the average is taken over
the jumps from a fixed state. In this particular application, a stochastic single run
looks actually quite similar to the deterministic curve up to a time translation. The
great variation of the ignition time is the reason for the with L increasing “flatness”
of the stochastic curve.

Figure 2(a) shows for the CO mechanism the dependance of the number of steps on
the error tolerance ATOL. The curve3 for the stochastic algorithm is plotted per single
run with statistical error bars. The number of actually occurred events represents
the most immediate measure of the quality of a solution. Choosing the accuracy too

3In figures 2 and 3, associated points have been connected with lines as visual aid. This is not
to be misunderstood as an interpolation.

23

10
-1

10
0

10
1

10
2

10
3

10
4

10
-8

10
-7

10
-6

10
-5

-11
=G)
-12

=I)

C
P

U
-t

im
e

[s
]

Total error c
tot

[g/cm
3
]

A

B

C
D

E

F
G

H

I

J

K

L=100

50

20

10

5 2

20

10

5

2

50

L=100

(a) Computation time of the algorithms as
a function of the total error ctot of the mass
density % for the CO mechanism.

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

c
1
*#species

DASSL

c
2
*(#species)

2

C
P

U
-t

im
e

[s
]

(b) Computation time of the algorithms
as a function of the number of species
(det./sto.: ATOL = 10−10, DASSL: RTOL =
0, ATOL = 10−10).

Figure 3: Performance of the stochastic and deterministic algorithm.

low (i.e. roughly ATOL > 10−9 in this example) implies a very small number of steps
and consequently a solution that may be far away from the exact solution, which
is in this application reflected by the fact that the ignition does not take place.
For higher accuracy (here roughly ATOL 6 10−10) the dependance of the number of
steps on the error tolerance is given by aATOLb with a = (1.39 ± 0.42) × 10−5 and
b = −0.962 ± 0.012. This behaviour can be used to check experimentally whether
the obtained solution is “sufficiently close” to the exact solution. Note also that the
number of steps is directly proportional to the total CPU-time, which becomes clear
from the definition of the algorithm. The number of evaluations of the right hand
side of the ODE in implicit algorithms like DASSL is typically of order 102-103 for the
considered systems, whereas the stochastic/deterministic algorithm needs 105-107

evaluations. But this is still small compared to conventional explicit methods, which
may need 1012 steps or more in order to avoid severe stability problems. Looking
at the structure of the stochastic/deterministic algorithm reveals that almost all
the CPU-time is spent on these evaluations (at least for expensive right hand side,
which is usually the case for large systems). In other words, our algorithms spend a
much larger fraction of the total CPU-time on evaluations than conventional implicit
algorithms. As a consequence of this, our algorithms would greatly benefit from an
optimization of the evaluation of the molar production rate (the right hand side) as
provided by Chemkin, whereas little impact on the conventional solvers is expected.

Both the stochastic and the deterministic method seem in general not suitable for
problems requiring a large number of steps. What “large” means in a specific situa-
tion depends on the expense of the evaluation of the rates, available computational

24

Table 3: Values of ATOL for figure 3(a).
Index ATOL

A 1.00× 10−09

B 5.00× 10−10

C 2.00× 10−10

D 1.00× 10−10

E 5.00× 10−11

F 2.00× 10−11

G 1.00× 10−11

H 5.00× 10−12

I 2.00× 10−12

J 1.00× 10−12

K 5.00× 10−13

power and the performance of alternative methods. Furthermore, this also implies
that tstop has to be chosen sufficiently small in order that the algorithm can produce
a solution within a reasonable time span. However, for the combustion systems
considered here, this does not seem to be a problem.

Figure 2(b) depicts, also for the CO mechanism, the dependence of the error ctot

of the mass density % on the error tolerance ATOL, with error bars given by the
statistical error cstat. We chose the density because it is a function of all quantities
and hence the errors ctot and cstat can be thought of representative for all these
variables. The figure suggests that the error is roughly proportional to ATOL. In
addition, we notice that due to the statistical fluctuations, the stochastic algorithm
produces on average less accurate solutions than the deterministic one.

For the comparison of CPU-times (see figure 3(a)) we used RTOL = 0, as mentioned.
The values of ATOL corresponding to each point in the diagram are given in table 3.
Note that the statistical errors for ATOL = 2 × 10−12 are of course smaller than
for ATOL = 10−10, the error bars only appear larger because of the logarithmic
representation. We recognize that the deterministic algorithm is more efficient than
the stochastic one, even if the CPU-times were taken per single run, which is again
due to the statistical fluctuations.

Figure 3(b) shows the dependence of the computation time required by each algo-
rithm on the number of equations for fixed error control parameter ATOL = 10−10.
The qualitative scaling behaviour is of course independent of the actual value. Again,
the stochastic curve is plotted per single run with statistical error bars. The neces-
sity of numerous repetitions in order to obtain a sufficiently small confidence interval
naturally suggests applications in which multiple runs are required anyway, such as
PDF transport problems [28]. For this purpose, one can compare the single run
time of the stochastic algorithm to the total run time of the other ones. The main
conclusion that can be drawn from this figure is that DASSL (like other implicit
solvers) scales quadratically (c2 = 8.33×10−4 s) with the number of species whereas
the stochastic and deterministic scale linearly (c1 = 2 s). This strongly suggests

25

systems with a large number of equations as prime application of our ODE-solvers.
One might argue that the conventional explicit Euler algorithm also scales linearly
(because it does not make use of the Jacobi matrix of the right hand side), but
not with comparable computation time, accuracy and most importantly robustness.
Equal efficiency would be reached at a much higher number of equations, so that
the problems would be intractable anyway (at least with currently available compu-
tational power). We deliberately avoid the term “stability” because commonly used
notions (e.g. [17, 6]) seem neither to apply nor to transfer in a straightforward way
to our methods.

It is also clear that the start-up costs of our algorithms are negligible, which suggest
operator-splitting applications (also pointed out in [26]).

Despite their simple and explicit nature, our algorithms are robust enough to solve
large stiff systems relatively efficiently.

5 Conclusion

We have given a brief introduction to how ODEs can be solved by means of (se-
quences of) Markov processes. Then, making use of the master equation, we have
motivated our choice of Markov processes. As a consequence, we presented stochas-
tic algorithms including several different choices of the weights, which specify these
algorithms. In addition, we have indicated connections between conventional and
stochastic algorithms in general and given a number of examples.

Furthermore, we studied one of our stochastic algorithms and a variant of its de-
terministic counterpart numerically by applying them to the combustion systems
hydrogen, carbon monoxide, methane, n-heptane, iso-octane and n-decane. In ad-
dition, we compared the algorithms to one of the most widely used solver packages
for stiff systems, namely DASSL.

In our numerical experiments, we have examined the dependance of the error and
the number of steps on the error tolerance parameter. We have shown that the de-
terministic algorithm is more efficient for the considered systems than the stochastic
algorithm. We also have demonstrated that the CPU-time scales linearly with the
number of equations such that our algorithms can compete at moderate accuracy
with conventional stiff solvers for large systems, as is the case for the combustion of
n-decane for example (order 103 equations). In the stochastic case we have assumed
multiple run applications. Last but not least, we emphasize the exceptional sim-
plicity of our algorithms (due to their explicitness) in comparison to conventional
implicit methods.

Various numerical and theoretical issues remain to be clarified, such as the stability
of our algorithms for example. The negligible start-up costs together with the men-
tioned properties suggest as typical application large operator-splitting problems
requiring moderate accuracy, such as PDF transport models. Future work includes
the investigation of the deterministic direct simulation of chemical reactions and its
use for flux analysis in creating skeletal mechanisms.

26

References

[1] M. Balthasar, F. Mauss, A. Knobel, and M. Kraft. Detailed modeling of soot
formation in a partially stirred plug flow reactor. Combustion and Flame,
128(4):395–409, 2002.

[2] A. Bhave, M. Balthasar, M. Kraft, and F. Mauss. Measurements and simu-
lations of homogeneous charge compression ignition combustion and emissions
with exhaust gas recirculation. Technical Report 8, c4e Preprint-Series, Cam-
bridge, 2002. (Accepted for publication in: International Journal of Engine
Research).

[3] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial-
value problems in differential-algebraic equations. SIAM Classics in Applied
Mathematics, 14, 1996.

[4] H.-P. Breuer, W. Huber, and F. Petruccione. Fast Monte Carlo algorithm for
nonequilibrium systems. Phys. Rev. E., 53(4):4232–4235, 1996.

[5] D. L. Bunker, B. Garrett, T. Kleindienst, and G. S. Long III. Discrete sim-
ulation methods in combustion kinetics. Combustion and Flame, 23:373–379,
1974.

[6] J. R. Cash. Efficient numerical methods for the solution of stiff initial-value
problems and differential algebraic equations. Proc. R. Soc. Lond., 459:797–815,
2003.

[7] H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook. A comprehensive
modeling study of n-heptane oxidation. Combustion and Flame, 114:149–177,
1998.

[8] H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook. A comprehensive
modeling study of iso-octane oxidation. Combustion and Flame, 129:253–280,
2002.

[9] R. W. R. Darling. Fluid limits of pure jump markov processes: a practical
guide. arXiv:math.PR/0210109, 2002.

[10] R. W. R. Darling and J. Norris. Vertex identifiability in large random hyper-
graphs. arXiv:math.PR/0109020, 2001.

[11] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Con-
vergence. John Wiley & Sons, 1985.

[12] D. T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comp. Phys., 22(4):403–434,
1976.

[13] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem., 81:2340–2361, 1977.

27

[14] D. T. Gillespie. A rigorous derivation of the chemical master equation. Physica
A, 188:404–425, 1992.

[15] D. T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. J. Chem. Phys., 115(4):1716–1733, 2001.

[16] P. A. Glaude, V. Warth, R. Fournet, F. Battin-Leclerc, G. Scacchi, and G. M.
Côme. Modelling of the oxidation of n-octane and n-decane using an automatic
generation of mechanisms. Int. J. Chem. Kin., 30:949–959, 1998.

[17] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems, volume 14 of Springer Series in Computational
Mathematics. Springer Verlag, Berlin Heidelberg New York, second revised
edition, 1996.

[18] R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller. CHEMKIN-III: A FOR-
TRAN chemical kinetics package for the analysis of gas-phase chemical and
plasma kinetics. Technical Report SAND96-8216 UC-405, Sandia National Lab-
oratories, 1996.

[19] M. Kraft, P. Maigaard, F. Mauss, M. Christensen, and B. Johansson. Investi-
gation of combustion emissions in a HCCI engine - measurements and a new
computational model. Proceedings of the Combustion Institute, 28:1195–1201,
2002.

[20] M. Kraft and W. Wagner. Numerical study of a stochastic particle method for
homogeneous gas-phase reactions. Computers and Mathematics with Applica-
tions, 45:329–349, 2003.

[21] T. G. Kurtz. Solutions of ordinary differential equations as limits of pure jump
markov processes. J. Appl. Prob., 7:49–58, 1970.

[22] T. G. Kurtz. The relationship between stochastic and deterministic models for
chemical reactions. J. Chem. Phys., 57(7):2976–2978, 1972.

[23] P. Maigaard, F. Mauss, and M. Kraft. Homogeneous charge compression ig-
nition engine: A simulation study on the effects of inhomogeneities. ASME
Journal of Engineering for Gas Turbines and Power.

[24] N. Marinov, C. K. Westbrook, and W. J. Pitz. Detailed and global chemical
kinetics model for hydrogen. In S. H. Chan, editor, Transport Phenomena in
Combustion, volume 1. Taylor and Francis, Washington DC, 1996.

[25] S. Mosbach and M. Kraft. A new explicit numerical scheme for large and stiff
systems of ordinary differential equations. Jour. Sci. Comp.

[26] R. D. Mott, E. S. Oran, and B. van Leer. A quasi-steady-state solver for
the stiff ordinary differential equations of reaction kinetics. J. Comp. Phys.,
164:407–428, 2000.

[27] J. Norris. Stochastic calculus and applications. Lecture notes Part III of the
Mathematical Tripos, Lent Term 2003, Cambridge, unpublished, 2003.

28

[28] S. B. Pope. PDF methods for turbulent reactive flows. Prog. Energy Combust.
Sci., 11:119–192, 1985.

[29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C++ The Art of Scientific Computing. Cambridge University Press,
Cambridge, 2nd edition, 2002.

[30] D. A. Schwer, J. E. Tolsma, W. H. Green, and P. I. Barton. On upgrading the
numerics in combustion chemistry codes. Combustion and Flame, 128:270–291,
2002.

[31] J. S. Turner. Discrete simulation methods for chemical kinetics. J. Phys. Chem.,
81(25):2379–2408, 1977.

[32] J. Warnatz, U. Maas, and R. W. Dibble. Combustion. Springer Verlag, Berlin
Heidelberg New York, 1996.

[33] R. A. Yetter, F. L. Dryer, and H. Rabitz. A comprehensive reaction mecha-
nism for carbon monoxide/hydrogen/oxygen kinetics. Combustion Science and
Technology, 79:97–128, 1991.

29

