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Abstract

A theory is given to predict the upward force, F , to lift an object buried at depth
H in granular material. The object is either (1) a horizontal disc of diameter D
or (2) a horizontal plate of width B and length L, where L� B. In case (1), the
lifted disc is assumed to cause axi-symmetric upward particle motion, reverse hop-
per flow, within an inverted cone. Active failure is assumed: the vertical stress, σ2,
is K× (horizontal stress σ1); here K = (1+ sinφ)/(1− sinφ), φ being the angle of
friction for the granular material. This gives the vertical stress, σ20, on the disc. An
additional lift force is needed to overcome the frictional stress, τ , at the conical inter-
face between stationary and upward moving particles: it is assumed that τ = µσ1, µ

being the internal friction coefficient. For consolidated granules, µ = tanφ , but for
the sheared material, µ < tanφ . The total lift force F is the sum of (i) the effect of
σ20 plus (ii) the effect of τ; this sum gives an equation to predict the breakout factor
Nqf = F/(γ ′AH), where γ ′ = bulk weight density and A = πD2/4. For case (2), rel-
evant to the uplift of a long buried pipe, the theory is similar: the two failure surfaces
are flat, inclined at angles +α and −α to the vertical. Similar assumptions as to
the stress distribution, i.e. two-dimensional active failure, give an equation for Nqf.
The two predictive equations for cases (1) and (2) agree well with relevant published
measurements of Nqf.
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1 Introduction

This work began with a study of gas distributors for industrial fluidised beds. Such dis-
tributors often consist of a flat horizontal plate containing a number of nozzles through
which gas flows to fluidise the particles above. The nozzles are separated by a horizontal
distance, typically 10 - 20 cm; thus the bed of particles is fluidised by upward facing gas
jets emerging from nozzles which may be a few centimetres diameter, separated by the
horizontal distance 10 - 20 cm mentioned above.

Particles within each nozzle need only a modest gas flow for fluidisation, far less than the
flow required to fluidise the main particle bed supported on the distributor. The question
then arises: ‘At what gas velocity through each nozzle will the whole bed be fully fluidised
and what is the behaviour of the particles immediately above each nozzle?’ To fluidise
the whole bed, a superficial velocity Umf is needed, when the velocity in each nozzle will
be AbUmf/a where Ab is the bed area and a is the total area of the nozzles. Particles in
the nozzles will be more than fully fluidised, because Ab/a is large. This paper deals with
the situation where the nozzle gas velocity, UN, is intermediate, i.e. Umf <UN < AbUmf/a.
Thus each nozzle is fully fluidised but the main bed is not. In this situation, the particles
above the nozzle will be subjected to forces of two kinds namely:

i) pressure gradients in the gas due to the outflow of gas from each nozzle into the
main bed, and

ii) interparticle forces arising from the particles near the nozzle having an interstitial
gas flow in excess of Umf: this gas flow pushes the particles upwards so that they
can press on the particles above, resulting in interparticle stresses.

This paper is concerned with these interparticle stresses and attempts to answer the ques-
tion: ‘What is the level of interparticle stress needed to push up the particles above?’
This question is similar to the question posed by workers in soil mechanics: ‘If an object
is buried in granular material, what upward force is needed to lift it?’ The answer to
the latter question is given here by using well-established theory of hopper flow, but in
reverse, i.e. upward rather than downward particle motion. In hopper theory ([10], [27])
granular material flows out of a hopper, as in an hour glass. The theory, based on the
assumption of frictionless hopper walls, gives values which agree with experimental data,
e.g. that the flow rate is proportional to (outlet diameter)5/2. For hopper flow, the gran-
ular material is in the passive state, i.e. (horizontal stress) = K× (vertical stress), where
K = (1+ sinφ)/(1− sinφ), tanφ being the internal friction coefficient of the granular
material.

In reverse hopper flow, the pushed up material is assumed to be in the active state, i.e.
(vertical stress) = K × (horizontal stress). There is the further assumption that the dis-
placed material moves within a cone whose axis is vertical. With these assumptions, the
force at the bottom of the cone can be calculated. This force due to the normal stresses is
less than the observed force. This appears to be because the conical interface between the
upward moving and stationary material is assumed to be smooth. When a frictional force
is allowed for, the total uplift force appears to be in good agreement with a wide range of
experimental results.
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The purpose of this paper is to present the newly developed reverse hopper theory for
predicting the uplift force against a surcharge of granular material. Two versions of the
theory are given:

i) Axi-symmetric: Here the pushed up granular material is assumed to be of conical
form, i.e. the motion is axi-symmetric.

ii) Two-dimensional: Here the boundaries between upward moving granules and sta-
tionary granular material are assumed to be two flat interfaces symmetrically aligned
about the central vertical axis, forming a two-dimensional flow pattern.

2 Literature review

The published research into fluidisation is primarily focused on predicting the hydrody-
namics of fluidised systems with relatively few published works related to the start-up
of industrial fluidised beds. Besides the well known group classification of Geldart [14],
which enables the prediction of some fluidisation properties in terms of particle size and
density, the minimum fluidising velocity and the bed expansion characteristics (as a func-
tion of bed porosity) are the two most widely studied design parameters for fluidised beds.
Di Felice [11] presented a comprehensive review on the theoretical development regarding
the hydrodynamics of liquid fluidisation.

A similar problem to that investigated in this work is the uplift of anchors and pipes,
studied in geotechnical engineering. The following section reviews the relevant research
in geotechnical engineering.

2.1 Insights from geotechnical problems

There are two main types of uplift problem in geotechnical engineering. The first cate-
gory is related to the upheaval buckling of offshore pipelines buried in the seabed. These
pipelines transport high-temperature oil and undergo upheaval buckling as a result of ther-
mal expansion [16]. This phenomenon is one of the key failure modes of such pipelines
and has serious economic and environmental consequences [8].

The second category is related to the study of plate anchors buried in sand. These plates
are used in foundation systems where they are fixed to a building structure and embedded
in the ground at sufficient depth to resist pullout forces [21].

For both applications, the uplift force is important. Thus the main design challenge for
buried plates or pipelines is to determine the minimum depth of soil cover that will pro-
vide sufficient uplift resistance. The uplift resistance provided by the soil cover increases
with depth, but the cost of the burial increases with depth and constitutes a significant
fraction of the total construction cost. Therefore, burial depth should be minimised while
providing sufficient uplift resistance [8]. This is the motivation behind most of the work
in geotechnical engineering.
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Currently, there are two main approaches to model the uplift of anchors and pipes in
soils. The first approach uses variations of the Vertical Slip Model of Matyas and Davis
[19]. This is often referred to as the limit equilibrium method. This assumes that the
uplift force is the sum of the weight of the soil being lifted and the shear force along the
failure surface. Recently, White et al. [31] presented a limit equilibrium solution for the
vertical pullout of pipes and plate anchors buried in sand. The authors included the stress-
dilatancy correlations presented by Bolton [6] in their equilibrium solution. The second
approach is the finite element method, successfully applied by Merifield and Sloan [21]
to predict the deformation mechanism during anchor uplift.

The uplift experiments reported in the literature were mostly carried out in a laboratory
scale tank containing sand. The plates or pipes were embedded in the sand at a specified
depth and connected, via a rod, to a load cell fixed above the tank. They were displaced
at a constant pull-out rate using a gearbox. The displacement and uplift force were con-
tinuously monitored and recorded using displacement transducers and load cells.

A three-phase behaviour, illustrated in Figure 1, is usually observed in uplift tests reported
in the literature ([8], [15], [22], [26]).

Figure 1: Typical relationship between pullout load and displacement for uplift of
plates/pipes in sand, with three different phases indicated in the figure.

Referring to Figure 1, the first phase is the pre-peak behaviour, exhibiting a rapid increase
in load. The second phase is the post-peak behaviour; the load decreases rapidly as dis-
placement increases. The third phase is the residual behaviour, associated with a gradual
decrease in load at large displacements [15].

Cheuk et al. [8] presented a detailed analysis on the three-phase behaviour illustrated
in Figure 1. Figure 2 summarises the results of Cheuk et al. [8] on the deformation
mechanism during pipe uplift using PIV (particle image velocimetry). Figure 2(a) shows
the formation of a trapezoidal sliding block at peak force. Figure 2(b) depicts the second
phase, associated with infilling of soil into the gap formed below the pipe during uplift.
After the infilling stage, a flow-around mechanism, Figure 2(c), is accompanied by a
reduction in uplift resistance: this explains the residual behaviour (third phase) at large
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Figure 2: Deformation mechanism observed during pipe uplift. (Based on Figure 11 in
[8])

displacements illustrated in Figure 1.

Considering the application of anchor plates and the pattern in Figure 1, it is clear that the
primary interest is the peak pull-out force, when the loading attains a maximum [22]. This
maximum force is frequently plotted as a function of the embedment ratio, H/D, where
H is the burial depth and D is the diameter of the plate.

There are many experimental data in the literature to compare with the reverse hopper
theory developed here. These data were compared with the reverse hopper theory by
digitizing graphs from Ilamparuthi et al. [15], Murray and Geddes [22], Trautmann et al.
[30], Schupp et al. [28], Matyas and Davis [20], and Dickin [12].

3 The reverse hopper theory

Figure 3: Cross section of a hopper and the relevant dimensions used in the hopper the-
ory.
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The theories for axi-symmetric and two-dimensional flow were developed from the hour-
glass theory of Davidson and Nedderman [10]. The basic equations are not explained in
detail, but are explained elsewhere [10]. The original hour-glass theory [10] predicted the
flow-rate and stress distribution of granular materials in an ideal conical hopper. A similar
theory was given by Nguyen et al. [24], Savage and Sayed [27] and Brennen and Pearce
[7].

The objective of this theory is to predict the push up force against a surcharge of granular
material above a buried object.

3.1 Axi-symmetric reverse hopper theory

In the original theory, the granular material flows downwards from a conical hopper,
giving axi-symmetric flow. It is proposed that the push up of granular material in axi-
symmetric flow can be approximated as a reverse hopper flow, leading to the development
of the theory in this section. The theory assumes that the motion is radial, implying that
the granules only move radially towards or away from point O in Figure 3. Hence, the
granular material moves within a cone, the material outside the cone being stationary. A
vertical section through the axis of the cone is illustrated in Figure 4.

r1

F

α 

H

r0
20

2

2

1 1

2

D = b

90

1 1

D

Figure 4: Assumed upward flow of granular material when an upward force, F, is applied
to the plate of diameter D. The grey areas highlight the stationary granular
material.

As reported by Davidson and Nedderman [10], the radial motion of the granular elements
is described by

ρv
dv
dr

=− 1
r2

∂

∂ r
(r2

σr)+
σθ +σψ

r
−ρg cosθ , (1)
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where ρ is the bulk density of the granular material, v is the radial velocity, r is the radial
distance, σr is the stress in the radial direction, σθ is the stress in the direction of θ , σψ is
the stress in the direction of ψ , and g is the acceleration of gravity. The directions of r, θ ,
and ψ are indicated in Figure 3.

Particle velocities are negligible, so the inertial term in Equation (1) can be ignored, giving

− 1
r2

d
dr

(r2
σr)+

σθ +σψ

r
−ρg cosθ = 0. (2)

In the work reported below, it is assumed that θ is small, so cosθ ' 1. Assuming axial
symmetry, σθ = σψ , as in hopper theory. Taking σθ = σψ = σ1 and σr = σ2, the stresses
can be related through Equation (3). This is because the flow is active, with σ2 > σ1,
where σ2 is the major principal stress and σ1 is the minor principal stress.

σ2 = Kσ1, (3)

where K is the coefficient of earth pressure, defined by

K = (1+ sinφ)/(1− sinφ), (4)

where φ is the angle of friction. It is a function of soil density, increasing with density
[15]. Mohr’s circle for the main body of the pushed up material is shown in Figure 5.
Equation (3) is the important difference between the reverse hopper theory and the original
hopper theory, for which the flow is passive and for which σ1 = Kσ2.

t = s  f

t

s
s1 s2f

Figure 5: Assumed Mohr’s cirle for cohesionless granular material pushed up from be-
low.

The total push up force consists of two components. The first component, Fv, is due to
the normal stresses σ2, and the second component, Fs, is due to the shear stresses acting
along the failure surface, assumed to be µσ1 as shown in Figure 4.

8



3.1.1 Vertical component, from σ2

The vertical stresses σ2 arise from the weight of the granular material within the conical
boundary shown in Figure 4.

The boundary condition is that σ2 = 0 at the top surface where r = r1, see Figure 4.

Applying Equation (3) and integrating Equation (2) with σr = σ2, σθ = σψ = σ1 = σ2/K,
cosθ = 1, and the boundary condition at r = r1 gives

σ2r2(1− 1
K ) =

Kρg
3K−2

[
r(

3− 2
K )

1 − r(3− 2
K )
]
. (5)

When r = r0, σ2 = σ20, giving, from Equation (5),

σ20 =
Kρgr0

3K−2

[(
r1

r0

)(3− 2
K )
−1

]
. (6)

Davidson and Nedderman [10] proved that the velocity is insensitive to the angular po-
sition, indicated by θ in Figure 3. Therefore it can be assumed that σ20 does not change
with θ .

The upward force Fv, due to σ20, is calculated using Equations (6) and (7), by integrating
along the curved surface of radius r0, see Figure 4; cosθ is included to resolve the force
in the vertical direction, giving

Fv =
∫

α

0
σ20 2π r0 sinθ r0 cosθ dθ , (7)

and hence

Fv = σ20
(
πr0

2/2
)
(1− cos(2α)) . (8)

Since D = 2r0 sinα , Equation (8) can be simplified to

Fv = σ20 πD2/4. (9)

3.1.2 Shear component, from σ1

The normal stress σ1 can be found by using Equations (3) and (5), giving

σ1 =
ρg

3K−2

[
r1

(3− 2
K )

r(2−
2
K )
− r

]
. (10)

We now assume that there is shear stress τ at the conical interface between the moving
and stationary material, see Figure 4. Using the internal friction coefficient, µ = tanφ ,
the shear stress is assumed to be τ = µσ1; this is inconsistent with the assumption that σ1

is a principal stress, which implies zero shear stress, see Figure 5. However, the actual
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normal stress at the boundary between stationary and moving material, see Figure 4, may
be quite close to σ1, justifying the assumption that τ = µσ1. By integrating over the
conical boundary shown in Figure 4, the contribution of shear stress to the upward force,
Fs, to lift the bottom plate is

Fs =
∫ r1

r0

µσ1 2πr sinα cosα dr. (11)

For an ideal Coulomb material, µ at the slip plane is defined by µ = tanφ at the point
of incipient yield [23]. However, Blau [5] showed that the friction opposing the onset of
incipient motion is often higher than the friction opposing the continuance of motion once
it has started. The coefficient for incipient motion is the static coefficient of friction; the
coefficient for flowing sand is the kinetic coefficient of friction. In Section 4, it is shown
that the value of µ for flowing sand has to be lower than tanφ to obtain a reasonable fit
of theory to experiment, especially for results with loose sand, suggesting that the kinetic
coefficient is appropriate for flowing sand.

Combining Equations (10) and (11), and rearranging, gives

Fs =
2πµρg sinα cosα

3K−2

[
r1

3
(

K
2
− 1

3

)
− Kr1

(3− 2
K )r0

2
K

2
+

r0
3

3

]
. (12)

Note that Equation (10) gives the principal stress, derived on the assumption that the
conical boundary indicated in Figure 4 is frictionless. As mentioned above, the actual
normal stress on the conical boundary may not be much different from σ1, obtained from
Equation (10).

3.1.3 Total force and breakout factor

The total push up force, F , is the sum of the vertical and shear components,

F = Fv +Fs. (13)

The total force can be expressed as a dimensionless breakout factor,

Nqf = F/γ
′ApH, (14)

where Ap = πD2/4, D is the plate diameter (see Figure 4), and γ ′ = ρg; in geotechnical
engineering, Nqf is often referred to as the dimensionless peak pullout load at the point
where the load attains a maximum [15].

Based on Figure 4, r0 and r1 can be expressed as

r0 = D/2sinα, (15)
r1 = H/cosα +D/2sinα, (16)

where α is the half angle of the conical boundary in Figure 4, D is the diameter of the
plate, and H is the depth of surcharge. Combining Equations (6), (9), and (12 - 16) gives,
after eliminating σ20, r0, r1, Fv, Fs, and F ,
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Nqf =
DK

2H (3K−2)sinα

[(
1+

2H tanα

D

)(3−2/K)

−1

]
(17)

+
µDcosα

2H(3K−2)sin2
α

[(
K− 2

3

)(
1+

2H tanα

D

)3

−K
(

1+
2H tanα

D

)(3−2/K)

+
2
3

]
.

3.2 Two-dimensional reverse hopper theory

In this case, Figure 4 shows a section through the two-dimensional granular flow pattern:
the thickness normal to the diagram is large compared with the dimensions in Figure 4. It
can be treated as hopper flow between two infinitely long plates inclined at +α and −α

to the vertical.

Davidson and Nedderman [10] give the equation of motion for the two-dimensional case
as

−ρv
dv
dr

=
1
r

d
dr

(rσr)−
σθ

r
+ρg. (18)

The two-dimensional reverse hopper theory predicts the uplift force of a long rectangular
plate of breadth B and length L, where L� B. Figure 6 shows the dimensions of such a
plate buried in granular material.

Figure 6: Dimensions of a rectangular plate embedded in granular material; L� B.

3.2.1 Vertical component, from σ2 (2D)

Since the flow is active,

σ2 (2D) = Kσ1 (2D), (19)
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where σ1 (2D) = σθ and σ2 (2D) = σr.

Combining Equations (18) and (19), and assuming negligible velocity v, gives

dσ2 (2D)

dr
+

(
1− 1

K

)
σ2 (2D)

r
+ρg = 0. (20)

Integrating Equation (20) and applying the top boundary condition as in the axi-symmetric
case (σ2 (2D) = 0 at r = r1) gives

σ2 (2D) =
Kρgr

2K−1

[(r1

r

)(2− 1
K )−1

]
, (21)

and

σ20 (2D) =
Kρgr0

2K−1

[(
r1

r0

)(2− 1
K )

−1

]
, (22)

where σ20 (2D) is the value of σ2 (2D) at r = r0.

The upward force, Fv (2D), contributed from σ2 (2D), is calculated by integrating along the
circular arc of radius r0 in Figure 4,

Fv (2D) =
∫

α

0
2σ20 (2D) L r0 cosθ dθ , (23)

which gives

Fv (2D) = 2σ20 (2D) L r0 sinα, (24)

where L is the distance in the direction normal to Figure 4.

3.2.2 Shear component, from σ1 (2D)

Combining Equations (19) and (21) gives the expression for the normal stress, σ1 (2D),
along the inclined planes,

σ1 (2D) =
ρgr

2K−1

[(r1

r

)(2− 1
K )−1

]
. (25)

Assuming τ = µσ1 (2D), the frictional force, Fs (2D), due to shear, is calculated by integrating
along the inclined planes on both sides of the hopper,

Fs (2D) =
∫ r1

r0

2Lµ cosα σ1 (2D)dr, (26)

which gives, from Equations (25) and (26),

Fs (2D) =
2Lρgµ cosα

2K−1

[
r1

2
(

K− 1
2

)
− Kr1

(2− 1
K )r0

( 1
K )+

r0
2

2

]
. (27)
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3.2.3 Total force and breakout factor

The total push up force, F2D, is the sum of the vertical and the shear components,

F2D = Fv (2D) +Fs (2D). (28)

The breakout factor, Nqf (2D), for the two-dimensional reverse hopper flow is defined by

Nqf (2D) = F2D/γ
′HBL. (29)

Combining Equations (15) and (16), but with B in place of D, (22), (24), and (27 - 29)
gives

Nqf (2D) =
BK

2H(2K−1)sinα

[(
1+

2H tanα

B

)(2−1/K)

−1

]
(30)

+
µBcosα

2H(2K−1)sin2
α

[(
K− 1

2

)(
1+

2H tanα

B

)2

−K
(

1+
2H tanα

B

)(2−1/K)

+
1
2

]
.

4 Results and discussion

In this section, the theory is compared with published experimental results. The main
assumption in the comparison is that the theoretical force corresponds to the peak pullout
load reported in the geotechnical engineering literature.

This section is divided into two parts. Section 4.1 compares axi-symmetric reverse hopper
theory with uplift results on circular and rectangular plates. Section 4.2 compares two-
dimensional reverse hopper theory with uplift results on rectangular plates and pipes.

The theory is dependent on the parameters φ , µ , and α , which are properties of the gran-
ular material. The value of φ is usually reported along with uplift data in the literature:
Table 1 lists recommended values for use in uplift models. However, the values of µ

and α are very subjective, especially α which defines the failure surface. Cheuk et al.
[8] measured the uplift mechanism using PIV (particle image velocimetry) and gives one
of the best data sets on soil deformation during pipe/plate uplift. Nonetheless, there is
insufficient information to approximate α as a function of soil properties and operating
conditions.

Table 1: Recommended values of φ [13].

Sand type φ (◦)

Loose 30
Medium 35
Dense 40
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4.1 Axi-symmetric reverse hopper theory in comparison with exper-
imental data

4.1.1 Uplift of circular plates

This section presents experimental data on the uplift of circular plates obtained by Ilam-
paruthi et al. [15] who summarised uplift results from various papers. These data are
compared with predictions from the reverse hopper theory.

Figure 7 presents the experimental data produced by Ilamparuthi et al. [15] and the the-
oretical curve from Equation (17). The points in Figure 7 are data obtained from uplift
tests carried out with circular anchor plates of six different sizes (D = 100, 125, 150, 200,
300, and 400 mm) embedded at different depths in dense sand. Through direct shear tests,
φ was measured at 43◦ for the sand. The theoretical line is plotted using Equation (17)
with φ = 43◦, α = 35◦, and µ = tan 43◦. The value used to approximate α is the average
angle of inclination of the failure surface originating from the plate and measured by Il-
amparuthi et al. [15] in failure mechanism tests for deep circular anchor plates. It is clear
from Figure 7 that the agreement between the theoretical curve and the experimental data
is excellent.
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Theory: Equation (17) with φ = 43o, α = 35o, µ = tan 43o

D = 100 mm, φ = 43o

D = 125 mm, φ = 43o

D = 150 mm, φ = 43o

D = 200 mm, φ = 43o

D = 300 mm, φ = 43o

D = 400 mm, φ = 43o

Figure 7: Axi-symmetric reverse hopper theory, Equation (17), compared with the exper-
imental data of Ilamparuthi et al. [Table 2, 15].
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Figure 8 presents the experimental results for circular plate anchors in medium-dense
to dense sand from different sources. Two theoretical lines are plotted in Figure 8: one
line is plotted using φ = 36◦ (the lowest φ value within the data set), and the other line
is plotted using φ = 46◦ (the highest φ value within the data set). The principles used
to choose the values of α and µ for the theoretical line in Figure 7 are applied in this
case (µ = tanφ and α = 35◦). Again, the agreement between the theoretical values and
the experimental data is excellent, albeit overpredicting some of the experimental results,
particularly results reported by Ilamparuthi et al. [15] from Andreadis and Harvey [1] for
φ = 38◦.
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φ = 45o, Sutherland (1965)

φ = 42o, Baker & Konder (1966)

φ = 38o, Balla (1961)

φ = 38o, Andreadis & Harvey (1981)

φ = 42o, Andreadis & Harvey (1981)

φ = 41o, Clemence & Veesaert (1977)

φ = 41.5o, Sutherland et al. (1982)

φ = 44o, Murray & Geddes (1987)

φ = 46o, Bemben & Kupferman (1975)

Figure 8: Axi-symmetric reverse hopper theory, Equation (17), versus experimental data
from uplift tests for circular plates in medium-dense to dense sand. (Experi-
mental data compiled by Ilamparuthi et al. [Table 3 and Figure 16, 15].)

Figure 9 presents the comparison between published experimental results for circular
plate anchors in loose sand with the reverse hopper theory. It is evident from Figure 9 that
using µ = tanφ gives theoretical lines which overpredict most of the data extracted from
the literature, except the values from Kananyan [17]. It is found that lowering the value of
µ to about tan(φ/2) produces theoretical values which are closer to the data points. The
need to lower µ is not observed for the results shown in Figures 7 and 8. This might be
due to the fact that in the shear layer, at angle α to the vertical, the particles are looser
than the bulk material due to motion, and hence µ < tanφ .
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Fieltz (reported by Ilamparuthi et al. 2002 from Balla 1961), φ = 30o

Kananyan 1966, φ = 32o

Kwasniewski et al. 1975, φ = 28o − 32o

Theory: Equation (17) with φ = 28o, α = 35o

Theory: Equation (17) with φ = 32o, α = 35o

µ = tan φ

µ = tan 15°

Figure 9: Axi-symmetric reverse hopper theory, Equation (17), versus experimental data
from uplift tests for circular plates in loose sand. Note that two values of µ are
used to plot the theoretical lines. (Experimental data compiled by Ilamparuthi
et al. [Table 3 and Figure 15, 15].)

4.1.2 Uplift of rectangular plates

Equation (17) is suitable only for predicting the uplift force of circular plates because it
describes force as a function of H/D, a dimensionless embedment ratio for circular plates.
Rectangular plates have two relevant dimensions (length and breadth), so we define an
equivalent embedment ratio,

H/De = H
√

π/4LB, (31)

where πDe
2/4 = LB and De is the equivalent diameter of a circular plate giving the same

area, LB, as the rectangular plate. Figure 6 shows the dimensions of a rectangular plate
embedded in granular material.

Figures 10 and 11 present the uplift test results on rectangular plates reported by Murray
and Geddes [22] and Dickin [12]: they performed uplift tests on rectangular plates with
different length/breadth ratios (L/B = 1,2,5,8,10). The corresponding value of H/De,
from Equation (31), for each rectangular plate data point was calculated to plot the data
points in Figures 10 and 11.

Figure 10 presents the results for dense sand. Through direct shear tests, Murray and
Geddes [22] reported that φ was measured at 44◦ for the sand used. However, Dickin
[12] did not report a value of φ for the dense sand used, so the value φ = 44◦ is assumed
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for both sets of data. The theoretical line is plotted using φ = 44◦, µ = tan 44◦, and
α = 32.5◦. The theoretical line is an almost perfect fit to the experimental data apart from
the data of Dickin [12] for H/De > 4; this may be because the sand used by Dickin [12]
had a lower value of φ .
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Theory: Equation (17), B = D
e
, φ = 44°, µ = tan 44°, α = 32.5°

L/B = 1, Murray & Geddes 1987
L/B = 2, Murray & Geddes 1987
L/B = 10, Murray & Geddes 1987
L/B = 1, Dickin 1988
L/B = 2, Dickin 1988
L/B = 5, Dickin 1988
L/B = 8, Dickin 1988

Figure 10: Axi-symmetric reverse hopper theory, Equation (17), compared with experi-
mental data from uplift tests for rectangular plates in dense sand. (Experi-
mental data extracted from Murray and Geddes [Figure 3(a), 22] and [Figure
7, 12].)

Figure 11 presents the results for loose sand. The φ value is not reported in the source
of the data, so the value φ = 30◦ recommended by DNV [13] for loose sand was used to
plot the theoretical line. In this case, the reverse hopper theory over predicts the breakout
factor when H/De > 4. This may be caused by the fact that the axi-symmetric hopper
theory is not suitable or the parameters φ , µ , and α are not appropriate for this data set.
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Theory: Equation (17) with B = D
e
, φ = 30°, µ = tan 20°, α = 20°

L/B = 1, Dickin 1988
L/B = 8, Dickin 1988

Figure 11: Axi-symmetric reverse hopper theory, Equation (17), compared with experi-
mental data from uplift tests for rectangular plates in loose sand. (Experimen-
tal data extracted from Dickin [Figure 7, 12].)
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4.2 Two-dimensional reverse hopper theory in comparison with ex-
perimental data

4.2.1 Uplift of pipes

Results from pipe uplift tests are used for comparison with the two-dimensional reverse
hopper theory described in Section 3.2. These data are chosen because the uplift of pipes
has been widely studied and the theory for lifting a rectangular plate is relevant to a pipe.
The theoretical lines in this section are plotted using Equation (30).

When pipe uplift data are used, the pipe is assumed to be equivalent to a long plate and the
pipe diameter, Dp, is taken as the plate anchor width, B. The shaded areas around the top
part of the pipe illustrated in Figure 12 are assumed to be rigid, mimicking the uplift of
a rectangular plate. Nyman [25] proposed that the uplift of a buried pipe is analogous to
that of a plate anchor, and the pipe diameter could be treated as the equivalent plate anchor
width for deeply buried pipes. The results presented in Figures 13 and 14 strengthen this
claim because the theory predicts the dimensionless breakout factor reasonably well with
plausible values of µ and α .

Figure 12: Dimensions of a buried pipe. For comparison with theory, the pipe is treated
as a long flat plate of width B = Dp, as indicated.

Figure 13 presents pipe uplift test results on medium-dense to dense sand reported by
Trautmann et al. [30] and Matyas and Davis [20]. The value of φ is not reported for these
data. Hence, the value φ = 40◦ recommended by DNV [13] for dense sand is used for the
theory. By setting φ = 40◦, µ = tan 40◦, and α = 20◦, a theoretical line which compares
well with the experimental data is obtained.
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Trautmann et al. 1985, medium dense sand
Trautmann et al. 1985, dense sand
Matyas & Davis 1983, dense sand

Theory: Equation (30) with B = D
p
, φ = 40°, µ = tan 40°, α = 20°

Figure 13: Two-dimensional reverse hopper theory, Equation (30), compared with exper-
imental data for pipe uplift tests in medium-dense to dense sand reported by
Trautmann et al. [Table 2, 30] and Matyas and Davis [Table 2, 20].

Figure 14 presents pipe uplift test results on loose sand reported by Trautmann et al. [30],
Matyas and Davis [20] and Schupp et al. [28]. The value φ = 30◦ recommended by DNV
[13] for loose sand is used to plot the theoretical line. The theoretical line shown in
Figure 14 is the best fit the authors could obtain by adjusting the values of µ and α . Both
values of µ and α need to be lowered to obtain a reasonable fit. Lowering the value of
µ below tanφ is justified by the fact that the kinetic µ is usually lower than the static µ

[5]. As for lowering the value of α , Ilamparuthi et al. [15] reported a lower α angle at
low H/Dp from their measurements. However, there is insufficient information to draw a
solid conclusion to determine the appropriate value of α for loose sands.

4.2.2 Uplift of rectangular plates

Figures 15, 16 and 17 present the experimental data shown in Figures 10 and 11, but
plotted against H/B instead of H/De; the theoretical lines are plotted using Equation (30)
instead of Equation (17). It is clear from Figures 15, 16 and 17 that the two-dimensional
reverse hopper theory compares well with the data only at high L/B values and under-
predicts the breakout factor at lower L/B values. Therefore, it can be concluded that the
plate has to be long (L/B ≥ 8) in order to ignore the end effects and apply the reverse
two-dimensional hopper theory instead of the axi-symmetric theory.

20



0 2 4 6 8 10 12 14

1

2

3

4

5

H/D
p
 = H/B

B
re

ak
ou

t f
ac

to
r,

 N
qf

 

 

Theory: Equation (30) with B = D
p
, φ = 30°, µ = tan 15°, α = 15°

Schupp et al. 2006, loose sand
Matyas & Davis 1983, loose sand
Trautmann et al. 1985, loose sand

Figure 14: Two-dimensional reverse hopper theory, Equation (30), compared with ex-
perimental data for pipe uplift tests in loose sand reported by Schupp et al.
[Figure 7, 28], Matyas and Davis [Table 2, 20] and Trautmann et al. [Table
2, 30].
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Theory: Equation (30) with φ = 44°, µ = tan 44°, α = 32.5°

L/B = 1, Murray & Geddes 1987
L/B = 2, Murray & Geddes 1987
L/B = 10, Murray & Geddes 1987

L/B
increases

Figure 15: Two-dimensional reverse hopper theory, Equation (30), compared with exper-
imental data from uplift tests for rectangular plates in dense sand. (Experi-
mental data extracted from Murray and Geddes [Figure 3(a), 22].)
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Theory: Equation (30) with φ = 44°, µ = tan 44°, α = 32.5°

L/B = 1, Dickin 1988
L/B = 2, Dickin 1988
L/B = 5, Dickin 1988
L/B = 8, Dickin 1988

L/B
increases

Figure 16: Two-dimensional reverse hopper theory, Equation (30), compared with exper-
imental data from uplift tests for rectangular plates in dense sand. (Experi-
mental data extracted from Dickin [Figure 7, 12].)

0 2 4 6 8

2

5

10

H/B

B
re

ak
ou

t f
ac

to
r, 
N

qf

 

 

Theory: Equation (30) with φ = 30°, µ = tan 20°, α = 20°

L/B = 1, Dickin 1988
L/B = 8, Dickin 1988

L/B
increases

Figure 17: Two-dimensional reverse hopper theory, Equation (30), compared with exper-
imental data from uplift tests for rectangular plates in loose sand. (Experi-
mental data extracted from Dickin [Figure 7, 12].)
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5 Conclusions

A new theory, developed in this work, improves the understanding of what happens during
the start-up of a multi-nozzle fluidised bed. The main function of the theory is to predict
the push up force required to unblock and mobilise the granular material above the nozzle.

The theory in this paper is developed from the hour-glass theory of hopper flow described
by Davidson and Nedderman [10], but the particles are pushed up rather than flowing
down. Two variations of the theory are presented. Both are derived using similar prin-
ciples, but are suitable only for certain applications. The axi-symmetric reverse hopper
theory is relevant to the fluidisation problem of particle movement above a nozzle and
also for uplift of buried discs in granular material. The second variation, which is the
two-dimensional reverse hopper theory, is appropriate for predicting the uplift of long
pipes/plates embedded in granular material.

In this work, the theory has been extensively tested using published experimental data
from geotechnical engineering. The results show that the new theory is able to predict
most of the trends shown by the experimental data.

The existing uplift theories in geotechnical engineering were mostly derived by applying
force balances around the assumed failure surface. Although not presented in this work,
the reverse hopper theory is capable of predicting the effects of uplift rate because of the
presence of the velocity term in Equations (1) and (18). This makes the reverse hopper
theory unique compared to the existing uplift theories because this feature is not found in
any of the existing theories. In this work, the velocity is assumed to be negligibly small
because most of the uplift tests were done at a very slow rate.

The reverse hopper theory only solves the first half of the fluidisation problem investi-
gated, which is to determine the minimum airflow to unblock a nozzle filled with parti-
cles. Hence, future work will focus towards extending the current model to include drag
force on the particles due to airflow.
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Nomenclature

Roman symbols
Ab Area of bed m2

Ap Area of plate m2

a Total area of the nozzles m2

B Breadth of rectangular plate m
b Radius of nozzle m
D Diameter of plate m
De Equivalent diameter for a rectangular plate m
Dp Diameter of pipe m
F Total push up force for axi-symmetric hopper theory N
Fs Shear force for axi-symmetric hopper theory N
Fv Vertical force for axi-symmetric hopper theory N
F2D Total push up force for two-dimensional hopper theory N
Fs (2D) Shear force for two-dimensional hopper theory N
Fv (2D) Vertical force for two-dimensional hopper theory N
g Acceleration of gravity m s−2

H Height of surcharge m
L Length of rectangular plate m
K = (1+ sinφ)/(1− sinφ). Coefficient of earth pressure [-]
Nqf = F/(γ ′ApH). Breakout factor for axi-symmetric hopper theory [-]
Nqf (2D) = F2D/(γ

′HBL). Breakout factor for two-dimensional hopper theory [-]
r Radius m
r0 Radius to bottom of hopper m
r1 Radius to top of hopper m
Umf Minimum fluidisation velocity m s−1

UN Nozzle gas velocity m s−1

v Radial velocity m s−1

Greek symbols
α Half angle of the cone or between 2D failure surfaces (◦)
γ ′ Unit weight of granular material N m−3

θ Angular position from the central axis (◦)
µ Coefficient of friction [-]
ρ Bulk density of granular material kg m−3

σr Stress in the radial direction N m−2

σθ Stress in the direction of θ N m−2

σψ Stress in the direction of ψ N m−2

σ1 Minor principal stress for axi-symmetric hopper theory N m−2

σ2 Major principal stress for axi-symmetric hopper theory N m−2
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σ20 Major principal stress at r0 for axi-symmetric hopper theory N m−2

σ1 (2D) Minor principal stress for two-dimensional hopper theory N m−2

σ2 (2D) Major principal stress for two-dimensional hopper theory N m−2

σ20 (2D) Major principal stress at r0 for two-dimensional hopper theory N m−2

φ Angle of friction (◦)
ψ Angular position around the central axis (◦)
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