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Abstract

This work presents a sequential modular approach to solve a generic network of
reactors with a population balance model using a stochastic numerical method. Full-
coupling to the gas-phase is achieved through operator-splitting. The convergence of
the stochastic particle algorithm in test networks is evaluated as a function of network
size, recycle fraction and numerical parameters. These test cases are used to identify
methods through which systematic and statistical error may be reduced, including by
use of stochastic weighted algorithms. The optimal algorithm was subsequently used
to solve a one-dimensional example of silicon nanoparticle synthesis using a multi-
variate particle model. This example demonstrated the power of stochastic methods
in resolving particle structure by investigating the transient and spatial evolution of
primary polydispersity, degree of sintering and TEM-style images.
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1 Introduction

Population balance modelling has traditionally been applied to modelling particle forma-
tion in a batch or plug-flow reactor [4, 30, 32]. In the former case, the equations governing
particle growth can be simplified to exclude terms for particle transport to- and from the
reactor. For the latter case, the reactor model typically represents an axial streamline
through the plug flow reactor (PFR). However, there are many systems found in engineer-
ing where advective or diffusive particle transport is important [25, 35]. This typically
requires use of computational fluid dynamics (CFD) or reactor network approach, cou-
pled with a population balance model to accurately capture particle dynamics.

Solutions for the population balance equation in these coupled systems may be grouped
into several classes, the most common of which are monodisperse [11, 22], moment [1,
2, 18, 27] and sectional [40] methods. All of these methods yield a set of differential
equations which may solved within the framework of the differential equations describing
fluid transport and/or chemical reactions [25].

Many commercial packages now include particle population balances using the aforemen-
tioned methods, for example STAR-CCM+ [12], CHEMKIN-PRO [41] and gPROMS [5].
The major drawback of using these methods to solve the population balance equations is
that they either do not resolve the particle size distribution (e.g. moments) or utilise a
simplified particle model such as a spherical or surface-volume type description. This can
cause errors when particle aggregates are formed through coagulation and sintering [29].

There is increasing recent interest in application of stochastic (or Monte Carlo) methods
to such systems [25, 35], after the initial work of Garcia et al. [19]. Stochastic methods
approximate a real volume of particles by a sample volume of computational particles,
where each computational particle represents a certain number of real particles [38, 48].
The idea of a computational particle in the context of a stochastic method is general;
and as such, any number of independent particle properties can simulated, for example
internal aggregate structure [29, 43, 47] or soot particle composition [15, 33, 44].

Stochastic methods have been applied for simulation of the Boltzmann equations for col-
liding gas molecules on spatially inhomogeneous domains [9] and adapted to transport
of electrons [34]. The key challenge in extending stochastic methods to solve population
balances in spatially inhomogeneous systems lies in the simulation of the Smoluchowski
coagulation process [35]. In contrast to Boltzmann collisions, Smoluchowski coagulation
events reduce the number of computational particles, causing numerical issues.

Implementation of stochastic population balance solvers for flow systems requires dis-
cretising the reactor geometry into a mesh composed of reactor ‘cells’ [25, 35]. These
connected cells can be considered a type of reactor network. Kruis et al. [25] developed
a ‘cell-based weighted random walk’ method to account for the movement of particles
between cells in a one- and two-dimensional reactor geometry. While reasonably good
agreement with a moments code was reported, it was observed that the method was sen-
sitive to stochastic noise, a result of using too few computational particles.

Patterson and Wagner [35] presented a stochastic method for coagulation-advection prob-
lems. The performance in accounting for coagulation of the conventional direct simu-
lation algorithm (DSA, [16]) against stochastic weighted algorithms (SWAs, [38]) was
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evaluated. It was reported that DSA is particularly susceptible to stochastic noise, which
eventually manifests itself as a systematic variance from the true solution.

A study by Zhao and Zheng [52] gave a three-dimensional adaptation of a stochastic pop-
ulation balance solver (using an SWA [53]) coupled with a CFD code. An algorithm was
presented to de-couple the fluid flow, particle flow and particle dynamics by choosing
an appropriate timestep size. In a similar vein to [25], limits associated with computa-
tional cost restricted the maximum number of computational particles, preventing precise
agreement with direct numerical simulation (DNS).

‘Multizonal’ [6, 7] or ‘compartmental’ models [3, 21, 26, 51] are models in which the fine
mesh of CFD is simplified to a coarse network of reactors with a specified flow between
each node. Such techniques typically require orders of magnitude fewer reactor cells,
thus reducing computational cost, however this comes at the price of decreased spatial
resolution of particle dynamics.

Only recently have compartmental models begun to be investigated using stochastic meth-
ods: Braumann et al. [10] used a two-reactor dead-zone model and a stochastic algorithm
to simulate granulation. Irizarry [21] recently presented an approach to solve a compart-
mental model with a population balance using a stochastic method. A new algorithm to
move particles between cells (‘particle bundle flow’ method) was reported, in which par-
ticles were restricted from jumping more than one compartment by choosing a suitably
small timestep. The numerical properties of some test systems were evaluated as a func-
tion of the timestep, however the effect of other numerical parameters was not addressed.

There are, however, further open questions in solving reactor networks with stochastic
population balance solvers. In order to maximise efficiency of these algorithms, it is
necessary to understand the convergence of these algorithms with respect to the number
of computational particles and independent runs [46]. Further, it is important to quantify
and reduce stochastic noise in the system, as this was identified as a potential issue in
[25]. Finally, the coupling of a such a system to a reacting gas-phase has not yet been
investigated: this is critical if particle synthesis in real reactors are to be simulated [13, 14].

The purpose of this paper is to extend the work of Irizarry [21], Kruis et al. [25] and
Zhao and Zheng [52] by developing an algorithm for solving a fully-coupled gas-phase
ODE/particle population balance network. The convergence properties of the stochastic
population balance will first be investigated, and methods to reduce statistical error will
be considered. The flexibility of stochastic methods in solving the population balance
equation will be demonstrated by use of a detailed multivariate particle model to simulate
silicon nanoparticle growth in a plug-flow reactor.

The structure of this paper is as follows. In Section 2, the reactor models are presented.
The stochastic solution methodology and model used for generating reference solutions
are discussed in Sections 2.1 and 2.2 respectively. The numerical test cases and their
results are discussed in Section 3. Finally, Section 4 illustrates one of the many ways in
which reactor networks can be applied to model a real reactor system.
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2 Model description

This work will study the numerical and physical behaviour of a constant-pressure net-
work of perfectly-stirred reactors (PSRs; or continuous-stirred tank reactors, CSTRs). It
is assumed that each of these reactors has a characteristic residence time τPSR = Q/V as-
sociated with it, where Q is the volumetric flowrate and V is the reactor volume. The
creation and interaction of particles with each other in these reactors is described by a
population balance equation. The evolution of the number density of particles n(P) of
type P is given by

d
dt

n(P) = Rincep(c,P)+Rcoag(n,P)+
NSG

∑
j=1

RSG, j(c,P)

+
1

τPSR

(
Nin

∑
j=1

f [ j]n[ j](P)−n(P)

)
−ψ(c,n,T )n(P)

(1)

where Rincep(c,P), Rcoag(n,P) and RSG, j(c,P) are the inception, coagulation and surface
growth (of growth process j) rates, respectively. The gas-phase expansion factor is given
by symbol ψ and the gas-phase species concentrations are given by vector c. The reactor
is assumed to have Nin inflow streams, each with fraction f [ j] of the total volumetric flow.
The governing equations for the gas-phase have been discussed in detail elsewhere [13],
and are mentioned here briefly for completeness. For NGP gas-phase species, the rate of
change in concentration of species k is given by:

dck

dt
= ω̇k(c,T )+ ġk(c,n,T )+

1
τPSR

(
Nin

∑
j=1

f [ j]c[ j]k − ck

)
−ψ(c,n,T )ck (2)

where ω̇k(c,T ) and ġk(c,n,T ) are the molar production rates of species k at temperature
T due to gas-phase and particle reactions, respectively. The gas-phase expansion factor
for a PSR is given by

ψ(c,n,T ) =
1
ρ

(
NGP

∑
k=1

[ω̇k + ġk]+
1

τPSR

[
Nin

∑
j=1

f [ j]ρ [ j]−ρ

])
+

1
T

dT
dt

(3)

where ρ is the molar density of the mixture. Ignoring energy changes due to the particle
population balance, the adiabatic energy balance of a constant-pressure PSR is

ρCP
dT
dt

=
NGP

∑
k=1

(
−Ĥkω̇k +

1
τPSR

Nin

∑
j=1

f [ j]c[ j]k

[
Ĥ [ j]

k − Ĥk

])
(4)

where CP is the bulk heat capacity and Ĥk is the specific molar enthalpy of species k.

2.1 Stochastic method

Stochastic methods approximate the real particle system with an ensemble of ‘computa-
tional particles’ [4, 13, 36–38]. The computational particles Pq may interact with each
other through a series of stochastic jump processes which define how the particles and the
entire population change with time.
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2.1.1 Type-space

The type-space refers to the mathematical description of a particle. For the numerical
studies in Sections 3 and 4.1, the spherical particle model [29] will be used. In this model,
particles of type P are represented as

Pq = Pq
(
v(q)
)

(5)

where v(q) denotes the volume of the particle q. All other properties (e.g. diameter or
surface area) can be straightforwardly calculated from this quantity if the particle density
is known. The multivariate ‘binary-tree’ particle model of Sander et al. [43] is used in
Section 4.2, in which the full aggregate structure of a particle is described.

2.1.2 Particle processes

In the stochastic method, the process which create and change particles are typically im-
plemented as jump processes [29]. A brief overview of the adjustments to a particle’s
type-space due to these processes is given below.

Inception Particles are created in the population balance by inception (also called nucle-
ation). This is represented by the following reaction

A+B→ Pq(v0) (6)

where A and B are nucleating gas-phase species. The rate of inception is typically
proportional to the gas-phase concentration of these species [28, 30].

Surface growth A surface reaction event may occur in the following manner:

Pq
(
v(q)
)
+A→ Pq(v(q)+δvA)+B (7)

where A is a reacting gas-phase species, B is a product species, and δvA is the
volume element added due to the reaction. The rate of reaction is typically described
by a Arrhenius expression for a heterogeneous growth process (e.g. [28, 46]), or the
free-molecular collision kernel for a condensation process (e.g. [28]).

Coagulation Particles coagulate and stick together according to the following reaction

Pq
(
v(q)
)
+Pr

(
v(r)
)
→ Ps(v(q)+ v(r)) (8)

The rate of coagulation depends on the choice of coagulation kernel K, which de-
fines the rate at which two particles collide. Both the constant kernel (Kconst = 1)
and transition kernel (Ktr [23, 31, 37]) are used in the present work.
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2.1.3 Algorithms for coagulation

The key challenge in stochastic particle methods is how to solve the Smoluchowski co-
agulation equation [31]. This work will investigate two popular methods by which this
is done: the direct simulation algorithm (DSA, [16]) and a stochastic weighted algorithm
(SWA, [31, 38]).

In direct simulation, each computational particle Pq represents the same number of real
particles. A coagulation event adds one particle to another, and deletes the unchanged
particle from the ensemble. A doubling algorithm [42] is employed in order to prevent
depletion of the ensemble, ensuring the actual computational particle count lay in the
range

[
1
2Nmax,Nmax

]
.

In stochastic weighted algorithms, computational particles are described by a type Pq and
statistical weight wq. The physical concentration of Pq is then given by wq/Vsmp, where
Vsmp is the sample volume, a scaling factor for the ensemble [31]. The coagulation algo-
rithm used in SWAs differs slightly to DSA: after adding the mass of the second particle
to the first, the statistical weight of the first particle is changed and the second particle is
left unaltered [38]. This is represented by:

(Pq,wq), (Pr,wr)→ (Pq +Pr,γ(Pq,wq,Pr,wr)), (Pr,wr). (9)

where γ is the coagulation weight transfer function, defining how the weight is changed.
This work adopts the SWA1 algorithm from [38], where γ is given by:

γ(Pq,wq,Pr,wr) = wq
wr

wq +wr
(10)

As no particles are deleted in the SWA, there is no need for a doubling algorithm [38].

2.1.4 Flow processes

Previous studies account for particle transport by moving computational particles between
cells [21, 52]. Alternative formations for accomplishing this task are presented in the
following section. An inflow process uniformly selects a particle of index q from inflow
stream j, identifying the particle to be copied into the ensemble. This is represented by
the ‘reaction’

(Pq,wq)
[ j]→ (Pr,wq), (Pr+1,wq), . . . , (Pr+Fc,wq) (11)

where Pr is a copy of Pq, and Fc copies of the particle are made. Note that the particle
weights remain unchanged in the inflow process. Adding multiple copies of particles in
this manner has the advantage of accelerating the computational particle count N(t) to the
maximum value Nmax, thus preventing depletion of the ensemble (when using the DSA)
should the outflow rate be similar. The quantity Fc represents the ratio of the current to
inflow ensemble scaling factors:

Fc =
Vsmp

V [ j]
smp

. (12)

The rate of an inflow or outflow process is proportional to the number of stochastic par-
ticles in the ensemble [8, 13]. For a constant-pressure reactor with constant volumetric
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inflow, the rate of inflow from stream j is given as:

R[ j]
inflow = f [ j]

N [ j](t)
τPSR

(13)

where N [ j](t) is the number of stochastic particles in the inflow stream. In this work it is
assumed that all reactors have identical values of τPSR, although the implementation is not
restricted to uniform residence times through the network. Two possible implementations
of an outflow are now presented. Firstly, upon selection of an outflow jump process,
particles can simply be deleted:

(Pq,wq)→ deleted (14)

The alternative requires consideration of flow processes as ‘continuous’ rather than as a
stochastic jump process. Supposing particles are lost due to an outflow process in time
∆t, the ensemble scaling factor Vsmp can be scaled by factor Fs to represent a decrease in
the ‘real’ particle number concentration, as M0 = N(t)/Vsmp [31]. The rescaling factor Fs

is given by

Fs =
1

1−∆t/τPSR
(15)

The new sample volume is simply obtained using V new
smp = FsVsmp. This form of particle

outflow is termed a ‘rescale’ outflow. It should also be observed that the outflow process
of an upstream reactor does not necessarily provide the inflow term of a downstream
reactor. The rate of particle outflow from a reactor is given by:

Routflow =
N(t)
τPSR

. (16)

The inflow and outflow (in the case of particle deletion) may be included in the stochastic
particle method as conventional jump processes (e.g. in Algorithm 2 of [46]). It should
also be noted that copying and deletion of computational particles makes tracking of a
particle’s trajectory through the network challenging.

2.1.5 Coupling to the gas-phase

The stochastic particle method is fully-coupled to a gas-phase ODE solver. The technique
of ‘operator splitting’ is employed to couple the gas- and particle-phases. The algorithm
by which this is done (Strang splitting) has been described in detail by Celnik et al. [13]
and Shekar et al. [46].

2.2 Discrete Model

In order to assess the numerical properties of the stochastic method, a reliable reference
model is needed. In this work, the Discrete Model will be used, which writes the popu-
lation balance equation as a series of ordinary differential equations (ODEs) [18]. These
may be solved using conventional differential equation packages. The Discrete Model is
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similar to a sectional method, however every particle size is represented by its own dif-
ferential equation. Arbitrarily high precision can be obtained by choosing a sufficiently
large maximum particle size, corresponding to the number of ODEs NODE.

For the test particle mechanism, constant inception, surface growth rates will be assumed
(with NSG = 1). The rate of coagulation is determined using the Smoluchowski coagula-
tion equation, and is given by [18]:

Rcoag(n,Pi(v(i))) =
1
2

i−1

∑
j=1

K j,i− jn jni− j−ni

NODE

∑
j=1

Ki, jn j (17)

where Ki, j is the coagulation kernel evaluated for particle pair (Pi, Pj). Supposing that
particles of size i ∈ [1,NODE] are spherical with volume iv1, where v1 is the size of the
smallest possible particle, and that coagulation occurs with the constant kernel, the popu-
lation balance equation is written as

dni

dt
=





Rincep−Kconstni

NODE

∑
j=1

n j−RSGni +
1

τPSR

(
Nin

∑
j=1

f [ j]n[ j]
i −ni

)
i = 1

1
2

Kconst
i−1

∑
j=1

n jni− j−Kconstni

NODE

∑
j=1

n j +RSG (ni−1−ni)+
1

τPSR

(
Nin

∑
j=1

f [ j]n[ j]
i −ni

)
i > 1

2.3 Solution of reactor networks

The formulation of the above flow processes permits linking of reactors in a generic man-
ner. To solve the transient response of the network, a simple sequential procedure is
adopted. This is typically termed ‘sequential modular simulation’, and similar approaches
have been used in other applications [52]. The algorithm employed to solve the fully-
coupled gas-phase ODE system with the stochastic population balance solver for Nreac

reactors is given in Figure 1.

The algorithm in Figure 1 illustrates the solution methodology for Strang splitting, al-
though in theory any form of coupling (e.g. predictor-corrector [14]) could be used. The
accuracy of this algorithm is clearly dependent on choice of a sufficiently small splitting
timestep ∆ts, which has been investigated elsewhere [21, 52].

3 Numerical studies

In stochastic solutions to the population balance, numerical error can manifest itself in
two forms: statistical error and systematic error [13]. The numerical error is affected by
the maximum number of computational particles (Nmax), the number of independent runs
(L) and the splitting time-step (∆ts) [13, 31, 46]. The error can be assessed by generating
L independent estimates of the particle system, and comparing the macroscopic quantities
of the system m(t) for a given set of numerical parameters. Those studied in the present
work are given in Table 1.
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Start

j ← 0

i ← 0

i < Nreactj < tf

j ← j + 1

i ← i + 1

Finish

Loop over reactors

Loop over timesteps

Solve gas-phase over
[
tj , tj + ∆ts

2

]

Solve particle-phase over
[
tj , tj + ∆ts

]

Solve gas-phase over
[
tj + ∆ts

2 , tj + ∆ts
]

TRUEFALSE
TRUE

FALSE

Figure 1: Algorithm used to solve the reactor network with Strang splitting.

Table 1: Summary of process metrics studied in the present work.

m(t) Description Formula

M0(t) Particle number concentration
1

Vsmp

N(t)

∑
i=1

wi

µa(v)(t) Average particle volume
1

∑wi

N(t)

∑
i=1

v(i)

M2(t) Second mass moment
1

Vsmp

N(t)

∑
i=1

wi
(
ρv(i)

)2

M3(t) Third mass moment
1

Vsmp

N(t)

∑
i=1

wi
(
ρv(i)

)3
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The temporal evolution of these functionals is averaged over the number of independent
runs:

µ
(Nmax,L)(t) =

1
L

L

∑
l=1

m(Nmax)
l (t) (18)

The confidence interval cP for µ (Nmax,L)(t) is given by

c(Nmax,L)
P (t) = aP

√√√√ 1
L−1

[
∑

L
l−1 m(Nmax)

l (t)2
]
−µ (Nmax,L)(t)2

L
(19)

where P is the confidence level. In this work, P = 0.999 is used, for which a0.999 = 3.29
from normal distribution tables. The total error is then estimated by calculating the relative
average absolute error (ε) over M time intervals [13]:

ε
(Nmax,L) =

1
M

M

∑
m=1

∣∣µ (Nmax,L)(tm)−m∗(tm)
∣∣

m∗(tm)
(20)

where m∗(t) is the ‘true solution’, approximated here as that obtained using the Discrete
Model (i.e. the ODE solution). The relative statistical error can be estimated by taking the
ratio of the confidence interval and the mean:

ε
(Nmax,L)
stat (t) =

c(Nmax,L)
p (t)

µ (Nmax,L)(t)
(21)

The relative average statistical error may then be obtained:

ε
(Nmax,L)
stat =

1
M

M

∑
m=1

ε
(Nmax,L)
stat (tm) (22)

These quantities will be used to analyse the performance of the stochastic population bal-
ance solver in simple networks of reactors. As previous work has thoroughly investigated
the choice of a correct timestep [21, 52], the focus of the following studies will be on the
number of computational particles Nmax and the number of independent runs L.

3.1 Comparison to Discrete Model

To test the validity of the stochastic particle algorithm in solving the population balance
equations, a simple test system was devised: three reactors connected in series, with pos-
sible countercurrent recycle streams opposing the direction of flow. Material is recycled
from reactors R2 and R3 with fraction fR, and the total volumetric flowrate Q is constant
between all reactors. It was assumed that the inflow to the network contained 1 #/m3 par-
ticles of size i = 1, with each reactor having the same residence time τPSR. A schematic
of this system is provided in Figure 2(a).

This system was solved using a simple particle mechanism including terms for coagula-
tion (according to the constant coagulation kernel, Kconst = 1), surface growth (RSG = 1)
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(1 − fR)Q

Inflow

Outflow

fRQ

fRQ

R1 R2 R3 (1 − fR)Q
Q Q

(a) Linear network with recycles

Q0

Inflow

Outflow

QNreacR1 R2 . . . RNreac

Q1

fQ0 fQ1 fQNreac−1

(b) Linear network with multiple inflows

Figure 2: Schematic of the test systems used in the present study.

and inception (Rincep = 1). While these do not represent physical rate equations, they are
helpful for evaluating the performance of the stochastic particle method against other so-
lution methodologies. This was first undertaken by applying the Discrete Model [18] and
the stochastic particle method (using the SWA [38]) to solve the test system. The results of
this analysis are given in Figure 3, for a linear ( fR = 0) and countercurrent (with fR = 0.5)
network; and Nmax = 16384, L = 8.

The transient evolution of M0 illustrates the issue of statistical error present in stochas-
tic solutions to the population balance equation: the ‘random’ nature of the processes in
the stochastic method induce fluctuations in functionals describing the system (e.g. the
moments). The noise can be eliminated by averaging the solution over multiple indepen-
dent runs (i.e. with a different random seed). The influence of this statistical error and
systematic variation will be addressed in the following sections.

3.2 Linear networks

As in previous numerical studies into stochastic population balances [13, 31, 46], it is
useful to investigate how the error in a stochastic solution varies with the number of com-
putational particles (Nmax) and independent runs (L). Further, it is likely that the different
coagulation algorithms and two outflow process types could contribute different amounts
of systematic or statistical error to the stochastic solution.

Using the test case described in the previous section, the stochastic solutions using the
DSA and the SWA were generated. It was assumed that reactors R1 and R3 used outflow
rescaling as their outflow process, while the outflow process type of R2 was varied. The
relative average error in R2 of the stochastic solution with respect to the Discrete Model
was evaluated, with a constant Nmax×L = 10×218, and is given in Figure 4.

It is difficult to observe any meaningful differences between coagulation algorithms or
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Figure 3: Comparision of solutions for transient evolution of normalised moments M0,
M2 and M3 from the Discrete (ODE) Model [18] and stochastic method (using
the SWA) for the three-reactor system (Figure 2(a)) with fR = 0 and fR = 0.5.
Confidence intervals of the stochastic solution are given where visible.

13



10
-3

10
-2

10
1

10
2

10
3

10
4

10
5

10
6

ε- (
M

0
),

 -

Nmax, -

DSA:Delete
DSA:Rescale
SWA:Delete

SWA:Rescale
-1 slope

10
-3

10
-2

10
1

10
2

10
3

10
4

10
5

10
6

ε- (
µ

a
(V

))
, 

-

Nmax, -

Figure 4: Convergence of the zeroth moment (M0) and average volume (µa(V )) in R2
using the DSA, SWA; and outflow rescaling and particle deletion.

outflow processes in examining the error in the zeroth moment (Figure 4, left panel).
The approximately flat error indicates that M0 has converged for all systems by Nmax =
256, after which the total error is representative of the statistical error. Higher moments
(e.g. M2, M3) show analogous behaviour. In contrast to this, the error in average particle
volume (Figure 4, right panel), and similarly other average particle properties, shows a
clear difference between the convergence of the DSA and SWA. Similar behaviour of the
SWA was reported in [31].

The previous discussion focused on the reduction of systematic error as a function of
numerical parameters. Using Equation (22), the relative amount of statistical error present
in each case can also be compared. These results are presented in Figure 5.

Only in the zeroth moment does DSA appear to have a slight advantage in terms of reduc-
ing statistical error. For all other cases (particularly the higher moments), the SWA shows
up to a 45% reduction in average uncertainty. This is consistent with previous studies
[31, 38]. The outflow rescaling process type appears to contribute less statistical error
than its particle deletion counterpart. This is unsurprising, since removal of a particle
from the ensemble deletes information that could otherwise be preserved in a rescaling
approach.

3.3 Networks with recycle loops

Chemical engineering process models may often include a ‘recycle stream’ [17], where
material or energy is transferred from a downstream to an upstream unit operation. The
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stochastic solution of the population balance equation has only recently been studied with
such networks [21], and as such, this section aims to investigate some of the preliminary
characteristics of the stochastic particle algorithm where feedback loops are present.

The relative average error in R2 with respect to the Discrete Model was evaluated for
the network in Figure 2(a) using the test particle mechanism with fR = 0.5 (Nmax×L =
10×218); and is presented in Figure 6.

In contrast to Figure 4, it is evident the system is more sensitive to the number of compu-
tational particles. The linear decrease in the metrics’ average error (slope of -1) with Nmax

is consistent with other studies of convergence of stochastic particle methods [13, 20, 32].
Only for the zeroth moment does the DSA outperform the SWA for reduction of error as
a function of Nmax. Both methods appear to converge by the same threshold; Nmax = 4096.

In addition to recycling material (gas-phase and particles), a feedback loop could also
recycle statistical error. Using outflow rescaling, the transient evolution of the statistical
error in M3 was evaluated (Equation (21)) in R3 for different values of the recycle fraction.
These results are displayed in Figure 7.

As the recycle fraction increases, so does the ‘noise’ in the solution. Use of the SWA is
particularly advantageous in this system, in some cases showing more than an order of
magnitude less statistical error than the DSA. The same phenomenon is observed for all
other metrics, with the exception of M0. In the case of M0, the statistical error is so small
that any potential advantage of DSA is outweighed by the error accumulation in the other
metrics.
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rent network with fR = 0.5.
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Although the statistical error appears to stabilise as the reactor reaches steady-state, the
statistical error in the DSA solutions is concerningly large; reaching more than 20% for
fR = 0.8. In practical use of stochastic population balance modelling, it is uncommon to
use 160 independent runs (8 is more common: [28, 46]), as the computational expense
can be too great. Since the statistical error is dependent on the number of runs, it is rec-
ommended that the SWA be used in place of the DSA for networks with strong feedback.

3.4 Reactors with multiple inlets

The previous analyses addressed linear reactor networks and those which recycle infor-
mation through the network for a system with three reactors. It is also important to un-
derstand the effect of increasing the length of the reactor network and the contribution
of material from inflow streams to a reactor. The Damköhler number is typically used to
investigate the latter phenomenon, and is defined here as

Da =
1/τ in

coag

1/τPSR
(23)

where τcoag is the characteristic coagulation time, given by 1/(KconstM0) [29]. By varying
the Damköhler number of stream, the effect of an increased coagulation rate upon the test
system can be assessed. To do this, the system given in Figure 2(b) with length Nreac = 10
reactors and inflow fraction f = 0.5 was used. The statistical error in each reactor as a
function of inflow Damköhler number was determined and is given in Figure 8.
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The error measurements increase through the length of the PSR chain, before levelling-off
after five reactors. Where more coagulation occurs (higher Da, right panel), the error is
increased. This analysis illustrates how error can potentially propagate through a reactor
chain, although in this particular example the total error is sufficiently low to be of no
concern. It is suggested that for systems where particle processes (e.g. coagulation, sur-
face growth) occur over much shorter characteristic times than the transport time, more
independent runs or computational particles could be used to offset the accumulation of
statistical error.

4 Applications

4.1 Approximation of a PFR

Many aerosol synthesis processes use a tubular hot-wall reactor or similar to manufacture
nanoparticles [24, 32, 45, 49, 50]. These processes are typically modelled using a plug-
flow reactor (PFR) model, where the length coordinate of the reactor is translated into
a time coordinate to permit solution of the population balance equations. However, this
formulation does not permit investigation of the transient behaviour of the flow reactor, as
the time coordinate is actually in reference to the distance through the reactor.

In development of the plug-flow reactor model, it is typically assumed that the reactor is
composed of infinitesimally thin ‘plugs’. Supposing that a PFR with constant volume V
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has a constant volumetric flowrate Q, the residence time of each reactor is given by:

τPFR =
V
Q

(24)

Approximating the PFR as a series of Nreac perfectly-stirred reactors, the residence time
of each reactor (or plug) is straightforwardly calculated:

τPSR =
τPFR

Nreac
. (25)

Under this approximation, the ability to model networks of flow reactors with the stochas-
tic particle method therefore permits the transient response of the population balance
equations in a PFR to be determined. That is, both the time and the reactor length co-
ordinate can be treated independently. This has practical relevance in reactor start-up and
operation.

For practical purposes, it is useful to know how many PSRs are needed to accurately
approximate the true PFR solution. This will be a function of the relative timescales of the
particle processes with respect to the transport timescale. The Damköhler number is again
used to measure the relative influence of coagulation; however here the characteristic
transport time τ is taken to be the residence time of the PFR being approximated by the
PSR network (i.e. Da = τPFR/τcoag). To investigate the difference of a network solution
to the PFR solution, the ‘average PFR error’ εPFR is first defined. For a reactor network
composed of Nreac PSRs, each with residence time τPSR(Da); the error in the network’s
solution with respect to the PFR solution is given by:

ε
(Da, Nreac)
PFR =

1
Nreac

Nreac

∑
i

∣∣∣µ (Da)
Ri (tSS)−m∗PFR (iτPSR)

∣∣∣
m∗PFR (iτPSR)

(26)

where µRi is the mean of metric m(t) in reactor i of the network over L runs (Equation
(18)), and m∗PFR the PFR solution for that metric. The number or reactors required to ap-
proximate a PFR was studied for a system of particles undergoing a physical coagulation
process (transition kernel [31]) with no inception or surface growth. The results for a
variety of Damköhler numbers are given in Figure 9. The time required for the network
to reach steady-state was empirically found to be tSS < 2τPFR for all Damköhler numbers.

It is clear that when the relative influence of coagulation is small (low Da), the PSR
network approximation to a PFR is valid for very few reactors, and the magnitude of the
error is very small. This approximation appears to become less useful as the coagulation
process occurs faster, relative to the transport time. It is again illustrated in Figure 10,
where the zeroth moment is plotted for various (Da, Nreac) pairs.

4.2 Silicon nanoparticle synthesis

To illustrate the application above, the example of Wu et al. [50] is used, where silicon
nanoparticles were produced from silane (in N2) at atmospheric pressure. A multivari-
ate fully-coupled model was recently presented for this system [28], including terms for
particle inception, surface growth, condensation, coagulation and sintering.
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Figure 11: Mesh plots depicting the transient evolution of the primary polydispersity
(given here by the average geometric standard deviation of primary diameter
[29]) and the degree of sintering. Contour projections of the network solution
are compared to the PFR solution (thick line).

The fully-coupled gas-particle model was applied to a network of 30 consecutive PSRs,
approximating the tubular reactor in [50]. As the reactor configuration used in that study
has a length-variable temperature profile, it was assumed that each PSR is isothermal
and is of the temperature corresponding to its location along the PFR (i.e. Ti = T (iτPSR)).
Assuming that each PSR was initially filled with inert N2, the transient response of the
PSR network was evaluated, allowing sufficient time for the system to reach steady state.
The results of this analysis are given in Figure 11, where the transient and axial evolution
of the particle properties are plotted.

Figure 11 (left panel) shows the behaviour of the primary polydispersity, given by the
average of the geometric standard deviation of primary diameters in a particle. The ‘time
through reactor’ coordinate refers to the axial position in the reactor, whereas the ‘time’
axis is the transient response. There is good agreement between the network and PFR
solutions in early reactor times (i.e. initial section of PFR length). This agreement appears
to decay as coagulation accelerates, similar to Figures 9 and 10.

The degree of sintering (Figure 11, right panel) lies on [0,1.0] where 0 is equivalent to
two primaries in point contact (i.e. no sintering) and 1.0 is full-coalescence [43]. In this
particular example, the growth by coagulation and sintering under similar timescales [29]
causes aggregates of partially-sintered primaries to form, thus depression in the sintering
level in both time trajectories is observed.

The primary polydispersity and sintering level are parameters which cannot be obtained
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Figure 12: Contour plots of transient evolution of average collision diameter and parti-
cle number concentration. Insets illustrate the particle ensemble state with
TEM-style images at the given reactor time (i.e. axial position) and transient
response time coordinates, generated using POV-Ray [39].

by using deterministic population balance modelling techniques. Stochastic methods us-
ing the binary-tree particle model additionally can interrogate the particle ensemble to
generate images of sample particle structures. This is illustrated in Figure 12, where sam-
ple TEM-style images are generated for specific PFR axial position times and transient
response times.

The collision diameter (Figure 12 left panel) and number concentration (Figure 12 right
panel) are presented to give representative values of particle size and quantity as a function
of reactor position and transient response time. Panel A represents the initial generation
of ‘seed’ particles, which are transported through the network until point B, where the
temperature profile causes further rapid nucleation and surface growth. The spike in num-
ber concentration at B increases the coagulation rate, causing aggregates to form (Panel
D). If particles are transported to the outlet of the reactor, the final temperature increase
sinters the particles back to spheres (Panel C).

The temporal evolution of these quantities illustrates the power of the methodology devel-
oped in the present work: using a fully-coupled model incorporating gas-phase kinetics
and a multidimensional particle model enables an unprecedented amount of detail of par-
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ticle composition, size and structure to be captured in a transient flow reactor.

5 Conclusions

This work has presented an algorithm to solve a reactor network with a fully-coupled gas-
phase and stochastic population balance solver. The algorithm uses sequential modular
simulation to solve the network in a stepwise fashion. Novel processes for accounting for
particle in- and outflow were proposed.

The convergence properties of the network solution algorithm were assessed in order to
identify suitable choices for numerical parameters. A choice of 4096 computational par-
ticles was recommended to minimise systematic error. A new algorithm for simulating
particle outflow (termed volume ‘rescaling’) was also shown to be advantageous in reduc-
ing statistical error. Two algorithms for coagulation were considered: the direct simula-
tion algorithm (DSA) and a stochastic weighted algorithm (SWA). It was found that the
SWA algorithm showed superior reduction of systematic and statistical error for almost
all properties of the particle ensemble. The direct simulation algorithm was found to be
unsuitable for networks with strong feedback.

To illustrate potential applications of this methodology, a plug flow reactor was approx-
imated as a linear series of perfectly-stirred reactors. The number of PSRs required to
approximate such a system as a function of coagulation rate was first evaluated. The sys-
tem was then solved using a multivariate silicon particle model to simulate the start-up of
a flow reactor system.

The coupling of a stochastic methods to computational fluid dynamics codes is still very-
much in its infancy. As no other method of solving the population balance equation is
currently able to use detailed multivariate particle models such as the binary-tree model
used in the present work; it is anticipated that stochastic methods will play a stronger
role in process modelling. This work has contributed to the understanding of numerical
aspects of such approaches.
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