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Abstract

This work presents the mathematical formulation of particle models commonly
used in aerosol dynamics of nanoparticles. A detailed numerical study is conducted
in order to understand under which conditions these models differ. The silica model
of Shekar et al. (2012, J. Aerosol Sci. 44 83–98) and silicon model of Menz et
al. (2013, Combustion & Flame, accepted for publication) model taken from the
literature are analysed using three different particle models, demonstrating that sub-
stantial errors can be incurred when using a particle model inappropriate for a par-
ticular modelling application. It is concluded that the suitability of a particular par-
ticle model for a modelling purpose is dependent on the characteristic sintering and
coagulation timescales of the system. The influence of particle rounding due to het-
erogeneous surface growth remains to be quantified.
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1 Introduction

Population balance modelling is typically applied in order to model the aerosol synthesis
of nanoparticles [19, 41, 45]. Depending on how the population balance equations are
solved, different assumptions are made about the nature of the particles to simplify the
these equations’ solutions [45]. The level of detail to which the particles are described is
defined as a particle model.

The type of particle model used depends on how the population balance equation is solved
and the target modelling system. Three main categories of solution methodology are
employed. The ‘method of moments’ [8, 9] describes the evolution of a population of
particles by the moments of the distribution. It is typically fast, however the particle
size distribution (PSD) can not be resolved from the results of such calculations. The
sectional methods split the distribution of particle properties into sections [14], allowing
some resolution of PSD. These methods are often more computationally expensive [45]
than the moments method and can only be extended to multiple internal dimensions with
great difficulties [12].

An alternative is to use stochastic methods [3, 5, 30, 31]: these approximate the real
particles with a collection of ‘computational particles’. The computational particles may
interact with each other through a series of stochastic jump processes which define how
the particles change with time. These methods have been applied to a variety of systems
[5, 6, 22, 33, 34, 38]. However, the main disadvantage of stochastic methods is that it is
difficult to include spatial inhomogeneity [29, 31].

In early modelling attempts, particles were treated as spheres which would coalesce into
larger spheres upon collision with other particles; for example, see Frenklach and Harris
[9]. This corresponds to the spherical particle model; which is a one-dimensional model
tracking only the volume or some number of chemical elements in a particle.

However, not all nanoparticles are spherical [28, 36, 40]. It is very common to obtain ag-
gregates (chemically bound collections of particles) and agglomerates (physically bound
particles) [7], especially where particle growth occurs by coagulation or sintering. The
surface-volume particle model extended from the basic spherical model, by tracking the
volume and total surface area of a particle [20, 45]. Another 2D model providing similar
information tracked the number of aggregates and number of primary particles [27]. Such
knowledge provides a basic understanding of aggregate structure of particles.

The surface-volume model is limited in the respect that it assumes that primary particles
are monodisperse. Further, it has been identified that typical expressions used to calculate
the primary particle size are not ideal [43]. Heine and Pratsinis [12] developed a sectional
model to address this issue, where the polydispersity of primary particles was incorporated
in a sectional model. Balancing the population of primary particles over all aggregate
particles enabled the effects of simultaneous coagulation and sintering to be captured.

Even more detailed particle models have been utilised. Sander et al. [33] presented a
‘binary-tree’ particle model as part of a stochastic population balance. It incorporated
the full aggregate structure of soot particles, allowing for resolution of individual primary
particles and their connection to other primary particles in an aggregate. This model has
been extended to silica [23, 38, 39] and silicon [22, 24].
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Despite these advances in modelling the structure and morphology, many studies still use
basic spherical or surface-volume particle models [1, 11, 18]. This work investigates the
conditions under which use of these models is appropriate; and where their use could
represent a significant over-simplification. This is accomplished with a generic stochastic
population balance solver [5, 10, 25, 30] which has been mathematically described and
numerically investigated elsewhere [22, 33, 38].

The structure of the present work is as follows. Section 2 presents the mathematical
description of the particle models and how their derived properties (e.g. particle collision
diameter) are calculated. Sections 3 and 4 discuss some case studies and compares model
predictions for a range of test cases; and the paper is concluded with suggestions for
further research in Section 5.

2 Models

2.1 Type-space

This work uses a ‘generic’ multicomponent description of the primary particles’ chemical
composition; that is,

p = p(η1,η2, . . . ,ηn) , (1)

where p will contain ηi chemical components (e.g. number of carbon atoms). A particle
Pq of index q in Nmax computational particles will always contain at least one primary
particle p. For the spherical particle model, the type-space is very simple:

Pq = Pq
(

p(q)) . (2)

Here the super-script is used to denote ownership of the primary particle p(q) by particle
Pq. The surface-volume model (or, surf-vol model for short) was first proposed by Kruis
et al. [20]. In addition to tracking the chemical composition of particles, it also includes
the surface area S(q) as an independent variable:

Pq = Pq
(

p(q),S(q)) . (3)

The surface-volume model, however, assumes that primaries in a particle Pq are uniformly
distributed. The ability to include polydispersity of primary particles was proposed by
Sander et al. [33] in their ‘binary tree’ model. This model represents a particle as a binary
tree of primary particles with some manner of connectivity between them:

Pq = Pq
(

p1, p2, . . . , pnq
,C(q)) (4)

where Pq contains nq primary particles and C is a lower-diagonal matrix representing
the common surface area between two neighbouring primary particles. The form of this
matrix is discussed in [33, 38, 39].
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Table 1: Comparison of the derived properties of the particle models.

Property Spherical Surf-vol Binary tree
type-space Pq

(
p(q)
)

Pq
(

p(q),S(q)
)

Pq
(

p1, p2, . . . , pnq
,C(q)

)
Vq

n

∑
i=1

ηiMi

NAρi

n

∑
i=1

ηiMi

NAρi

nq

∑
j=1

V (p j)

dsph,q
3

√
6
π

Vq
3

√
6
π

Vq
3

√
6
π

Vq

Ssph,q πd2
sph,q πd2

sph,q πd2
sph,q

Sq Ssph,q S(q) Ssph,q

sq(1−n−
1
3

q )+n−
1
3

q

dpri,q dsph,q
6Vq

Sq
-

dpriq - -
1
nq

nq

∑
j=1

dpri(p j)

nq 1
S3

q

36πV 2
q

nq

dcol,q dsph,q
1
2

(
dsph,q +

√
Sq

π

)
dpriq

[
S3

q

36π V 2
q

] 1
Df

2.2 Derived properties

The type-space of the particles allows for all other properties of the particles to be deter-
mined. The volume of a primary is based on the number of chemical units ηi and bulk
densities ρi:

v(p) =
n

∑
i=1

ηiMi

NAρi
(5)

where Mi is the molecular weight of element i and NA is Avogadro’s number. For spherical
or surface-volume particles, the volume of the particle Vq is equal to that of the primary.
In the binary tree model, the volume of a particle the sum of the volume of its constituent
primaries, that is,

Vq =V (Pq) =
nq

∑
j=1

v(p j) . (6)

The derived properties of the surface-volume model have been published in [20]. Essen-
tially, the volume and surface area Sq of a particle are used to estimate the size of primary
particles, the number of primaries and the collision diameter. These equations are sum-
marised in Table 1. For the binary tree model, the derived properties are analogous to
those used in previous studies [22, 23, 33, 38]. Of key importance is the surface area:

Sq =
Ssph,q

sq(1−n−
1
3

q )+n−
1
3

q

(7)
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where Ssph,q is the equivalent spherical surface of a sphere with the same volume as the
particle Pq, and sq is the average sintering level between the primaries of the particle. The
sintering level (0≤ s≤ 1) of two primary particles p j and pk is given by [33]:

s(p j, pk) =

Ssph(p j,pk)

C jk
−2−

1
3

1−2−
1
3

. (8)

This definition implies that a spherical particle has a sintering level of 1, while two pri-
maries in point contact (with no sintering) have a sintering level of 0. An important dis-
tinction to make between the primary particle diameter described by the surface-volume
model and that of the binary tree model is that the latter is an average within the particle,
while the former is an estimate based-on the surface area and volume. Thus, the average
primary diameter in a binary tree particle is given by:

dpriq =
1
nq

nq

∑
j=1

dpri(p j). (9)

The collision diameter of a particle is given by [38]:

dcol,q = dpriq

[
S3

q

36π V 2
q

] 1
Df

(10)

where dpri is the Df is the fractal dimension, assumed to be 1.8 for the present work [35].
These are summarised and compared with the derived properties of other particle models
in Table 1.

2.3 Particle processes

The three particle models interact generically with several particle processes. Examples
of such processes are inception (or nucleation), heterogeneous growth, coagulation and
sintering. These are documented and mathematically described in detail in [22, 23]. In
the present work, coagulation and sintering are the two which differ most between models
so are outlined here.

The rate of coagulation is calculated using the ‘transition regime coagulation kernel’ (Ktr),
which is a computationally efficient approximation to true Brownian coagulation [15, 23].
In the spherical particle model, a coagulation event will form a sphere with volume equal
to the sum of the coagulating spheres’ volume. This is represented by the following
transformation:

Pq
(

p(q))+Pr
(

p(r))→ Ps
(

p(q)+ p(r)) (11)

The addition of primary particles is equivalent to taking the sum of their component vec-
tors:

p(q)(η
(q)
1 , . . . ,η (q)

n )+ p(r)(η
(r)
1 , . . . ,η (r)

n ) = p(s)(η
(q)
1 +η

(r)
1 , . . . ,η (q)

n +η
(r)
n ) (12)
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p(1) + p(2)

p(1) + p(2)

P(p(1) + p(2))
P(p(1) + p(2),S(1) + S(2))

p1 p2

C12

P(p1, p2,C)

spherical surf-vol binary-tree

Figure 1: An illustration of different particle models’ description of coagulation events.

A similar transformation takes place for a coagulation event in the surface-volume model,
except the total surface area is also conserved:

Pq(p(q),S(q))+Pr(p(r),S(r))→ Ps(p(q)+ p(r),S(q)+S(r)) . (13)

A coagulation event in the binary tree model will retain the primary particle information
and connectivity of both coagulating particles:

Pq
(

p1, . . . , pnq
,C(q))+Pr

(
p1, . . . , pnr

,C(r))→ Ps
(

p1, . . . , pnq
, pnq+1, . . . , pnq+ns

,C(s)) (14)

The common-surface matrix C is changed to reflect the structure of old particles Pq and
Ps, and their new connection. The process through which this is done is described in detail
by Shekar et al. [38]. The physical interpretation of Equations (11)–(14) is illustrated in
Figure 1.

The three models also include quite different descriptions of sintering. For the spherical
particle model, sinter effectively occurs infinitely fast, as particle coalesce upon coagula-
tion. For the surface-volume and binary tree models, the exponential excess surface area
decay formula–as popularised by Koch and Friedlander [17]–is employed. In the former
of these, the surface area of the whole particle is reduced

∆Sq

∆t
=− 1

τS(p(q))
(Sq−Ssph,q) (15)

where τS is the characteristic sintering time. It is an empirical function of temperature T
and diameter d which is related to the time required for a two neighbouring primaries to
coalesce. For the surface-volume model, it is expressed in the form

τS(p(q)) = AS dnS
pri,q T exp

(
ES

RT

)
(16)

where AS, nS and ES are empirical parameters. Tracking of the connectivity of adjacent
primary particles allows the binary tree model to sinter each connection individually. For
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a single connection, the rate of sintering is given by

∆C jk

∆t
=− 1

τS(p j, pk)
(C jk−Ssph(p j, pk)) (17)

where C jk represents the element of the common-surface matrix C describing the common
surface area of the two primaries p j and pk, and Ssph(p j, pk) is their equivalent surface
area. The characteristic sintering time also takes a slightly different form to account for
two primaries of a different size touching:

τS(p j, pk) = AS min [dpri(p j),dpri(pk)]
nS T exp

(
ES

RT

)
. (18)

2.4 Average properties

In order to study the behaviour of a system of particles, it is useful to define some average
quantities which describe the size and morphology of the particles and ensemble. In this
work, the arithmetic and geometric mean of the collision and primary diameter is used.
These are denoted as µa and µg respectively. For example, the geometric mean of the
primary diameter is given by:

µg(dpri) =

(
N(t)

∏
q=1

dpri,q

) 1
N(t)

(19)

where N(t) computational particles are in the ensemble at time t. Note that for the surface-
volume model, µg(dpri) represents the mean of the estimated primary diameter of each
particle; while in the binary tree model it represents the mean of average primary diameter
of each particle. The (number-based) geometric standard deviation is also particularly
useful for classifying polydispersity of particles [12]. Here, it is calculated in the context
of the binary tree model for the average primary diameter as

σg(dpri) = exp


√√√√ 1

N(t)

N(t)

∑
q=1

ln

[
dpri,q

µg(dpriq)

]2
 (20)

For the binary tree model, two estimates of σg(dpri) can be made. The first involves
using Equation (20) to calculate the geometric standard deviation of the average primary
diameter. The second takes the arithmetic mean of the geometric standard deviation of
the primary diameter in each particle:

µa [σg(dpri)] =
1

N(t)

N(t)

∑
q=1

exp

√√√√ 1
nq

nq

∑
j=1

ln
[

dpri, j

µg(dpri)

]2
 (21)
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Table 2: Parameters used in the case studies.

Description Symbol Value Ref.
Numerical parameters
Maximum splitting timestep ∆ts 2.5×10−4 [38]
Maximum number of stochastic particles Nmax 16,384 [23]
Number of runs L 8 [23]

Model parameters - Silica model
Fractal dimension Df 1.8 [35]
Sintering pre-exponential AS 1.10×10−16 s/m [37]
Sintering characteristic energy ES 1.20×105 K [37]
Sintering minimum diameter dp,min 4.4 nm [37]
Gas-phase parameters - - [37]

Model parameters - Silicon model
Fractal dimension Df 1.56 [32]
Sintering pre-exponential AS 1.15×1013 s/m4 [20]
Sintering characteristic energy ES 2.77×104 K [20]
Sintering diameter power nS 4 [20]
Gas-phase parameters - - [13, 22]

3 Case studies

In order to study the structure of particles simultaneously undergoing coagulation and
sintering, several properties are first defined. The characteristic coagulation time τC is
given by [26, 46]

τC =
1

KtrM0
(22)

where Ktr is the transition regime coagulation kernel evaluated for the particle ensemble
under study (m3/s) and M0 is the zeroth moment, or particle number density (1/m3). For
the cases in Sections 3.1 and 3.2, the initial characteristic coagulation time τC,i is used.
The characteristic times are normalised by the residence time τ , yielding a dimensionless
characteristic time.

3.1 Coagulation and sintering

The three models presented in the present work use very different representations of coag-
ulation and sintering processes. To compare the models, a sample ensemble of monodis-
perse spherical particles of diameter di was generated. The initial characteristic coagula-
tion time τC,i of these particles was estimated based-on their size and number density; and
the sintering time τS was set to a constant value. The space of normalised coagulation time
and normalised sintering time was scanned, and the resulting structures of particles anal-
ysed. Each point in this space represents a calculation for the same initialised ensemble
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Figure 2: Comparison of the normalised geometric mean collision diameter as a function
of dimensionless coagulation and sintering time for each of the three particle
models. The thick line depicts the intersection of the binary tree and surface-
volume model predictions.

of particles where only coagulation and sintering could operate at a specified rate.

The results of this analysis are presented in Figure 2, where the collision diameter (nor-
malised by initial particle diameter) is plotted against the dimensionless sintering and
initial coagulation time. The collision diameter was chosen as it is a strong function of
type-space and is a good descriptor of overall aggregate size.

It is unsurprising that the models converge for high values of τ/τS. This corresponds to
instantaneous sintering (or coalescence) of particles upon collision. It is interesting to
observe that for some combinations of (τ/τS,τ/τC,i) the particles obtained through the
binary tree model are larger; whereas for other combinations they appear smaller than the
surface-volume model. Indeed, an intersection between these surfaces defines a line at
which the particles obtained through both models are identical. This is shown in more
detail in Figure 3, where the contours corresponding to the intersection of the binary tree
and surface-volume models, and ±5% relative difference between the two are plotted.

Three zones in this figure are identified, corresponding to different ‘types’ of particles.
Particles obtained in the spherical zone sinter sufficiently quickly to coalesce into spher-
ical particles. In this zone, the all particle models effectively reduce to the spherical
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Figure 3: A contour plot depicting where the binary tree model is equivalent to the
surface-volume model. The shading corresponds to within 5% deviation (with
respect to collision diameter) of the surface-volume model from the binary tree
model.

particle model; and there is no benefit gained from tracking the additional structural detail
of particles.

In the near-spherical zone, aggregates containing few primary particles are formed, either
due to a fast sintering rate or a slow coagulation rate. Figure 2 illustrates that the parti-
cles predicted by the binary tree model have a larger collision diameter, corresponding to
smaller primary particles. The reason for this can be understood by considering the de-
rived properties of the particle models, in particular the expressions for collision diameter.
It is shown in the Appendix that, for coagulation of similarly-sized particles, the surface-
volume model will under-estimate the predictions of the binary-tree model to a maximum
of 10% difference. While this deviation is small, it causes potentially large changes in the
rate of coagulation (rate ∝ d2

col in the free-molecular regime), thus increasing the maxi-
mum error.

In the partial-sintering zone, particles coagulate to form partially-sintered aggregates with
more than 2–3 primary particles. Here, the surface-volume model over-predicts the re-
sults of the binary tree model. The reason for this can be understood by considering the
sinterable surface area of an aggregate. As each connection node in the binary tree model
is individually sintered (according to Equation (17)) there must always be more sinterable
surface area in an aggregate described by the binary tree model than one described by
the surface-volume model. Thus, aggregates will sinter faster, leading to the binary tree
model predicting smaller aggregates with larger primaries.

The intersection of the partial-sintering and near-spherical zones corresponds to the point
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where primaries are uniformly sized within an aggregate. As τ/τS → 0 the binary tree
model becomes the identical to the surface-volume model: aggregates are composed of
un-sintered monodisperse primary particles.

3.2 Effect of polydispersity

The study in the previous section highlighted that under certain conditions, the surface-
volume model yields aggregate particles with approximately the same size as the binary
tree model. This, however, was determined for an initially monodisperse ensemble of
particles (initial geometric standard deviation σg(di) = 1.0). The purpose of this case
study is to investigate how polydispersity can affect model performance, under condi-
tions where the surface-volume and binary-tree models are equivalent for monodisperse
particles. To investigate this, a point on the intersection line of Figure 3 was chosen
(τ/τS = 1.4, τ/τC,i = 5.0) and ensembles initialised with spherical particles of increasing
polydispersity (up to σg(di) = 3.0). The results are given in Figure 4.

It is evident that the the surface-volume and binary-tree models perform comparably with
σg(di) < 1.5. Under these conditions, there appears to be good agreement with the geo-
metric mean collision and primary diameter and a small difference in geometric standard
deviation of both. Beyond σg(di) = 1.5, the binary-tree model appears to predict larger
aggregates with smaller primaries than the surface-volume model. This is attributed to
the phenomenon discussed in Section 3.1 for the prediction of collision diameter in the
near-spherical zone.

It is also interesting to observe that for the binary tree model, the standard deviation of the
average primary diameter is significantly smaller than the average standard deviation of
the primary diameter. This suggests that the local polydispersity within a particle can often
be quite different to the polydispersity of the ensemble. The right panels of Figure 4 show
that the spherical particle model yields ensembles with σg(d)≈ 1.4 for σg(di)> 1.5. This
indicates that the system has reached the self-preserving particle size distribution [42].

In summary, this case study demonstrates that the prediction of the properties of an en-
semble of polydisperse particles undergoing coagulation and is strongly dependent on
choice of particle model. Highly polydisperse σg(di)> 1.5 systems are poorly described
by the spherical or surface-volume models where coagulation and sintering occur on sim-
ilar timescales.

4 Application to model systems

The case studies presented in the previous section were based on initialised ensembles of
particles which could only undergo coagulation and sintering. However, in practical mod-
elling applications, terms for inception, surface reaction and condensation are also often
included. This section presents two models in which quite different particle structures
are obtained. For both studies, the characteristic coagulation time is estimated using the
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Figure 4: Effect of initial polydispersity, σg(di), on morphology of particles. Shown are
the normalised geometric mean µg and standard deviation σg of the collision
and primary diameter. These were generated for τ/τS = 1.4, τ/τC,i = 5.0, on
the ‘intersection’ line of Figure 3.

average properties of the ensemble:

τC(t) =
1

M0(t)Ktr (µa [dcol] (t),µa [m] (t))
(23)

The expressions commonly-encountered for the characteristic sintering time are highly
non-linear in diameter and temperature [4, 16, 24, 37]. Thus, the three particle models
will begin to diverge when sintering moves from effectively instantaneous (very small
particles) to finite-rate. The maximum primary particle diameter is therefore used to cal-
culate the representative sintering time of the ensemble:

τS(t) = τS (max [dpri] (t),T (t)) (24)
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4.1 Silica model

An adaptation of the binary-tree model to silica was presented by Shekar et al. [39]. It
has been used in a well-documented test case, in which the decomposition of 250 ppm
tetraethoxysilane (TEOS) in N2 at a constant temperature of 900◦C at 1 atm is investigated
[23, 39]. It is worthy of note that this model includes expressions for heterogeneous
surface growth and intra-particle reactions. In particular, the sintering time is given by an
expression obtained through model-fitting [37]:

τS = ASdpri exp
(

ES

T

[
1−

dp,min

dpri

])
(25)

where, like AS and ES; dp,min is another empirical constant (Table 1). Adapting the expres-
sions in [38] to the type-space of the surface-volume and spherical particle models, the
temporal evolution of ensemble and particle characteristics are given in Figure 5.

Unsurprisingly, the spherical particle model performs poorly. This is to be expected given
that the particles formed in this test system are aggregates. The surface-volume model is
accurately able to capture the geometric standard deviation of the average estimated pri-
mary diameter σg(dpri). This is attributed to the physical narrowing of the primary particle
size distribution due to sintering, as observed by Heine and Pratsinis [12]. The ‘spike’ in
geometric standard deviation in the major particle growth phase is due to simultaneous
inception and coagulation and is consistent with previous modelling studies [12].

As noted in Section 3.2, it is possible that the use of σg(dpri) across the particle ensemble
may not fully capture the polydispersity of primaries in the aggregate. The slow increase
of µa [σg(dpri)] as opposed to the ‘spike’ in σg(dpri) indicates that the perceived polydis-
persity of the ensemble is quite different to that within an aggregate particle. This is po-
tentially important structural information which can not be resolved from surface-volume
or spherical particle models.

The map of model performance as a function of amount of coagulation and sintering
(Figure 3) is a useful tool in understanding where and why models begin to differ. It
can also be applied to these specific modelling examples. As such, the movement of the
particle ensemble with time t through the t/τC, t/τS space is plotted in Figure 6.

The very small values obtained for t/τS are associated with the strong diameter depen-
dence in Equation (25). The near-spherical zone was therefore extrapolated from t/τS =
10−5 to account for this. The rapid movement across the space (as shown by the labelled
times) is attributed to the fast growth of particles due to simultaneous surface reaction,
coagulation and sintering.

At early times, particles are spherical and in high number concentration. This causes the
system to start in the ‘spherical zone’, at high values of t/τS. As particles grow, their char-
acteristic sintering time increases. This causes a shift to lower values of t/τS. At the same
time, the rate of coagulation slowly decreases, primarily due to the decrease in number
density M0. Finally, as the primary particle distribution becomes physically narrowed by
sintering, the primary diameter ceases to change with time (Figure 5), allowing t/τS to
steadily increase with increasing time t.

The models effectively separate paths once coagulation begins. This is evident in Figures
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Figure 5: Comparison of model predictions for the silica system of Shekar et al. [38]. De-
picted are the zeroth moment (M0), volume fraction (FV), arithmetic mean (µa)
and geometric standard deviation (σg) of the collision and primary diameters.
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shading depicts the 5% error margins as described in Figure 3. Specific process
times for the binary-tree and surface-volume models from Figure 5 are labelled.

5 and in Figure 6, soon after the trajectories exit the spherical zone. Figure 6 also illus-
trates that even a very small amount of time spent in the near-spherical or partial-sintering
zone can cause the predictions of surface-volume model to markedly deviate from those
of the binary-tree model.

4.2 Silicon model

The previous application focused on synthesis of aggregate particles, where coagulation
and sintering are occurring on different timescales. It is, however, also common to attempt
to model spherical or near-spherical particles [2, 18, 44], where these two key processes
can operate on similar timescales. An example of these conditions was recently identified
in a multivariate model for silicon nanoparticle synthesis [22], where silicon particles
were manufactured in a hot wall reactor at atmospheric pressure [44].

In this model, a grain-boundary diffusion sintering kinetic [16, 20] is utilised with param-
eters given in Table 1. Terms for homogeneous nucleation, condensation, surface reaction
and release of hydrogen are also included [22]. The evolution of important particle and
ensemble characteristics for this model as applied to the case of Wu et al. [44] is given in
Figure 7. Note that a temperature profile (increasing from 500◦C to 1250◦C ) is imposed
across this simulation [22, 26, 44].

In this case, all models predict that spherical particles are obtained at the end of the pro-
cess time. However, neither the surface-volume nor the spherical particle model perform

16



10
14

10
15

10
16

10
17

10
18

 0  0.2  0.4  0.6  0.8  1

M
0
, 

1
/m

3

time, s

bin-tree
surf-vol

spherical

10
-9

10
-8

10
-7

10
-6

10
-5

 0  0.2  0.4  0.6  0.8  1

F
V
, 

-

time, s

0

50

100

150

200

250

 0  0.2  0.4  0.6  0.8  1

µ
a
(d

c
o

l)
, 

n
m

time, s

0

20

40

60

80

100

120

140

160

 0  0.2  0.4  0.6  0.8  1

µ
a
(d

p
ri
),

 n
m

time, s

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 0  0.2  0.4  0.6  0.8  1

σ
g
(d

c
o

l)
, 
-

time, s

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 0  0.2  0.4  0.6  0.8  1

σ
g
(d

p
ri
),

 -

time, s

bin-tree µa[σg(dpri)]

Figure 7: Comparison of model predictions for the case of Wu et al. [44] using a mul-
tivariate silicon model [22]. Depicted are the zeroth moment (M0), volume
fraction (FV), arithmetic mean (µa) and geometric standard deviation (σg) of
the collision and primary diameters.
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Figure 8: Trajectory of the case of Wu et al. [44] using a multivariate silicon model [22]
through the t/τC, t/τS space. The shading depicts the 5% error margins as
described in Figure 3. Specific process times for the binary-tree and surface-
volume models from Figure 7 are labelled, t < 0.2s omitted for clarity.

comparably to the binary-tree model, with the number density M0 double and average
collision diameter µa(dcol) 20 % lower than that of the binary-tree model’s prediction.
The surface-volume and spherical models predict the occurrence of a secondary nucle-
ation period (at t = 0.6s in M0 panel of Figure 8), consistent with other spherical particle
modelling efforts [26] of this system.

The predictions of the surface-volume model are also very similar to those of the spherical
particle model, despite containing a finite sintering rate. It is hypothesised that this is due
to the high polydispersity of particles (σg > 3.0, Figure 7 lower panels) for this case
study, resulting in a similar ‘convergence’ of the two models as depicted in Figure 4. To
further understand the differences between models here, this case is plotted atop Figure
3’s coagulation-sintering map in Figure 8.

Again, the system begins with small spherical particles at high t/τS. The three models di-
verge from each other after passing through the near-spherical zone. The surface-volume
and spherical models subsequently show a large increase in coagulation rate, while it
steadily decreases for the binary-tree model. This is due to the secondary nucleation pe-
riod causing the number density to remain steady (Figure 7).

The minimum sintering rate reached at approximately 0.75 s represents the point at which
the rate of decrease in sintering time is balanced by the contributions from the rate of in-
crease in particle diameter and rate of increase in temperature. Past this point, the increas-
ing temperature profile causes coalescence of aggregate structures, causing all models to
return to the spherical zone. This case study highlights an example where experimental
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insight should be used with caution: if spherical particles are obtained experimentally, it
does not necessarily justify the use of a spherical particle model.

5 Conclusions

This work has presented the mathematical formulation of particle models commonly used
in aerosol dynamics of nanoparticles. A detailed numerical study was conducted in order
to understand under which conditions these models differ. Starting from a set of identi-
cal conditions, the predictions of the resulting average properties of the particle ensemble
were compared for each of the particle models. It was identified that under certain cir-
cumstances, all models were equivalent to a spherical particle model.

Outside of this range, the performance of the popular and computationally inexpensive
surface-volume model with respect to a model which tracks full aggregate structure (binary-
tree model) was evaluated. The two models gave alike results (to within a small error
margin) where sintering was slow. However, where coagulation and sintering occurred
on a similar timescale, the models predicted substantially different results. Further, the
spherical and surface-volume particle models were shown to incur a large error margin
where the coagulating ensemble was highly polydisperse.

The three models were also applied to modelling systems presented in earlier work.
The first investigated aggregate formation where sintering primarily occurs on a much
slower timescale than coagulation. Secondly, a model of silicon nanoparticle synthesis
in which coagulation and sintering occur on approximately equal timescales was inves-
tigated. Here, it was evident that the additional structural information of the binary-tree
model is essential in capturing the polydispersity of the ensemble and finite sintering ki-
netics of particles.

There is still considerable scope for further investigation of the behaviour of particle mod-
els. Heterogeneous growth processes are well-documented contributors to rounding of
particles [21, 39] and have not been explicitly addressed in the present work. Further,
only the most popular version of the surface-volume model has been used, when alterna-
tive two-dimensional formulations [12, 27] and different expressions for derived proper-
ties [43] exist.

As many population balance models use some degree of fitting or parameter estimation
[6, 24, 37], the error in use of a ‘simple’ model will be reflected in the parameters ob-
tained through the fitting procedure. The present work highlights that the choice of par-
ticle model does matter, and that a target modelling system should be well-characterised
experimentally before proceeding to modelling.

6 Acknowledgements

W.J.M. acknowledges funding from the Cambridge Australia Trust to undertake this work.
The authors additionally wish to thank the members of the Computational Modelling

19



Group for their guidance and support. M.K. gratefully acknowledges the DFG Mercator
programme and the support of CENIDE at the Unviversity of Duisburg Essen.

20



A Collisions in the near-spherical zone

Suppose two spherical particles with volume v1 and kv1 collide. How do the derived
properties of the resulting particles differ? The total surface are of the resulting particle is
given by

S = π

(
6v1

π

) 2
3 [

1+ k
2
3

]
. (A.1)

The equivalent spherical diameter is given by

dsph =

(
6v1

π

) 1
3

[1+ k]
1
3 . (A.2)

Thus, the collision diameter as predicted by the surface-volume model may be calculated:

dsurf-vol
col =

1
2

(
6v1

π

) 1
3 [
(1+ k)

1
3 +
√

1+ k
2
3

]
(A.3)

The binary-tree model requires estimation of the average primary diameter

dpri =
1
2

(
6v1

π

) 1
3 [

1+ k
1
3

]
(A.4)

Using this information, and calculating the ‘reduced number of primary particles’ (given
by the term inside the 1

Df
exponent) the binary-tree model calculates the collision diameter

of the aggregate particle as

dbin-tree
col =

1
2

(
6v1

π

) 1
3 [

1+ k
1
3

]([1+ k
2
3

]3

[1+ k]2

) 1
Df

(A.5)

The two models are compared by plotting the ratio of dbin-tree
col to dsurf-vol

col using a fractal
dimension Df = 1.8 and Df = 1.56 . It is evident that for like-sized particles (k ≈ 1) the
collision diameter as predicted by the surface-volume model will be smaller than that
predicted by the binary-tree particle model to a maximum of 10% under-estimation.
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