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Abstract

In this paper we present a combined experimental and modelling approach to un-
derstanding the wet granulation of lactose powder in a high-shear mixer and perform
a sensitivity study of the model. Experimental data is produced by performing nine
granulation runs using lactose monohydrate as the initial powder and deionised wa-
ter as the binder. The granulation runs were performed with variations in impeller
speed, massing time and binder addition rate. The granulation process is then sim-
ulated by a population balance model published by Braumann et al. (2007) (Chem-
ical Engineering Science, 62, 4717-4728). The model contains five rate parameters
requiring estimation: coagulation, compaction, attrition, penetration and chemical
reaction. The rates are estimated by sampling with Sobol sequences over a pre-
defined parameter space. A sensitivity study reveals two important properties. First,
the model input value that quantifies the height of the asperities on the particles is
found to limit the model’s ability to simulate even simple characterisations of the
particle ensemble. However, by allowing the parameter for the height of asperities
to vary over a range while estimating the rates, the simulated particle size distribu-
tion demonstrates agreement with the experimental one when using a single value
characterisation. Second, the input parameters which describe the initial particle size
distribution are found to significantly affect the distribution of the end product. When
the input parameters which define the initial powder are allowed to vary, the model
demonstrates an ability to simulate the experimental empirical size distributions.
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1 Introduction

Particle granulation encompasses a vast collection of agglomeration techniques wherein a
fine powder and a binder are mixed to cause the particles to grow in size. Agglomerating
the particles improves flowability, dispersibility, bulk density and dusting behaviour while
decreasing caking. The pharmaceuticals industry makes extensive use of granulation for
these reasons, as well as to mix drugs with excipients to produce particles that are easy to
dispense. Granulation is also used in the manufacture of fertilisers, detergents and is used
in food processing concerns.

Granulation is performed by mixing a powder with either a liquid binder or by melt gran-
ulation. The powder is placed inside a mixer, which may be any one of a rotating drum,
a fluidised bed or a high shear mixer. The binder is added to the mixing chamber and the
agglomeration process commences, dependent upon the process conditions and materials
employed. While on a cursory level this is a very simple process, on a kinetic level it is
extremely complicated and poorly understood. Hence, the use of models and computer
simulations has been incorporated into the study of granulation to further understanding
of the systems while avoiding extensive experimentation. The system of interest in this
paper is a high-shear wet granulation process using lactose monohydrate and deionised
water. Lactose, due to its wide use as an excipient, has been used in granulation experi-
ments to investigate many aspects of particle granulation. Studies have been performed
that focus on the influence of droplet size on particle granulation [3], the influence of
granulation method on compactability [49], scaling-up of granulation in high shear mix-
ers [2], the sensitivity of the process conditions on the end product [4] and the importance
of spray flux on the nucleation stage of granulation [28], among others.

Types of models used to study granulation can be loosely broken into two categories:
discrete element method (DEM) and population balance models. DEM uses local con-
tact laws to describe a finite collection of discrete bodies and is predominantly used to
study flow, mixing, milling and coating processes [16, 18, 31, 43, 47]. Population bal-
ance models are based on the number balance of pre-determined classes (based on size,
porosity, etc.) and use concepts of birth and death to track the evolution of a population
[45]. Historically, population balance models have been single variable (size), but in the
demonstrated inadequacy of such models [19, 22], various multi-variable population bal-
ance models have been proposed [9, 11, 15, 20, 22, 36, 40]. While DEM methods are
capable of more detail for a given system, the associated computational expense tends to
limit their use to simpler processes, short time scales and small populations. The statis-
tical nature of population balance models make them well suited for more complicated
processes with long time scales and large populations [17]. Recently, hybrid models that
feed DEM results into population balance models have been constructed [17, 48]. In this
paper, our attention is directed towards a multi-dimensional population balance model.

Throughout the study of granulation, a constant focus of interest has been on discerning
the significant process conditions and finding how they impact the process. For example
the effect of impeller speeds, binder addition rates and mixer flow patterns have been in-
vestigated, among many others process conditions [3, 5, 14, 23–26, 30, 34, 37]. While
uncertainty inherent in the system is studied in the end-product of the granulation pro-
cess, parameter estimates are generated exploiting this uncertainty, and attempts are made
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to minimise the uncertainty in the system through experimental design, there has been
very little attention paid to uncertainty in the input parameters [8, 10, 12, 13, 38, 39].
While many of these parameters can be firmly established from previous studies, un-
certainty inherent in any measurement technique may be more difficult to appropriately
quantify. Model input parameters that are derived from experimental measurements have
uncertainty attached and, as we shall demonstrate, this uncertainty can have a significant
impact on model behaviour. Further, this input error can be incorporated into the parame-
ter estimation process to produce a more robust model and gain further understanding of
the significant factors.

Although the granulation and particle technology communities have not studied this as-
pect of modelling, it has recently come under scrutiny in other disciplines which attempt
to model complicated systems such as environmental systems, forestry processes, bacte-
rial biofilms, seismic demand, thermal flexure microactuator responses and semiconductor
wafer fabs [6, 27, 29, 33, 41, 42].

The purpose of this paper is to present a combined experimental and modelling ap-
proach to understanding a wet granulation process. For this purpose carefully controlled
granulation experiments are performed. The data acquired is used to calibrate a detailed
population balance granulation model. A model parameter study is performed to reveal
sensitivities in the model which are directly related to uncertainty in the characteristics of
the initial powder.

The structure of this paper is as follows: Section 2 has a description of the experimental
system and powder characterisation methods. Section 3 describes the particle granulation
model. Section 4 contains details of the parameter estimation process and defines the
assessment criteria. In section 5 we show the results of the parameter estimation method
and compare the results to the experimental data. In section 6 we draw conclusions and
discuss recommendations for future work.

2 Experimental

A wet granulation process using lactose monohydrate in a bench-scale mixer is the system
of interest in this study.

Experimental setup The equipment set-up that was used is shown in Figure 1. The ex-
periments were performed using a horizontal axis 5 litre ploughshare mixer (Kemeutec)
which is described in detail in Jones and Bridgwater [23]. The mixer shaft is driven by a
variable speed DC motor with a torque meter (DRBK-20-n, ETH Messtechnik, Germany)
mounted between the shaft and the motor. The mixing chamber is enclosed by a transpar-
ent plastic shield, the top of which has an aperture for a nozzle and a drip cup which is
connected to a peristaltic pump (model DBP 764, Dylade Fresenius, UK).

The binder is drawn from a reservoir by a magnetic drive gear pump (model DG.19,
Tuthill Corporation, USA) to a single fluid nozzle (model 121, orifice � 0.5 mm, 60 ◦

spray angle, Düsen-Schlick, Germany) which is suspended at a fixed height above the
powder bed. The pump speed is controlled by an inverter (model Altivar 31, Teleme-
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Figure 1: Experimental setup.

canique, France). The inverter frequency is determined by pulses from a flowmeter (OG1,
Nixon Flowmeters, UK) that is mounted between the pump and the nozzle. The equip-
ment is controlled and monitored by a Labview application that allows for the specifica-
tion of binder flow rate, mixer speed, and all timing elements of the granulation process.
Controlling, as well as monitoring and recording the operating status of the equipment, is
facilitated by two data recording cards (6009 and 6601, National Instruments, USA).

Materials Each granulation run was performed using 1000 g of lactose monohydrate
(Granulac 230, Meggle, Germany) using 150 ml deionised water as the binder. Figure 2
shows the cumulative mass (Q3) and the cumulative number (Q0) distributions as well
as the measured mass fractions (q3) of the initial powder as obtained by a single 75 g
sample from sieving. The cumulative mass is fitted to a lognormal distribution using the
uppermost edge of each sieve class, from which the cumulative number distribution is
derived using the relationship given in [1] as

lnµV = lnµN + 3.0 ln2 σ , (1)

where µV and µN are the location parameters of a lognormal distribution for the volume
and number distributions, respectively, and σ is the shape parameter.

Procedure Upon loading the mixer with the powder, the nozzle is suspended at a fixed
height above the mixing chamber with the drip cup immediately below it collecting the
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Figure 2: Size distributions of powder used in experiments (lactose monohydrate). Nor-
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binder flow. After two minutes of dry mixing to aerate the powder, the drip cup is re-
moved. When the allotted amount of time for the binder addition has passed, the binder
stream is automatically shut off by the controller program and the drip cup is replaced
under the nozzle to prevent any additional droplets from reaching the powder bed. The
mixer continues to run at the specified speed until the desired amount of time has elapsed.

The resulting product is removed from the mixer and distributed onto metal trays. The
trays are placed in a drying cabinet (INC 95SF, Genlab, UK) at 50 ◦C with 55 ◦C desig-
nated as the overheat temperature, until no significant change in mass is recorded. The
dried product is recombined and samples for analysis are chosen by putting the entire
dried product through a sample splitter until a sample between 50 – 90 g is obtained.

Particle size analysis is performed by sieving. Three tiers, each consisting of six sieves
and a bottom pan, were constructed using a

√
2 progression from 53 – 16000 µm. Each

tier was subjected to 25 minutes of vibration at approximately 1.5 mm amplitude on a
sieve shaker (model EVL1, Endecotts, UK). Material in each of the sieves, as well as the
bottom pan, was weighed and recorded giving 19 mass measurements.

Potential experimental errors A preliminary granulation run was performed in order
to detect any major sources of error or sub-optimal procedures. As a result, the binder flow
control was reconfigured and is measurably accurate to within ± 1 ml/min. Prior to each
granulation run, the binder flow rate was tested for 150 ml of binder over the specified ad-
dition time. The granulation run was performed using control conditions that successfully
produced 150 ml± 2 ml of binder under the relevant process conditions immediately prior
to each granulation run. The sieving analysis of the preliminary run allowed the selection
of an appropriate range of sieves. The balances that were employed for the material and
sieving measurements (XB 3200C, Precisa and 2200 P, Sartorius) are accurate to 0.01 g.
The motor controller, in conjunction with the torque meter, monitors and adjusts the im-
peller speed at least once per second. Analysis of the recorded measurements during the
granulation runs indicate that the average deviation from the specified speed for all the
granulation runs is less than ± 2 rpm. Figure 3 shows the measured speed values for an
arbitrarily chosen set of experimental conditions (A4). As can be seen, while there are
fluctuations, the speed does stay centred on the designated value, in this case 120 rpm,
with the most extreme deviations at the beginning of the experimental run.

The process conditions were selected with a view towards having statistically detectable
results with varied process conditions. Based on previously published results [4, 39, 44,
46], it was decided to fix all remaining experimental conditions, including the binder to
powder ratio of 150 ml:1000 g, and to use:

1. Binder addition flow rates of 50, 75 and 100 ml/min (flow rate);

2. Mixer speed rates of 120, 180 and 240 rpm (impeller speed); and

3. Allowing the mixer to continue after all the binder had been added for 5, 10 and 15
minutes (massing time).

As a complete set of experiments would involve 33 granulation runs with associated par-
ticle analysis, it was decided to use a fractional factorial design of 33−1. With this choice
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Table 1: Selected experiments and reference codes.

Flow rate [ml/min] 50 75 100
Massing time [min] 5 10 15 5 10 15 5 10 15
Impeller speed [rpm]
120 A5 B1 A7
180 A3 A1 A8
240 A4 A2 A6

of design, instead of performing all possible combinations of process conditions, a subset
was performed which is detailed in Table 1, along with reference labels. See Hicks and
Turner [21] for details of fractional factorial designs. The initial set of process conditions
is designated by reference code B1. For case B1, 5 granulation runs were performed and
five samples per run were subjected to sieving analysis. The resulting data was analysed
and it was determined that three samples taken from a single granulation run would yield
acceptable results. This protocol was adopted for the successive granulation runs, labelled
A1 – A8. The dataset of measured mass values is included as a supplementary .csv file to
this paper.

3 Model description

The granulation process is modelled using a five dimensional population balance model
initially presented in 2004 at Partec [20] with the first journal publication in 2007 [9]. The
individual particle volumetric properties of original solid (so), reacted solid (sr), internal
liquid (li), external liquid (le) and pore volume (p) are tracked as they evolve in time. The
particle properties are expressed as a particle vector x = (so, sr, le, li, p), where each value
is non-negative.

The transformations which affect the particle volume composition are liquid addition, par-
ticle coalescence, particle compaction, breakage, penetration and chemical reaction. The
processes of coalescence, compaction, breakage, penetration and chemical reaction have
associated rate parameters of k̂coag, k̂comp, k̂att, k̂pen and k̂reac, respectively. A pictorial
representation of the particle model and transformations is given in Figure 4.

Full mathematical details of the model are given in [11], and further physical reasoning
about the submodels is given in [9] and [10]. Numerical details on how the stochastic
particle system is used to obtain the numerical solution to the population balance equation
is given in [11, 35]. Use of the model requires estimation of the five rate constants k̂coag,
k̂comp, k̂att, k̂pen, and k̂reac. The input values for the model are a combination of estimated
rate parameters, physical constants, and process conditions, some of which are estimated
or experimentally determined. A full listing of the model input quantities and values used
can be found in Table 2.
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Table 2: Model input values.

Description Symbol Value
Known process settings
Material density ρso 1545.0 kg/m3

Binder density ρle 998.0 kg/m3

Binder viscosity η 1.0× 10−3 Pa s
Impeller radius - 72.5× 10−3 m
Reactor volume - 3.0× 10−3 m3

Impeller speed nimpeller 2 – 4 rev/s
Binder flow rate - 8.33−7 – 1.66−6 m3/s
Wet massing time - 300 – 900 s

Physical parameters – approximated
Powder size distribution; location µpsd 30.0 – 45 µm
Powder size distribution; shape σpsd 1.2 – 2.8
Droplet size distribution; location µdsd 70.0 µm
Droplet size distribution shape; σdsd 1.0
Number of particles - 3127540883
Solid coefficient of resistance eso 1.0
Reacted coefficient of resistance esr 1.0
Liquid coefficient of resistance eli 1.0
Asperities height Ha 1× 10−7 – 1× 10−6 m

Physical parameters – fixed
Relative particle velocity Ucol 0.1
Minimum particle porosity - 0.25
Breakage; max size νmax 5.0
Breakage; proportion νminmax 1.1
Breakage; minimum particle volume - 5.236× 10−13 m3

Breakage; distribution αdaughter 5.0
Breakage; distribution βdaughter 2.0
Critical reacted solid - 1.0× 1020

Rate parameters
Coalesance rate k̂coag 1× 10−14 – 1× 10−10 m3

Compaction rate k̂comp 1× 10−15 – 1× 10−12 s/m
Attrition rate k̂att 1× 101 – 1× 106 s/m5

Penetration rate k̂pen 1× 101 – 1× 106 kg1/2m7/2/s3/2

Chemical reaction rate k̂reac 5× 10−16 – 5× 10−9 m/s
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3.1 Coalescence submodel

Of particular interest for our study is the model’s implementation of coalescence. As
described in [9] the rate parameter k̂coag is defined such that the collision rate of two
particles x′ and x′′ is given by the kernel:

K(x′, x′′) = nimpeller k̂coag , (2)

with input parameters nimpeller (impeller speed) and k̂coag (rate constant). Thus, the num-
ber of collisions which may result in coalescence is controlled by the estimated rate con-
stant and the impeller speed. However, the occurrence of successful coalescence events
between two particles, once such a collision has taken place, is governed by the Stokes
criterion. This is implemented under the assumption that the particle is spherical, with the
particle radius given by

R(x) =
3

√
3

4 π
v(x) , (3)

where v(x) is the particle volume calculated as:

v(x) = so + sr + le + li + p. (4)

Further, with the assumption that the densities of the liquids and the reacted solid are the
same,

ρle = ρli = ρsr , (5)

the particle mass takes the form

m(x) = ρso so + ρle (sr + li + le) , (6)

where ρso and ρle are input parameters.
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The coalescence efficiency, K̃, is calculated based on the Stokes criterion, which is a
function of the viscous Stokes number, Stv, and the critical Stokes number, St∗v, with

K̃(x′, x′′) =


1 , if ecoag(x

′, x′′) = 0 ,

1 , if ecoag(x
′, x′′) > 0 and Stv

∗(x′, x′′) ≥ Stv(x
′, x′′) ,

0 , otherwise.

The value ecoag is defined as the geometric average of the coefficients of restitution of the
single particles x′ and x′′,

ecoag(x
′, x′′) =

√
e(x′) · e(x′′) . (7)

A mass-weighted arithmetic average is used for the calculation of the coefficient of resti-
tution of each particle,

e(x) =


eso ρso so + ρle (esr sr + eli li)

ρso so + ρle (sr + li)
, if so + sr > 0 ,

0 , otherwise (droplet),

where eso , esr , eli ∈ [0, 1] are input parameters. Further, we assume that eso = esr = eli .

The viscous Stokes number is computed as

Stv(x
′, x′′) =

m̃(x′, x′′)Ucol

3π η R̃(x′, x′′)2
,

with input parameters Ucol (collision velocity) and η (binder viscosity). The harmonic
mass of x′ and x′′ is

m̃(x′, x′′) =
2m(x′)m(x′′)

m(x′) +m(x′′)
.

The harmonic radius computes as

R̃(x′, x′′) =
2R(x′)R(x′′)

R(x′) +R(x′′)
.

The critical Stokes number is defined by

St∗v(x
′, x′′) =

(
1 +

1

ecoag(x′, x′′)

)
ln

(
h(x′, x′′)

Ha

)
,

with the input parameter Ha (characteristic length scale of surface asperities). The thick-
ness of the binder layer h(x′, x′′) is defined as the combined binder thickness of the parti-
cles x′ and x′′,

h(x′, x′′) =
h(x′) + h(x′′)

2
,

with the thickness of the binder layer of a particle with the properties x being calculated
by

h(x) =
1

2
3

√
6

π

[
3
√
v(x)− 3

√
v(x)− le

]
.
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3.2 Evolution of particle ensemble

The initial state of the system is a set of 2treesize particles of the form

x = (so, 0, 0, 0, 0)

where treesize is an integer input parameter that determines the maximum number of
particles to be tracked by the model. Initially, when time is zero, all the particles in the
ensemble are comprised only of original solid. The volumetric quantities of the original
solid is initially populated by randomly selecting values from a lognormal distribution
characterised by two input parameters, a location parameter µpsd and a shape parameter
σpsd.

The implementation of the model is such that when a coalescence event occurs, two par-
ticles are selected from the ensemble to create a single new particle. A breakage event
causes a single particle to split and its volume is randomly distributed according to a beta
distribution between the two resultant entries in the particle ensemble. When the popula-
tion becomes too low, less than or equal to 3/8 of 2treesize, the population is doubled, or
in other words a duplicate particle for every member of the particle ensemble is inserted
into the ensemble. If the particle ensemble becomes full, a randomly selected particle is
removed [11].

3.3 Post-processing

The model returns a set of particles described by the five element vector; however we need
to convert the results of the simulation to a form which directly relates to our experimental
results.

For each particle, x, in the final ensemble, the particle mass is calculated using Equation 5
under the assumption that, due to a drying process, all of the liquid has been removed,
i.e. li = le = 0. The total volume is calculated using Equation 4. From the volume we
calculate R(x), the radius of the particle, using Equation 3. By doubling R(x) we obtain
a diameter for the particle, which can be used as a sieving diameter. All the particles in
the final ensemble can then be sorted into sieve classes identical to the experimental data.
The total mass in each sieve class is calculated by summing the mass for all particles
sorted into a given sieve class. From these values, an empirical cumulative distribution is
calculated, as with the physical system.

4 Parameter estimation methodology

In the first instance, the model has five rate parameters which need to be estimated using
the experimental data. Accomplishing this requires a series of decisions with respect to
the methods available and the tolerances necessary. In this implementation, one begins
by defining the boundaries of the model parameter space and evaluating the model at
points sampled from that space. Then one examines the set of evaluated points, seeking
an optimum point or region. In this paper we make use of Sobol sequences to sample the

13



multi-dimensional bounded parameter space. With the sets of model evaluations, we use
a variety of criteria to assess the performance of the model in comparison to the experi-
mental results and to draw inferences from its behaviour. The ‘best’ Sobol point of the set
is determined by some objective function; in this case specifically we use least squares,
or the smallest Euclidian distance between the experimental results and the simulation,
as the objective function for various methods of quantifying the results. In this section
the methodology used to define the parameter space, generate the set of Sobol points and
evaluate the model performance is detailed.

4.1 Parameter space

A number of factors must be considered when defining the parameter space. Theoreti-
cally, the rate parameters can range either from 0 to ∞, or from 0 to 1, but the number
of collision events determined by the rates k̂coag and k̂att can limit the feasible ranges.
The run-time of the model increases with respect to these parameters and can become
prohibitively expensive when the rates become too large. A preliminary study of the run
times yielded guidelines for the parameter space which will keep the run times feasible.
Further, tracking a larger number of particles significantly increases the model run time.
Based on the results published for this model in [11] and a preliminary convergence study,
each model evaluation consists of 64 repetitions, each based on a different random num-
ber seed, and tracks 4096 individual particles. Thus, the boundaries for the rates are not
only defined by the requirements of the physical system, but also by practical concerns
determined by the evaluation time and model convergence.

Additionally, a smaller parameter space will yield a finer resolution for the same number
of sampling points. The final parameter space used in this paper was established by an
iterative process. Initially, a set of parameter boundaries was selected based on the run-
time requirements and the model was evaluated over that range. The initial parameter
space was deliberately chosen to be large so that it could be reduced appropriately. That
space was then reduced based on a comparison of the experimental data and the results of
the model. The reductions were implemented to eliminate regions which were obviously
poor choices, e.g. when the coagulation rate was so small that particles were only being
generated in the smallest five sieve classes. This process was repeated with the reduced
parameter space until it was decided further reductions could possibly eliminate viable
regions.

4.2 Sobol sequences

Once the parameter boundaries are fixed, a set of model evaluations is created using Sobol
sequences. Sobol sequences, initially developed by I.M. Sobol in 1973, are quasi-random
low-discrepancy sequences [7]. They are constructed in such a way as to generate a se-
quence of numbers which are both quasi-random and well-spaced as well as being compu-
tationally inexpensive. As the sequence progresses, the resolution becomes increasingly
fine. To illustrate, Figure 5 shows fifty points both randomly generated and generated
from a Sobol sequence over the same region. It can be seen in the histograms that the

14



Sobol points fill the space more evenly. For this application, we use the Sobol points to
sample the parameter space. By taking advantage of the quasi-random nature of Sobol
points, we can sample from any bounded range by the simple expedient of treating it as
an additional model parameter.

For each iteration in the model fitting process, 2,000 to 4,000 points were generated using
a Sobol sequence. The points are mapped to the parameter space using the scheme de-
scribed in [32] with a logarithmic transformation for parameters which vary over orders
of magnitude and a linear transformation otherwise. The number of Sobol points was
determined by the rough method of assessing the improvement, or lack thereof, in the ob-
jective functions when the number of points was doubled, beginning with 500 points. By
this method a baseline of 2,000 points was established for the lower dimensional cases,
which was increased to 4,000 points for the highest dimensional case. In effect this pro-
cess means that for each Sobol point a parameter value is quasi-randomly selected from
the parameter space. Then the model is evaluated for the 9 experimental cases at the se-
lected set of parameter values and the objective function is calculated. The ‘best’ set of
parameter values is designated by the smallest objective function value calculated over all
of the sampled points. To give a sense of the model runtimes required, one of the final
2000 Sobol point runs required 32 CPUs (in parallel) approximately 12 hours to complete
18000 individual model evaluations.

4.3 Additional parameters of interest

While the model requires estimation of the five rate parameters, it is initially assumed
that the remaining physical parameters are fixed values. However, while attempting to
simulate the experimental data, the model demonstrated sensitivity to two aspects of the
powder characterisation.

4.3.1 Height of asperities

Regardless of how we choose to quantify the height of asperities for a given powder,
any single value characterisation will perforce be an approximation, as different particles
will have asperities of varying heights. For this powder, as we have no experimental
data to inform our decisions, we begin with an initial estimate of 1.0µm for the height
of asperities. However, as any single value is an approximation which would need to be
adjusted until it achieved some abstract state of correctness, we propose instead to define
a range based on ‘reasonable’ physical boundaries which will be refined by the behaviour
of the model. The performance of the model with respect to particle size growth suggests
that 1.0 µm belongs at the upper bound of the range, thus we choose to explore a range of
0.1–1.0 µm.

Further, by nature of the Sobol sequences, we can easily sample from this range by treating
it as a sixth parameter. The model continues to use a single value characterisation for the
height of asperities for each set of rates; however that value is quasi-randomly selected
from the range. With the addition of a sixth parameter, 2,000 Sobol points were found to
be adequate to sample the parameter space.
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4.3.2 Initial powder size distribution

The initial powder size distribution is based on experimental data as discussed in Sec-
tion 2. The model inputs are µpsd = exp(µN) and σpsd = exp(σ) where µN and σ
define a lognormal curve based on the estimated number distribution of powder sieving
data. However, µN and σ are derived from experimental measurements and contain un-
certainty, both from the measurement technique and the curve-fitting process. Given this
uncertainty, we construct ranges around the experimentally determined input values and
sample from those ranges with Sobol points in the same manner used with the height of
asperities. By beginning with large ranges for both parameters based around the initial
estimates and reducing them to viable regions, we have final ranges of 20 – 45 µm for
µpsd and 1.2 – 2.0 for σpsd with the sieving based estimates of 38.93 and 1.60, respec-
tively. This is equivalent to 2.99 – 3.80 for µN and 0.182 – 0.693 for σ with sieving
data estimates of 3.66 and 0.47, respectively. With the inclusion of these two additional
parameters, we generate 4,000 Sobol points in an eight-dimensional space.

4.4 Criteria for objective function

In the experimental portion of the work, we obtain a vector of sieving measurements
which describe the end-product of the particle size distribution. There are many ways
to express these results quantitatively and we shall use more than one to assess the per-
formance of the model. In all cases, as the considered quantities are similar in order of
magnitude, we shall use the Euclidian distance as the objective function. To accomplish
this, we select an observable quantity f , e.g. the empirical geometric mean particle size,
and then for each model evaluation we calculate a value:

OF =

√√√√ N∑
j=1

M∑
i=1

(f sim
ij − f

exp
ij )2 , (8)

where N is the number of experimental runs and M is the number of responses for each
criterion, f sim is the response from the simulation and f exp is the response from the ex-
perimental data. In this manner we obtain a numeric expression of the fit of the model
to the experimental data. The single variate functions that we will use for f(x) are the
empirical geometric mean particle size and the empirical variance. Further, we shall use
the multivariate characterisations of categorical quantiles and empirical cumulative distri-
bution. For all of these functions, the best parameter set is considered to be the set with
the smallest objective function value.

4.4.1 Empirical cumulative distribution

The values for this objective function are determined directly from the experiments and
the post-processing of the model. The vectors are derived from mass fractions that are
expressed as a N dimensional vector d, where N is the number of sieve classes. The
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density can also be physically interpreted as the percentage of mass that is found in each
sieve class. These values are calculated as:

di =
mi∑N
j=1mj

, (9)

where mi is the mass measured in the ith sieve class by sieving or postprocessing.

From this point, we convert the values into an empirical cumulative distribution function
by summing all fractions of mass that are smaller than a given sieve class. This is equiva-
lent to sieving measurements in terms of proportions of material that have passed through
any given sieve aperture. The empirical distribution function, D, is also a N dimensional
vector, which is calculated directly from the mass fractions as:

Di =
i∑

j=1

dj , (10)

where i = 1, . . . , N .

4.4.2 Empirical geometric mean particle size

The empirical geometric mean particle size, Mg, is a single value expression used to
describe the particle size distribution. In this context, we use the geometric mean particle
size, wherein we transform the sieve aperture values, x, by taking the natural log. This
transformation is used so that the larger particle size classes are not disproportionately
represented. In the sieve series that we use, the range of the sieve classes is 53 µm –
16000 µm which, by taking the natural log, transforms into 3.97 – 9.68, i.e. x′ = ln(x).
The empirical geometric mean particle size is calculated by first multiplying the density
by the transformed sieve class and then taking the exponential of the summed the results:

Mg = exp

(
N∑
i=1

dix
′
i

)
, (11)

where each di is the ith element of the N dimensional density function and x′i is the upper
bound of the ith sieve class under the natural log transformation.

4.4.3 Empirical variance

The variance, V ar is a single value expression of the spread of the resultant particle size
distribution. For this value, we shall use the untransformed sieve class values, i.e. using
the arithmetic means. The variance is calculated as:

V ar =
N∑
i=1

dix
2
i −

(
N∑
i=1

dixi

)2

(12)
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where each di is the ith element of theN -dimensional density function and xi is the upper
bound of the ith sieve class.

4.4.4 Categorical percentile

In powder studies, one of the more popular methods of describing the materials is by using
percentiles, specifically the 10th, 50th and 90th percentiles. However, to analyse our data
using these values some choices need to be made, as we are using categorical data. One
way to quantify a percentile value is based on the category, or sieve class. If one uses an
index as the category identifier, then one can find the category where the desired quantile
belongs. For example: if the ECDF is: 0.0077, 0.028, 0.083, 0.2155, 0.3993, 0.5953,
0.7683, 0.8947, 0.9778, 0.9915, 1.0; then the 10th percentile is in the 3rd sieve class,
the 50th percentile is in the 5th sieve class and the 90th is in the 8th sieve class. This
process gives a vector which expresses how far away from the experimental sieve classes
the model results are. In addition to the usual objective function, we can also sum the
three numbers to get a deviation score for all three measurements. For example if the
experimental data has [3, 6, 9] as the 10th, 50th and 90th percentiles, respectively, and
the model produces [2, 4, 11]; the differences are [1, 2, 2], which gives 5 for that set of
experimental conditions.

5 Results

5.1 Model results

The final, iteratively determined, parameter space is detailed below in Table 3. We per-
form runs of 2,000 to 4,000 Sobol points on this space with the model under three different
situations. The selection of the three parameter sets is based on sensitivities observed dur-
ing preliminary model evaluations. The first model configuration uses 2,000 Sobol points
for the five rate parameters with fixed values for the height of asperities and for the two
parameters, µpsd and σpsd, that determine the initial powder size distribution. The second
also uses 2,000 Sobol points and incorporates the height of asperities, Ha, as a sixth pa-
rameter while maintaining fixed values for µpsd and σpsd. The third situation uses 4,000
Sobol points for eight parameters, µpsd and σpsd in addition to the five rate parameters
and Ha. The ranges for the µpsd, σpsd and Ha are expansions upon the five-parameter
setup based on the models behaviour with respect to the fixed values of 38.93µm, 1.60
and 1× 10−6m. In the following discussion, the focus will be upon the behaviour of these
parameters and the rate parameter for k̂coag, as these parameters were observed exhibit the
most influence on the results.

5.2 Experimental results

The mass fraction vector, q3, is obtained directly from laboratory measurements. The
empirical cumulative distribution, Q3, is then calculated by Equation 10 for each sample,
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Table 3: Parameter space used in simulations.

Parameter Lower bound Upper bound Scaling

k̂coag 1× 10−14 – 1× 10−10 logarithmic
k̂comp 1× 10−15 – 1× 10−12 logarithmic
k̂att 1× 101 – 1× 106 logarithmic
k̂pen 1× 101 – 1× 106 logarithmic
k̂reac 5× 10−16 – 5× 10−9 logarithmic
Ha 1× 10−7 – 1× 10−6 logarithmic
µpsd 20µm – 45µm linear
σpsd 1.2 – 2.0 linear

where q3 is the equivalent of d. For each set of process conditions, an averaged Q3 is
calculated for each sieve class over all samples. All of the experimental results given are
calculated by using the averaged Q3 directly or the averaged q3 values derived from the
averaged Q3.

MANOVA analysis of the resulting mass distributions indicates that differences in the
found distributions are statistically significant. Further, the calculated geometric mean
particle size, as calculated from the distributions, appears to converge over time. This
suggests that a process condition independent end-point may have been found for this
experimental system, within the boundaries of the process conditions.

5.3 Empirical geometric mean particle size criterion

The smallest objective function values and their rates as determined by the optimisation
process based on the calculated empirical geometric mean particle size can be seen in
Table 4. It can clearly be seen that the model’s ability to simulate the empirical geomet-
ric mean particle size is significantly affected by the number of parameters in the model
configuration, as the objective function is more than halved when the additional param-
eters are introduced. In addition, in Figure 6 we can see how well the model performs
under individual process conditions. The five-parameter case either over- or underesti-
mates the empirical geometric mean particle size in all cases and the discrepancy is often
more than 200 µm. However, with the exception of the B1 experimental case, the six-
and eight-parameter cases predict the values with more accuracy and follow the trends
observed in the experimental quantities. The six- and eight-parameter cases demonstrate
an equivalent ability to predict the results which the five-parameter case clearly does not
possess, however it is interesting to note that while the six-parameter case has a smaller
objective function value, the eight-parameter case appears to observe the trends evident
in the experimental data more accurately. It should be noted that the rates selected for
k̂coag are of similar magnitude for all three cases, while the µpsd and σpsd parameters in
the eight-parameter case shift a relatively small degree from the fixed values. The selected
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Table 4: Objective function and best estimated parameters where empirical geometric
mean particle size is selection criterion. Fixed parameters are in bold.

5 parameters 6 parameters 8 parameters

Objective function 1079.35 362.54 372.01

k̂coag 2.90× 10−13 1.72× 10−13 2.13× 10−13

k̂comp 1.01× 10−13 2.14× 10−14 2.89× 10−13

k̂att 24335 1833 236

k̂pen 27 994394 871336

k̂reac 1.08× 10−14 1.37× 10−11 7.83× 10−10

Ha 1 × 10−6 2.52× 10−7 3.40× 10−7

µpsd 38.93µm 38.93µm 31.7µm
σpsd 1.60 1.60 1.62

µpsd has a slight downward shift and σpsd increases slightly. The selected Ha parameter
however, has a significant and similar decrease from the five-parameter fixed value for
both alternate cases. This suggests that the Ha is significant with respect to this form of
describing the particle size distribution and our initial guess of 1.0 µm is too large.

5.4 Empirical variance criterion

The smallest objective functions and rates that were selected by optimising the variance
of the resulting particle size distribution can be seen in Table 5. Interestingly, while all
the objective functions are of a similar order of magnitude, the five-parameter case is
marginally smaller than the others and the six parameter case is slightly smaller than the
eight parameter case. Further, in Figure 7 we can see that all cases are largely equal in
performance, with the A2 experimental case being the exception to the model following
the experimental trends. The rates selected by the objective functions should be noted,
insofar that the chosen k̂coag parameters are two orders of magnitude larger than for the
geometric mean particle size. This can be understood as a result of the method by which
the variance is calculated such that large particle sizes will have more influence. This
suggests that in order to optimise the variance all selected cases generate larger particles
then when optimising the empirical geometric mean particle size. Further, note that again
the six- and eight-parameter selection for Ha is similar and larger than for the geometric
mean particle size. Interestingly, taken together with the rates, this indicates that more
coagulation events are happening, with a lower success rate than with the geometric mean
particle size. Additionally, we see a further downward shift in the value for µpsd and a
further increase in σpsd. This indicates that the selected initial distribution is centred at
a lower value, but is more widely spread than with the fixed conditions, a by-product of
which is that the initial powder would have a larger variance than with the fixed values.
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Table 5: Objective function and best estimated parameters where empirical variance is
selection criterion. Fixed parameters are in bold.

5 parameters 6 parameters 8 parameters

Objective function 11541339 12675168 13959977

k̂coag 3.44× 10−11 5.44× 10−11 9.59× 10−11

k̂comp 3.13× 10−15 9.04× 10−15 4.76× 10−14

k̂att 1895 24 980

k̂pen 965 13260 24853

k̂reac 7.58× 10−16 1.83× 10−12 9.10× 10−14

Ha 1 × 10−6 5.99× 10−7 5.60× 10−7

µpsd 38.93µm 38.93µm 29.7µm
σpsd 1.60 1.60 1.84

Granulation Run

E
m

pi
ric

al
 v

ar
ia

nc
e 

in
 p

ar
tic

le
 s

iz
e 

[µ
m

]

B1 A1 A2 A3 A4 A5 A6 A7 A8

5
×

10
6

5
×

10
7

Experimental data
5 parameter simulation
6 parameter simulation
8 parameter simulation

Figure 7: Experimental results with best set of simulations. Empirical variance is opti-
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5.5 Categorical percentile size criterion

The results of the objective function and the rates that were selected by the optimisation
process based on the 10th, 50th and 90th percentiles, when treated as strictly categorical
data, can be seen in Table 6. Additionally, the absolute distance between the simulated
sieve classes and the experimental points is included. The objective function decreases
slightly with the addition of the sixth parameter and is decreased by 1/3 for the eight-
parameter case when compared to the five-parameter case. In Figure 8 we can again
see that for all experimental cases, the five-parameter system is consistently over- or un-
dersized. We can observe a slight improvement overall with the six-parameter case, but
in most experimental cases the behaviour for the five- and six-parameters cases is sim-
ilar. Additionally, by the counts portrayed by the objective function values and in the
figures, one can see that while the eight-parameter case may deviate one, two, or, on three
occasions, 3 sieve classes from the experimental results, the five and six-parameter con-
figurations deviate by 3 sieve classes at least five times and by 4-5 sieve classes multiple
times. Further, note that while the 10th percentile is exactly matched by all parameter
configurations for three sets of process conditions, the 90th percentile is only simulated
exactly in one instance by the 8 parameter case. While the eight-parameter case deviates
by one or two sieve classes from the 90th percentile class, the five- and six-parameter
cases frequently deviate by 3 or more classes.

With respect to the selected rates, while the selection for k̂coag has returned the area se-
lected by the geometric mean particle size method for the five- and six- parameter con-
figurations, the eight-parameter case has remained in the area that was selected by the
variance-based optimisation. This suggests that the parameter values selected for the vari-
ance were created an oversized particle size distribution, with respect to the geometric
mean particle size, for the five- and six-parameter cases. Further, this suggests that the
values selected for the geometric mean particle size are not representative of an accurate
variance in all cases. The value for Ha is again increased to a similar degree for the six-
and eight-parameter cases, to the point that it only deviates marginally from the fixed
value for the five-parameter case. Further, we again note that for the eight parameter case
there is a noticeable increase in the σpsd with a minor decrease in the µpsd. Overall, this
suggests that that the shape of the distribution is more significant than its location when
attempting to simulate more complicated assessments of the experimental data.

5.6 Empirical cumulative size distribution criterion

Next, we use a more detailed form of model output. Here, we shall examine the empirical
cumulative size distribution (ECDF) for all of the experimentally measured values. The
objective function and selected rates are displayed in Table 7, where the same pattern of
decreasing objective functions is shown for the model configurations. In Figure 9 we can
directly compare how the selected simulated ECDF fits the experimental data. Here we
can see that the shape of the resultant ECDF remains largely the same for the five- and
six-parameter scenarios, and in neither case are they a particularly good fit to the exper-
imental results. The five- and six- parameter cases consistently fail to produce particles
in the larger sieve classes and also show a tendency to place an inappropriate amount
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Table 6: Objective function and best estimated parameters where categorical sieve class
for 10th, 50th and 90th percentile is selection criterion. Fixed parameters are
in bold.

5 parameters 6 parameters 8 parameters

Objective function 13.60 13.37 8.60
Absolute distance 59 57 38

k̂coag 7.84× 10−13 3.95× 10−13 2.07× 10−11

k̂comp 2.92× 10−15 2.13× 10−13 6.96× 10−14

k̂att 3659 993 12051

k̂pen 55 23 1592

k̂reac 7.51× 10−12 4.41× 10−13 1.15× 10−15

Ha 1 × 10−6 8.56× 10−7 9.66× 10−7

µpsd 38.93µm 38.93µm 35.6µm
σpsd 1.60 1.60 1.90

of the mass in a few, closely spaced, size classes. The eight-parameter case, however,
demonstrates the ability to alter the constructed curve to create a better fit. Although none
of the configurations show an ideal fit to the ECDF, the eight-parameter case appears to
have the capacity to fit the experimental results, while the others are far less promising.
One aspect of the illustrations to note is that in the experimental results, the large sieve
classes would have a relatively small population of particles, often one or two particles
in the largest classes, which, given the nature of the population balance model, would
be difficult to capture without tracking an inordinate number of particles. Nevertheless,
the model seems to demonstrate that with the more complicated form of the results, the
inclusion of Ha as well as the µpsd and σpsd as parameters enables the model to simulate
the experimental results.

The selected rates demonstrate the same pattern as with the categorical sieve classes in-
sofar that µpsd shows a slight decrease and σpsd shows a marked increase. The selected
values for Ha are similar across the six- and eight-parameter cases and the rates overall
are of similar magnitude to the categorical sieve class assessment.

5.7 Overall analysis of powder characterisation

Lastly, we examine the feasibility of the proposed Ha, µpsd and σpsd which the objective
functions have selected. Of all the rate parameters and experimental parameters, this is
the only aspect where we can assess if the values that are being selected are realistic. With
respect to the Ha, the model is suggesting that the powder has smaller asperities than the
initial approximation. The validity of this suggestion can only be established through
future experimentation.

The initial powder distribution however, does have sieving data to form a basis for com-
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Table 7: Objective function and best estimated parameters where empirical cumulative
distribution function is selection criterion. Fixed parameters are in bold.

5 parameters 6 parameters 8 parameters

Objective function 2.16 2.03 1.58

k̂coag 2.52× 10−13 1.42× 10−13 3.03× 10−11

k̂comp 1.21× 10−15 1.07× 10−14 9.35× 10−15

k̂att 5364 658 271

k̂pen 38 28 6530

k̂reac 2.14× 10−13 6.19× 10−13 9.22× 10−14

Ha 1 × 10−6 6.11× 10−7 8.66× 10−7

µpsd 38.93µm 38.93µm 37.9µm
σpsd 1.60 1.60 1.97

parison. In Figure 10 and Figure 11 we can see the model suggested fit lines plotted
against the experimental mass measurements and the derived lognormal fit lines for the
number and mass distributions of the initial powder. In all instances, the values selected
for µpsd were of smaller than the fixed value and found values for σpsd were noticeably
larger. Bearing in mind that the model input values are the number distribution, we can
observe the rightward shift and increased spread of the selected distributions. None of
the alternative combinations of µpsd and σpsd appear to be unreasonable with respect to
the number distribution, particularly when one considers the mechanical nature of sieving
analysis.

When the selected number distributions are converted into mass distributions, the pro-
posed changes become more evident and less credible. With respect to mass, the selected
distributions range from moderately undersized to markedly larger then the measured val-
ues. If one interprets the tendency to select significantly larger values for σpsd and smaller
values for µpsd to indicate that the shape of the distribution is more significant, a value of
µpsd could be selected to remedy this disparity, akin to the values found for the variance.
Further, the method of sieving analysis forces us to make a choice as to how to define the
particle size with respect to the data points. In this paper, we have used the uppermost
point of the sieves for the curve fitting, but using the midpoint or the lower most edge of
the sieve classes are choices which could also be justified. Either of these choices would
generate a smaller value for µpsd, while maintaining the value for σpsd. However, as the
bounds for the model were arbitrarily established, it would be inappropriate to make any
concrete statement with respect to the powder distribution without experimental verifica-
tion.

With these observations, a number of possibilities should be considered. Firstly, there
may be a kinetic mechanism which the model does not possess that causes the disparity.
Alternately, if the model does possess the relevant mechanisms, then characterisation of
the powder by either the sieving data or the lognormal curve is insufficient for the model.
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Figure 10: Initial powder number distribution found by various objective functions.

In either case, the suggestion that the shape of the distribution is significantly affecting
the end-product should be investigated. A further complication that should be noted is the
difference, sometimes by orders of magnitude, in the optimal rates selected by the various
objective functions. While this disparity could result from local minima being found in a
non-smooth parameter space, it should be the subject of further study.

6 Conclusions

We have presented a combined experimental and modelling approach to understanding
the wet granulation of lactose powder in a high-shear mixer. Experimental data produced
by performing nine wet granulation runs using lactose monohydrate as the initial powder
and deionised water as the binder is presented and included as a supplementary .csv file.
The granulation runs were performed with variations in impeller speed, massing time and
binder addition rate and then simulated by a population balance model containing five
rate parameters requiring estimation. The rates are estimated by sampling with Sobol
sequences over a pre-defined parameter space.

The methodology used to perform the parameter estimation is found to yield useful results.
By using Sobol sequences as a means to sample the parameter space, we are able to
create a map of the parameter space and assess the behaviour of the parameters with
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Figure 11: Initial powder mass distribution found by various objective functions.
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respect to various characterisations of the results. Further, by using the Sobol sequences
in conjunction with ranges that reflect uncertainty in the initial values, we gain insight the
model and which can be related back to the physical system.

A sensitivity study performed using this method reveals two important properties with
respect to the characterisation of the initial powder. First, the model input value that
quantifies the height of the asperities on the particles is found to limit the model’s abil-
ity to simulate simple descriptions of the particle size distribution. By allowing the pa-
rameter for the height of asperities to vary over a range when estimating the rates, the
simulated particle size distribution agrees well with the experimental one when using a
single value characterisation. However, the absence of experimental measurements for
this value necessitates experimental investigation to ascertain if the values being selected
by the optimisation process are realistic.

Second, the input parameters which describe the initial particle size distribution are found
to significantly affect the distribution of the end product. When the input parameters
which define the size distribution of the initial powder are allowed to vary, the model
demonstrates an ability to simulate the experimental empirical size distributions. Of the
two parameters which characterise the initial distribution, the shape parameter seems to be
the most influential. The fact that these values are initially established by fitting a lognor-
mal curve to sieving data suggests that this combination of methods is not appropriate for
this model. Further, these observations raise questions with respect to impact that these
quantities have on the experimental system.

Future work will entail experimental investigation of the properties found to be significant
in this study. In particular, the effect on the end product of powders with different initial
size distributions will be studied under identical process conditions. Of most interest is the
shape of the initial size distribution, as the sensitivity study suggests that this is the more
significant factor. Further, a detailed investigation of the initial powder will take place
using a wide variety of techniques to quantify the height of asperities, such as scanning
electron and atomic force microscopes, and to produce size descriptions of the initial
powder by techniques more sophisticated than sieving, such as laser diffraction.
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Nomenclature

Roman symbols

� Diameter mm

d Density function [-]
di ith element of density function [-]
D Cumulative mass function [-]
Di ith element of cumulative mass function [-]
ecoag Coalescence coefficient of restitution [-]
e Particle coefficient of restitution [-]
eli Liquid coefficient of resistance [-]
eso Solid coefficient of resistance [-]
esr Reacted coefficient of resistance [-]
f Criteria function [-]
f exp Simulation criteria [-]
f sim Simulation criteria [-]
h Binder thickness m
Ha Asperities height m
k̂att Attrition rate parameter sm−5

k̂coag Coalesance rate parameter m3

k̂comp Compaction rate parameter s/m
k̂pen Penetration rate parameter kg1/2s−3/2m−7/2

K Coalescence collision rate [-]
K̃ Coalescence efficiency [-]
k̂reac Chemical reaction rate parameter m/s
le Volume of external liquid m3

li Volume of internal liquid m3

m Particle mass kg
m̃ Harmonic mass kg
mi ith mass measurement [-]
M Number of responses [-]
Mg Empirical geometric mean particle size [-]
nimpeller Impeller speed rev/s
N Number of experimental runs [-]
OF Objective function [-]
p Pore volume m3

Q0 Cumulative number distribution [-]
q3 Mass density distribution [-]
Q3 Cumulative mass distribution [-]
R Particle radius m
R̃ Harmonic mean particle radius m
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rpm Revolutions per minute [-]
so Volume of original solid m3

sr Volume of reacted solid m3

Stv
∗ Stokes number [-]

Stv Critical Stokes number [-]
treesize exponent of 2 for number of particles tracked [-]
Ucol Relative particle velocity [-]
v Total particle volume m3

V ar Empirical variance [-]
xi ith sieve class [-]
x′i Natural log of ith sieve class [-]

Greek symbols

αdaughter Breakage; distribution -
βdaughter Breakage; distribution -
η Binder viscosity Pa s
µN Lognormal curve location parameter; number distribution [-]
µV Lognormal curve location parameter; volume distribution [-]
µdsd Droplet distribution location parameter [-]
µpsd Powder distribution location parameter [-]
νmax Breakage; max size -
νminmax Breakage; proportion -
ρle Binder density kg/m3

ρso Material density kg/m3

σ Lognormal curve shape parameter [-]
σdsd Droplet distribution shape parameter [-]
σpsd Powder distribution shape parameter [-]
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