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Abstract

This paper presents a detailed study of the numerical behaviour of stochastic
weighted algorithms (SWAs) using the transition regime coagulation kernel and a
multidimensional silica particle model. The implementation in the SWAs of the tran-
sition regime coagulation kernel and associated majorant rates is described. The
silica particle model of Shekar et al. (2012, J. Aerosol Sci. 44 83–98) was used
in conjunction with this coagulation kernel to study the convergence properties of
SWAs with a multidimensional particle model. High precision solutions were cal-
culated with two SWAs and also with the established Direct Simulation Algorithm.
These solutions, which were generated using large number of computational parti-
cles, showed close agreement. It was thus demonstrated that SWAs can be success-
fully used with complex coagulation kernels and high dimensional particle models
to simulate real-world systems.
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1 Introduction

Population balance equations describe the dynamic processes controlling the growth and
evolution of particles. Stochastic particle methods offer an attractive choice of solution
method as they are capable of tracking high-dimensional systems and provide informa-
tion about the history of individual particles. The Direct Simulation Algorithm (DSA)–
introduced in [3]–was developed to solve the Smoluchowski coagulation equation through
the technique of fictitious jumps and majorant kernels. Since then, it has been extended
in a variety of forms, including the Linear Process Deferment Algorithm (LPDA) which
accelerates the simulation of surface processes [21].

These stochastic particle methods have already been used in conjunction with DSA to
model a number of physical systems; for example, the formation of soot [18, 19, 22, 29];
flame synthesis of silica [24, 30, 32] and titania [33, 36]; and the aerosol synthesis of
silicon nanoparticles [15].

In direct simulation, every computational particle in the ensemble represents the same
number of real particles. In basic implementations of DSA, coagulation events deplete
the ensemble until there is only one computational particle remaining in the ensemble.
To avoid this, the ensemble may be duplicated when it is below 50 % capacity [13].
Even when extended to avoid computational particle depletion, DSA produces statistically
noisy estimates of the concentrations of physically rare particles and other associated
quantities [2, 23]. This can only be overcome by computationally expensive changes in
the numerical parameters [23].

To avoid these issues, weighted particle methods can be used [4, 12, 23, 27, 37]. These
methods have been presented in various forms such as the Mass Flow Algorithm (MFA)
[4, 6, 16, 17, 35] and the algorithms developed in [8, 38]. Stochastic weighted algorithms
(SWAs) differ from direct simulation and constant-number methods in that coagulation
events do not reduce the number of computational particles. Instead, simulated coagu-
lations in the SWAs adjust the statistical weight that is attached to each computational
particle. This statistical weight is proportional to the number of ‘real’ particles repre-
sented by the computational particle.

A recent paper gave a comprehensive review of present adaptations of SWAs [23]. It also
gave the general formulation of weighted particle methods. This framework allowed for
the development of general weighting rules which describe how the statistical weights are
adjusted during coagulation. Further, it assumed a general form of the coagulation kernel
and formulated this in terms of majorant techniques: an important method of reducing
computational costs [3, 22].

The majority of previous studies of SWAs presented either used a simple spherical particle
model [1, 2, 26] or a simple coagulation kernel for which an analytical solution to the
population balance can be found [23, 38]. In one case, it was suggested that discrepancies
with experimental results were a product of not using a coagulation kernel valid across
the full range of Knudsen numbers [16].

A detailed study was presented of the numerical behaviour of a multidimensional silica
particle model [31] whose coagulation process is approximated by transition regime co-
agulation. The paper investigated the convergence of key system properties (e.g. particle
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number concentration) with respect to the choice of certain numerical parameters. Such
work provides an ideal foothold from which to understand the numerical behaviour of
weighted particle methods. It also allows for direct comparison of the convergence prop-
erties and computational efficiency of the DSA with weighted particle methods.

It has been previously identified that SWAs are particularly useful when extended to spa-
tially inhomogeneous systems [7, 9, 20]. If stochastic methods are to be used to model real
systems with more sophisticated particle models, the numerical behaviour of these meth-
ods must be investigated. A test problem using a silica particle model and the transition
regime coagulation kernel will extend the numerical studies conducted in [31].

The structure of this paper is as follows. In §2, the stochastic particle method used to solve
the population balance equation is outlined. §3 shows how to implement the stochastic
weighted algorithm for the transition regime coagulation kernel, and §4 gives the nu-
merical studies used to test this system. The efficiency and convergence of the SWAs is
discussed in §5 and the paper is concluded with a critical analysis of these methods as
well further avenues for research are suggested.

2 Model

A fully-coupled gas-phase and particle model is used to simulate the formation of silica
from tetraethoxysilane. The kinetic model describing the gas-phase decomposition is
described in [24, 30] and consists of 58 reversible gas-phase reactions among 27 chemical
species.

The population balance describing the creation, removal and modification of particles is
solved using a stochastic particle method. The particle model considered in the present
work is the silica model defined in [30] (based-on [14, 28]), which uses a detailed type-
space to capture particle structure and morphology.

2.1 Type-space

A detailed mathematical formulation of the particle model’s type-space was given in [31],
however a brief overview of its salient features is presented here. Particles are represented
as:

Pi = Pi(p1, . . . , pni
,C) (1)

where particle Pi contains ni primary particles px. The information describing the common
surface area between two primary particles is stored in the lower-diagonal matrix C. Each
primary is described by variables ηSi, ηO and ηOH:

px = px(ηSi,ηO,ηOH) (2)

where ηSi is the number of silicon atoms, ηO is the number of oxygen (non-OH) atoms and
ηOH is the number of OH units. As the particle model tracks the number of chemical units
of each primary and the aggregate structure, it is able to provide detailed information about
the nature of a single silica particle. This highly-dimensional particle model represents
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a significant advance in sophistication over simple spherical particle or ‘surface-volume’
models.

2.2 Particle processes

In this model, particles may be created and changed through several different processes.
The implementation of these processes in the framework of the stochastic weighted algo-
rithm is described in §3.2.

Inception: The collision of two gas-phase Si(OH)4 monomers yields a particle with an
initial state given by p1(ηSi = 2,ηO = 1,ηOH = 6). This occurs through the reaction:

Si(OH)4 +Si(OH)4→ P(p1(ηSi = 2,ηO = 1,ηOH = 6),C)+H2O (3)

where the newly-incepted particle is denoted by P. Their rate of formation is based-
on the transition coagulation kernel:

Rincep =
1
2

Ktr (Si(OH)4) N2
AC2

Si(OH)4
(4)

where Ktr (Si(OH)4) is the transition kernel as applied to Si(OH)4 monomers (dis-
cussed in §3.2), NA is Avogadro’s constant and CSi(OH)4

is the gas-phase concentra-
tion of Si(OH)4.

Surface reaction: Surface reactions may occur when a Si(OH)4 monomer reacts with
an -OH site on the surface of a primary particle in a fashion analogous to inception.
This alters the composition of the particle in the following manner:

Pi(p1, . . . , px, . . . , pni
,C)+Si(OH)4→ Pi(p1, . . . , p′x, . . . , pni

,C′)+H2O (5)

The rounding due to surface reaction (C→C′) is discussed by Shekar et al. [31]. A
primary px is uniformly selected and transformed according to:

px(ηSi,ηO,ηOH)→ p′x(ηSi +1,ηO +1,ηOH +2) (6)

The rate of surface reaction is proportional to the concentration of Si(OH)4 precur-
sor and the number of OH sites on the particle surface:

Rsurf(Pi) = Asurf exp
(
−EA

RT

)
ηOH(Pi)NACSi(OH)4

(7)

where Asurf and EA are the gas-phase Arrhenius constants.

Sintering: Neighbouring primary particles may sinter with each-other according to the
excess surface area decay formula popularised by Koch & Friedlander [11]:

∆Cxy

∆t
=− 1

τS(px, py)
(Cxy−Ssph(px, py)) (8)
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where Cxy represents the element of the common-surface matrix C describing the
common surface area of the two primaries px and py, and Ssph(px, py) is their equiv-
alent surface area. In the present work, a viscous-flow model is used to describe the
characteristic sintering time τS as a function of diameter and temperature. Here,

τS(px, py) = AS min [dpri,x,dpri,y]exp
(

ES

T

[
1−

dp,min

min [dpri,x,dpri,y]

])
(9)

where AS, ES and dp,min are empirical constants obtained from model-fitting [30].
The degree of sintering is measured by the ‘sintering level’ parameter [28]:

s(px, py) =

Ssph(px,py)

Cxy
−2−

1
3

1−2−
1
3

. (10)

where Ssph(px, py) is the surface area of the sphere with volume equal to the sum of
the primaries’ volume.

When the sinter process is called, the sintering level s of the neighbouring primaries
is first checked against the coalescence criterion. If the sintering level is greater
than 0.95, the particles are merged; otherwise, the particles are sintered according
equation (8) for time ∆tsinter with

∆tsinter = t− tlast update (11)

where tlast update was the last time the sintering characteristics of the particle were
updated. Sintering also results in the release of water, the amount of which, like
surface reaction, is proportional to the particle’s statistical weight.

Intra-particle reaction: The -OH units on the surface of a primary particle may also
react with each other to release water. A particle is transformed by a intra-particle
reaction as:

Pi(p1, . . . , px, . . . , pni
,C)→ Pi(p1, . . . , p′x, . . . , pni

,C′)+H2O (12)

In a similar vein to surface reaction, a primary px is uniformly selected and adjusted
by:

px(ηSi,ηO,ηOH)→ p′x(ηSi,ηO +1,ηOH−2) (13)

The rate of intra-particle reaction is calculated for each particle such that the Si:O
ratio tends to 1:2 as t→∞. It is mathematically described by the difference between
the surface-reaction rate and the whole-particle sintering rate:

Rint(Pi) = Rsurf(Pi)−
ηOH(Pi)

2S(Pi)

[
ni

∑
x,y=1

Cxy−Ssph(px, py)

τS(px, py)

]
(14)

The reader is referred to [31] for the derivation and explanation of this formula.

Coagulation: The collision and sticking of two silica particles is referred to as coagula-
tion. The coagulation of particles Pi and Pj is represented by the following change
to the particles’ state:

Pi(p1, . . . , pni
,C)+Pj(p1, . . . , pn j

,C)→ Pk(p1, . . . , pni
, pni+1, . . . , pni+n j

,C) (15)
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The matrix C is transformed to include the connectivity of the old particles and that
of the new point-connection [31]. The rate of coagulation is calculated using the
transition coagulation kernel, discussed in Section 3.2.

3 Development of stochastic weighted algorithms

In Stochastic Weighted Algorithms, computational particles are described by a type xi

and a statistical weight wi. The physical concentration of particles of type xi is given
by wi/Vsmp. The xi are a renaming of the Pi from the previous section to be consistent
with previous articles which present mathematical formulations of stochastic coagulation
processes [20, 23].

3.1 Linear particle processes

While the rate expressions of linear particle processes such as inception and surface reac-
tion remain unchanged in this weighted particle method [23], the interaction of these with
the gas-phase must be carefully considered. A process which removes one molecule of A
from the gas-phase and release one molecule of B into the gas-phase can be written as

(xi,wi)+A→ (x′i,wi)+B. (16)

The amount of A removed (∆CA) and B (∆CB) added is proportional to the statistical weight
of the particle wi and the scaling factor, that is,

∆CA =− wi

NAVsmp
(17)

where Vsmp refers to the computational sample volume, and

∆CB =
wi

NAVsmp
. (18)

Note that the statistical weight wi remains unchanged throughout this process. Particles
are created in the population balance with weight wi = 1.0 where inception occurs.

3.2 Coagulation process

Coagulation events in the SWA are asymmetric [4]. An ordered pair of particles (xi,wi)
and (x j,w j) coagulate at rate K(xi,x j)w j such that

(xi,wi),(x j,w j)→ (xi + x j,γ(xi,wi,x j,w j)),(x j,w j). (19)

The computational particle (x j,w j) is unaffected by the simulated coagulation event, but
the new particle with index i is constructed using (x j,w j). This applies to the new type
xi+x j and the new statistical weight, which is calculated with the weight transfer function
γ [23] and discussed further in §3.2.4.
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In the stochastic simulation of a coagulation process, the total jump rate R for coagulation
using the direct simulation algorithm is given by [22]:

R =
1
2

N(t)

∑
i6= j

K(xi,x j)

Vsmp
(20)

where N(t) is the number of stochastic particles in the ensemble at time t. When a
weighted particle method is used, the jump rate is given by K(xi,x j)w j and coagulation is
no longer symmetric [23], so the total rate expression is modified to

R =
N(t)

∑
i 6= j

K(xi,x j)w j

Vsmp
(21)

The function K(xi,x j) represents the physics of the coagulation process and is dependent
on characteristics of the particle pair and the chemical conditions of the surrounds. The
transition kernel is a popular choice as it approximates the more detailed Fuchs Interpola-
tion Formula and is valid across a wide range Knudsen numbers [10, 25]. It is given by the
harmonic average of the slip-flow kernel Ksf(xi,x j) and free-molecular kernel Kfm(xi,x j)

Ktr(xi,x j) =

(
1

Kfm(xi,x j)
+

1
Ksf(xi,x j)

)−1

. (22)

The implementation of the transition kernel within direct simulation is explained in de-
tail in [22]. Of key importance is the use of majorants, which provide computationally
efficient approximations of the true kernel such that K̂ ≥ K. In the context of SWAs, the
majorant kernel K̂ is written

K̂ (xi,wi,x j,w j) = K̂ (xi,x j)w j (23)

To adapt the transition kernel to weighted methods, the majorant techniques of [23] are
used. Provided the coagulation kernel satisfies

K̂ (xi,wi,x j,w j)≤ h(1)
1 (xi,wi)h(1)

2 (x j,w j)+h(2)
1 (xi,wi)h(2)

2 (x j,w j)+

. . .+h(nh)
1 (xi,wi)h(nh)

2 (x j,w j), (24)

where h( j)
i is part of an upper bound for K̂ and nh is the number of terms in the factorised

expression, the majorant rate can be factorised as
N(t)

∑
i, j=1

K̂ ≤ λ
(1)
1 λ

(1)
2 +λ

(2)
1 λ

(2)
2 + . . .+λ

(nh)
1 λ

(nh)
2 , (25)

where

λ
(k)
l =

N(t)

∑
i=1

h(k)
l (xi,wi), k, l = 1,2, . . . ,nh. (26)

The quantities h(k)
l (xi,wi) are stored in a binary tree which enables rapid calculation of the

sums λ
(k)
l [6, 23]. They are also used to select the pair of particles for a coagulation event:

more information on such processes is given in [6]. To apply this formulation to the the
transition kernel, it needs to be considered separately as its two components.
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3.2.1 Free-molecular kernel

The free-molecular kernel is dominant for Kn� 1 [10]. In this regime, the full kernel
takes the form

Kfm(xi,x j) = 2.2

√
πkB T

2

(
1
mi

+
1

m j

) 1
2

(di +d j)
2 (27)

where kB is Boltzmann’s constant, T is the temperature and mi and di are the mass and
collision diameter of particle i, respectively. This is decomposed into its majorant rate
form K̂fm(xi,x j) with Kfm(xi,x j)≤ K̂fm(xi,x j) to allow for efficient jump rate calculation.

K̂fm(xi,x j) = α

(
1
√

mi
+

1
√m j

)(
d2

i +d2
j

)
(28)

where the constant α is given by

α = 2.2kmaj

√
πkB T

2
(29)

and kmaj is the majorant rate scaling factor (kmaj = 2.0), necessary to satisfy the inequality
Kfm ≤ K̂fm [5]. To calculate the total majorant rate, ∑i 6= j K̂fm(xi,x j)w j must be calculated
and split into the individual jump terms. Using Equation (28), we obtain

∑
i6= j

K̂fm(xi,x j)w j =

α

{
(N(t)−1)∑d2

i m−
1
2

i wi +
[
∑d2

i ∑m−
1
2

i wi−∑d2
i m−

1
2

i wi

]
+[

∑d2
i wi ∑m−

1
2

i −∑d2
i m−

1
2

i wi

]
+
[
∑d2

i m−
1
2

i ∑wi−∑d2
i m−

1
2

i wi

]}
(30)

The indices are neglected here for clarity, however all sums act from i = 1 to N(t). For the
free-molecular kernel, there are four λ

(1)
l λ

(2)
l terms, giving nh = 4. Note that a ∑d2

i m−
1
2

i wi

term is subtracted from the other terms to remove self-coagulations. The majorant jump
rate of free-molecular coagulation is therefore given by

R̂fm =
N(t)

∑
i 6= j

K̂fm(xi,x j)w j

Vsmp
. (31)

3.2.2 Slip-flow kernel

After substitution of the Cunningham slip correction factor and the Knudsen number, the
slip flow kernel is given by

Ksf(xi,x j) = β1

(
1
di
+

1
d j

+β2

[
1
d2

i
+

1
d2

j

])
(di +d j) (32)
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where β1 and β2 are constants, the former expressed as

β1 =
2kB T

3 µ
(33)

with µ is the gas viscosity; and the latter as

β2 = 1.257(2σ) (34)

where σ is the mean-free-path of gas molecules. The slip-flow kernel does not need a
majorant due to its simple form [22]. Thus, the sum can be directly expanded:

∑
i 6= j

Ksf(xi,x j)w j =

β1
{

2(N(t)−1)∑wi +
[
∑di ∑d−1

i wi−∑wi
]
+
[
∑diwi ∑d−1

i −∑wi
]
+

β2
(
(N(t)−1)∑d−1wi +

[
∑di ∑d−2

i wi−∑d−1wi
]
+[

∑diwi ∑d−2
i −∑d−1wi

]
+
[
∑d−1

i ∑wi−∑d−1wi
])}

(35)

The jump rate of slip-flow coagulation is thus given by

Rsf =
N(t)

∑
i 6= j

Ksf(xi,x j)w j

Vsmp
. (36)

3.2.3 Particle selection algorithm

Equations (30) and (35) comprise the majorant rate expression for the ‘weighted majorant
transition kernel’:

K̂(xi,x j)w j =

{
∑i 6= j K̂fm(xi,x j)w j if R̂fm < Rsf

∑i 6= j Ksf(xi,x j)w j if R̂fm ≥ Rsf (37)

In a similar vein to [5], these expressions can be thought of as sums of individual rate
terms. For example, Equation (30) can be rewritten as:

K̂fm(xi,x j)w j = K̂fm,1 + K̂fm,2 + K̂fm,3 + K̂fm,4 (38)

where, as an illustration, the first free-molecular jump rate term is given by:

K̂fm,1 = α(N(t)−1)
N(t)

∑
i=1

d2
i m−

1
2

i wi (39)

Comparing Equation (30) to Equation (25), we see that each of these individual rate terms
K̂(fm,i) is composed of two parts λ

(fm,1)
1 λ

(fm,1)
2 . These two terms are given by for K̂fm,1:

λ
(fm,1)
1 = (N(t)−1)

λ
(fm,1)
2 =

N(t)

∑
i=1

d2
i m−

1
2

i wi (40)
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Table 1: Particle selection properties for the ‘weighted’ transition kernel

Term Equation Particle 1 Particle 2

FM1 (N(t)−1)∑d2
i m−

1
2

i wi Uniform d2
i m−

1
2

i wi

FM2 ∑d2
i ∑m−

1
2

i wi−∑d2
i m−

1
2

i wi d2
i m−

1
2

i wi

FM3 ∑d2
i wi ∑m−

1
2

i −∑d2
i m−

1
2

i wi m−
1
2

i d2
i wi

FM4 ∑d2
i m−

1
2

i ∑wi−∑d2
i m−

1
2

i wi d2
i m−

1
2

i wi

SF1 2(N(t)−1)∑wi Uniform wi

SF2 ∑di ∑d−1
i wi−∑wi di d−1

i wi

SF3 ∑diwi ∑d−1
i −∑wi d−1

i diwi

SF4 (N(t)−1)∑d−1
i wi Uniform d−1

i wi

SF5 ∑di ∑d−2
i wi−∑d−1

i wi di d−2
i wi

SF6 ∑diwi ∑d−2
i −∑d−1

i wi d−2
i diwi

SF7 ∑d−1
i ∑wi−∑d−1

i wi d−1
i wi

which yields the following selection properties h(fm,1)
1 , h(fm,1)

2 :

h(fm,1)
1 = 1

h(fm,1)
2 = d2

i m−
1
2

i wi (41)

A selection property of 1 indicates uniform selection probability; that is, each computa-
tional particle has an equal chance for being selected, regardless of its physical properties.
The coagulating partners i and j are selected according to the probabilities:

h(fm,1)
1 (xi,wi)

λ
(fm,1)
1

and
h(fm,2)

2 (x j,w j)

λ
(fm,1)
2

(42)

The particle selection properties and partial sums for the remainder of the free-molecular
and slip-flow kernels are summarised in Table 1.

3.2.4 Coagulation jump process

If a coagulation event is selected to occur, two particles must be chosen from the ensemble
and physically joined. This is represented by Equation 19. The weight transfer functions
γ(xi,wi,x j,w j) define how the statistical weights are manipulated through such a process
and are summarised in Table 2 [23].

The two best performing weight transfer functions (SWA1 and SWA3) from the family
derived in [23] were selected for the numerical tests in this work.

In a stochastic coagulation process, two particles are first selected to coagulate. For direct
simulation, the mass of the second particle is added to the first, and the ‘old’ second par-
ticle is deleted. As discussed in §1, the ensemble will eventually deplete if not somehow
replenished. This is done by doubling the ensemble when the number of computational
particles N(t) falls below half of the maximum capacity Nmax. When using SWAs, the
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Table 2: Definition of the coagulation weight transfer functions.

Name Formula

SWA1 wi
w j

wi +w j

SWA3 wi
mi

mi +m j

Figure 1: Comparison of the coagulation process implemented in direct simulation algo-
rithm and weighted particle methods.

weight of the first particle is adjusted (using the functions in Table 2), the mass of the sec-
ond particle is added to the first, and the second particle is left unchanged. As no particles
are deleted, there is no need for a doubling algorithm. The ensemble properties cached in
the binary tree structure (see [6, 23]) are updated at the end of the coagulation event. The
complete process in which a coagulation event is handled is provided in Figure 1.

4 Numerical studies

A simple test-case was defined in [31] at which the numerical convergence studies were
conducted. This case simulated a zero-dimensional batch reactor with 250 ppm of precur-
sor (tetraethoxysilane, TEOS) in nitrogen bath gas. The temperature was held constant
at 900 ◦C and a residence time of 0.8 s was chosen. The numerical parameters, model
parameters and process settings used in the present work are summarised in Table 3.

Convergence of several functionals of the solution were studied; these are given along
with their physical interpretations in Table 4. The convergence of these key process met-
rics was investigated in [31] by varying certain numerical parameters. In stochastic par-
ticle methods, such numerical parameters of interest include the maximum number of
stochastic particles Nmax and the number of simulation runs L.

12



Table 3: Numerical and model parameters used in the present work.

Description Symbol Value
Numerical parameters
Number of splits Nsplits 100
Timestep ∆t 0.0015 s
Absolute error tolerance εa 1.0×10−22

Relative error tolerance εr 1.0×10−4

Maximum number of stochastic particles Nmax 64–131072
Number of runs L 2048–1

Model parameters
Maximum zeroth moment M0,max 1.55×1018 #/m3

Sintering pre-exponential AS 1.1×1016 s/m
Sintering characteristic energy ES 1.2×105 K
Sintering minimum diameter dp,min 4.4 nm
Surface smoothing factor σ 1.0
Gas-phase parameters - [30]

Process settings
Initial temperature T 900 ◦C
Residence time τ 0.8 s
Initial TEOS fraction yTEOS 250 ppm
Initial total pressure Pi 1.0 atm

Table 4: Summary of key process metrics (from Shekar et al. [32]) investigated in the
present work.

m(t) Description Formula

M0(t) Particle number concentration
1

Vsmp
∑wi

FV(t) Particle volume fraction
1

Vsmp
∑wiVi

n(t) Mean number of primaries per particle
1

∑wi
∑wi ni

dcol(t) Mean collision diameter
1

∑wi
∑wi dcol,i

dpri(t) Mean primary diameter
1

∑wi
∑wi dpri,i

s(t) Mean sintering level
1

∑wi
∑wi si
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A high-precision solution was defined which used 131072 stochastic particles (Nmax = 217)
and ten runs (L = 10). For simulations with multiple runs, the temporal evolution of a
metric m(t) is averaged over the number of runs:

µ
(Nmax,L)(t) =

1
L

L

∑
l=1

m(Nmax,l)(t) (43)

The 99.9 % confidence interval is calculated using the variance and the central limit the-
orem:

c99.9(t) = 3.29

√
1
L

[
∑

L
l=1 m(Nmax,l)(t)2

]
−µ (Nmax,L)(t)2

L
(44)

Thus, the interval I(t) in which there is a 99.9 % probability of finding the true solution
of a metric for a simulation with given Nmax and L is given by:

I(t) =
[
µ
(Nmax,L)(t)− c99.9 , µ

(Nmax,L)(t)+ c99.9
]
. (45)

The interval c99.9(t) is also used to measure the relative statistical error:

er,stat(t) =
c99.9(t)

µ (Nmax,L)(t)
(46)

5 Results

5.1 High-precision solution

Before investigating any useful convergence properties of the weighted methods, one must
ascertain whether the solutions when using SWAs converge in the limit to those solutions
when using direct simulation. Here, the high-precision solutions (Nmax = 131072, L = 10)
are compared.

The particle size distributions (PSDs) predicted by the algorithms were first examined. As
the silica model tracks primary particles, a PSD of the primary particles may be generated
in addition to PSDs for the aggregates. The high-precision primary and collision PSDs
are given for direct simulation and the weighted methods in Figure 2. These were gen-
erated using a Gaussian kernel density estimation procedure, and the normal distribution
approximation to estimate the bandwidth [34].

It is evident that the SWA1 and SWA3 algorithms perfectly reproduce the PSD predicted
by direct simulation. Further, SWA1/3 better resolve the large (>300 nm) and rare parti-
cles.

The metrics in Table 4 also provide a useful tool to examine agreement between algo-
rithms. The temporal evolution of such metrics for the direct simulation and weighted
algorithms is presented in Figure 3.

Again, the SWA1 and SWA3 algorithms produce trajectories with excellent agreement
with those of DSA. The confidence intervals for these cases are typically too narrow
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Figure 2: PSDs predicted by the high-precision solutions at t = 0.8 s.

to be observed here. It is clear that the SWAs’ high-precision solutions are equivalent
to those predicted through direct simulation, indicating that all algorithms approach the
same solution in the limit as Nmax→ ∞.

5.2 Convergence of algorithms

When using stochastic particle methods, one must choose L such that the statistical uncer-
tainty in the results is acceptably small. One must also chose Nmax such that the systematic
error appears close to zero, however in practice it may be chosen such that the differences
between successive values of Nmax are not statistically significant. The multidimensional
silica particle model permits tracking of any number of functionals describing the particle
size and morphology. Here, the convergence behaviour of these metrics is investigated.

The convergence studies reported here were conducted by varying Nmax and L while hold-
ing their product Nmax×L constant at a value of 217. The relationship between the final
average value of these functionals and Nmax is given in Figure 4. The statistical errors
associated with each of these values are depicted in Figure 5 and Figure 6.

Particle number concentration: The final value of the SWA solutions for particle num-
ber concentration M0 (or zeroth moment) has lower systematic error than direct
simulation.

Volume fraction: The volume fraction represents the ratio of total particle volume to
gas volume. The SWAs achieve a solution within the confidence interval of the
high-precision solution for Nmax ≥ 128, indicating that they accurately predict the
volume fraction for very few stochastic particles.

Mean number of primaries per particle: The mean number of primaries per particles
is a measure of both the size of the aggregate and number of coagulation events.
Figure 4 shows that much smaller aggregates are obtained when Nmax is too low.
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Figure 6: Relative statistical error for Table 3’s metrics with constant Nmax×L = 217.
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Mean collision diameter: The collision diameter dcol is an important property which
characterises the size of an aggregate particle. SWAs appear to have better accuracy
at lower Nmax, but there is a common limit as Nmax becomes large.

Mean primary diameter: The mean primary diameter dpri estimates the average size
of the primary particles which compose an aggregate. Curiously, despite SWAs
predicting the final value of the collision diameter better than DSA, they have a
larger systematic errror than DSA for fewer computational particles. This may be
associated with SWAs preference towards larger particles (with larger primaries).

Mean sintering level: The mean sintering level is a measure of the extent to which the
ensemble’s particles are sintered. SWAs and DSA show similar convergence prop-
erties for this metric.

In summary, the weighted methods show convergence for fewer stochastic particles for
M0, FV, dcol, and the sintering level. Figure 5 demonstrates that the SWAs consistently
have a smaller confidence interval than an equivalent DSA simulation with a given Nmax,L.
This is consistent with observations made in [23].

In any case, it is evident that Table 4’s functionals satisfactorily converge to a stable value.
For this system, a choice of Nmax ≥ 16384 would be recommended when using SWAs.

5.3 Computational efficiency

The computational time required to simulate the silica test system for a given Nmax, L, or
error is investigated in this section. These calculations were conducted on a SGI Altix
Cluster with nodes composed of two 3.00 GHz quad core Intel Harpertown processors
and 8 GB of RAM.

The computational times of the DSA and SWA simulations for increasing Nmax are com-
pared in Figure 7. Typically, a simulation with given Nmax and L = 1 using SWAs required
six to eight more times the CPU time than the equivalent DSA simulation. Further, it
was observed that the time required per run increases approximately linearly with the
maximum number of stochastic particles.

It is also no coincidence that the additional time required by the SWAs as compared to the
DSA is proportional to the number of additional simulated coagulation events, which are
shown in Figure 8. Firstly, as SWAs emphasise calculation of larger, rarer particles (e.g.
[23] or Figure 2), more time on average is required to determine the extent of sintering
(Equations (8) and (11) ) of the ensemble’s particles at the end of each timestep. Secondly,
as SWAs always a full ensemble (N(t) = Nmax), there are always more particles for which
the process jump rates and sintering characteristics must be evaluated.

The additional numerical coagulation events that occur during SWA computations are
a consequence of the redistributed statistical accuracy, that also reduces the variance of
the studied metrics. This is depicted in Figure 6, where the confidence interval widths
(or relative statistical error er,stat) for the metrics’ final values are compared across algo-
rithms. Generally, a constant confidence interval is obtained, with a few notable excep-
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tions. Those metrics which show a steadily increasing or decreasing statistical errors cor-
respond to the metrics whose final values (at Nmax small) is significantly different (∼ 10%)
from the high-precision solution. That is, the presence of systematic error in the confi-
dence interval when a simulation is unconverged affects the estimation of statistical error.

The size of the DSA confidence intervals with respect to the SWA intervals differs de-
pending on the metric analysed. For the zeroth moment they are the same, however for
primary diameter they differ by a factor of about 4. It is evident that the weighted methods
offer superior variance reduction for all of the ‘special’ properties tracked in the multidi-
mensional particle model.

6 Conclusions

This work has used majorant techniques to adapt the transition regime coagulation kernel
to weighted particle methods. This is an important development if SWAs are to be used
to solve real-world coagulation problems. This kernel is used in conjunction with a state-
of-the-art multidimensional silica particle model to investigate the numerical behaviour
of the population balance solution methodology.

Within the particle model, particles are described by the primary particles and their con-
nectivity, which are in turn described by the number of Si, O and OH units of which they
are composed. This permits tracking of many detailed features of the particles and particle
ensemble through time.

Two SWAs (SWA1 and SWA3) were tested for convergence to direct simulation in the
limit. Excellent agreement of all algorithms’ high-precision solutions was obtained, in-
dicating that the weighted algorithms are expected to converge to the direct simulation
solution for sufficiently many stochastic particles.

The convergence of the functionals describing particle properties was investigated with
respect to the maximum number of computational particles in the ensemble. SWAs gen-
erally achieved the correct value of these functionals for fewer stochastic particles than
DSA, except in the calculation of number of primary particles and the primary diameter.
For a calculation with a given number of stochastic particles and runs, the confidence
intervals of the functionals were up to four times smaller, indicating that weighted algo-
rithms studied here achieve better variance reduction than direct simulation. However,
this comes at the cost of increased computational expense, with the algorithms requiring
approximately seven times more CPU time per run than direct simulation.

The present work demonstrates that stochastic weighted algorithms can be successfully
used to solve population balances with real-world coagulation kernels and complex par-
ticle models. This is particularly important for spatially inhomogeneous systems, where
weighted methods offer practical and numerical advantages over direct simulation. A new
majorant formulation of the transition kernel, as adapted to stochastic weighted algorithms
is presented. A detailed numerical analysis of the convergence properties and efficiency
of these methods was conducted, showing that weighted methods satisfactorily converge
to a stable numerical solution.
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