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Abstract

This paper introduces a new explicit numerical method with adaptive time
stepping which is suited to large and stiff systems of ordinary differential equa-
tions (ODEs). The algorithm, which is motivated by the theory of Markov
jump processes, is very simple and can be easily programmed. Various numer-
ical experiments are performed to assess the efficiency of the algorithm. For
this the ignition of a stoichiometric mixture of n-decane and air at constant
pressure and temperature is modelled using a large system of ordinary dif-
ferential equations containing 1218 strongly coupled and stiff equations. The
new algorithm is compared to the software packages DASSL and LSODE,
which are shown to be outperformed for moderate precision. The numerical
experiments also indicate that the approximate solution obtained from the
new algorithm converges to the exact solution of the ODE.
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1 Introduction

The numerical solution of large systems of ordinary differential equations (ODEs) has
attracted considerable interest in the last few decades. Good reviews can be found
in references [2] and [4]. This can be attributed to the fact that many models for
industrial and physical processes are formulated in this way. One example studied in
this paper is the modelling of fuels consisting of higher hydrocarbons. The detailed
chemical mechanisms derived for these fuels often contain up to a thousand chemical
species and several thousand chemical reactions occurring on time scales that can
differ by many orders of magnitudes. Hence, the chemical source terms in detailed
combustion models are very stiff [4, 2, 8].

For such models numerical methods based on implicit schemes have been developed.
Implicit methods have very good stability properties which combined with adaptive
time stepping lead to very efficient numerical algorithms. However a nonlinear
system of equations has to be solved for every time step which involves manipulating
the Jacobi matrix. This necessitates the use of linear algebra routines, which can
become very expensive for large systems. Explicit methods do not require the costly
solution of a nonlinear system of equations but suffer from severe stability problems
which lead to extremely short time steps. Hitherto explicit methods have been
developed only for mildly stiff systems (see [12] and references therein). Very stiff
problems could not be solved at reasonable computational cost.

The purpose of this paper is to present a new explicit scheme for solving a large
system of stiff ordinary differential equations as they appear in the combustion of
fuels containing higher hydrocarbons. This new explicit scheme is very efficient and
very easy to implement. Despite its explicit nature it is tailored to large and stiff
systems of ODEs but can also be used for solving (at moderate accuracy) any initial
value problem (IVP) of the form

d

dt
xj(t) = Qj

(
x(t)

)
; j ∈ {1, . . . , S} (1)

with the initial condition
x(0) = x0 ∈ R

S.

For testing purposes we consider the combustion of a stoichiometric mixture of n-
decane and air at constant pressure and temperature in a plug flow reactor. The
efficiency of the algorithm is studied by comparing the CPU time and errors with
the state-of-the-art software packages DASSL [1] and LSODE [9].

2 The algorithm

The new algorithm is motivated by the theory of Markov jump processes. It can be
interpreted as a deterministic version of such a process. More details on the general
relationship between Markov jump processes and the numerical treatment of ODEs
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can be found in reference [6]. The algorithm considered here can be regarded as
a simple representative of a whole class of numerical algorithms, which is closely
related to the Euler scheme but possesses the following important differences:

1. In each step, not all components are altered, but only those whose predicted
change exceeds a certain value.

2. The changes in the chosen components are constant and are directly connected
to the time step. In other words, the solution is approximated by a step
function with jumps of a predefined size, where the time interval between the
jumps is intimately related to their magnitude.

3. The time stepping is adaptive and is motivated by the mean waiting time of
the underlying jump process.

In the same way as the Euler algorithm is the starting point for many explicit
schemes that led, for example, to Runge-Kutta type schemes, the new algorithm can
be improved in several ways. However, in this paper we chose to study this generic
algorithm to demonstrate how successful even this simple explicit scheme can be,
when applied to problems that, so far, could only be solved with very sophisticated
software packages.

Our algorithm reads in algorithmic language:

1. Fix ATOL > 0, a stopping time tstop � 0, initialise the solution vector x = x0

and the change vector ∆x = 0 ∈ R
S.

2. Update the change vector

∆x �→ ∆x + ∆t × Q = ∆x +
ATOL∑ |Qi| × Q,

where Q is the right hand side of equation (1).

3. For each j ∈ {1, . . . , S}, if |∆xj| � ATOL then update

xj �→ xj + sign(∆xj) × ATOL

∆xj �→ ∆xj − sign(∆xj) × ATOL.

4. Update t �→ t + ∆t with ∆t = ATOL/
∑ |Qi|.

5. If t < tstop then go to step 2.

In this algorithm ATOL is the user defined a priori absolute error tolerance. The
change vector ∆x is updated in the second step and corresponds directly to the
Euler method. In step three the method starts to differ from the Euler approach.
Each component is checked whether it leaves a prescribed interval given by the
error tolerance. This concept implies that variations in the solution vector smaller
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than ATOL cannot be accounted for. In the current version of the algorithm the
same error tolerance is chosen for all components but if the components differ in
magnitude one can introduce an error tolerance for each component separately. For
the sake of simplicity we will not follow this route. All components that have been
updated require an appropriate adjustment of the change vector. This step ensures
the correct selection of components, which is motivated by the selection probability
of each component in the corresponding stochastic process [6]. In step four the time
is updated according to ∆t = ATOL/

∑ |Qi|, which is derived from the mean waiting
time of the corresponding Markov jump process. Consequently, the time step ∆t is
adjusted to comparatively small/large values whenever the magnitude of the right
hand side is large/small (i.e. the solution is changing rapidly/slowly).

It is clear that for “bookkeeping” purposes the (constant) factor of ATOL can be
dropped from the update of the changes ∆x. A FORTRAN 95 source code imple-
menting this algorithm could look like the following:

Deltax = 0d0 !clear change vector

DO WHILE (t<tstop) !time loop

CALL rhs(x,Q) !calculate right hand side

QSum = SUM(ABS(Q)) !calculate sum

Deltax = Deltax+Q/QSum !update change vector

!update quantities and changes if necessary

DO j = 1,S

IF (ABS(Deltax(j))>=1d0) THEN

x(j) = x(j)+SIGN(ATOL,Deltax(j))

Deltax(j) = Deltax(j)-SIGN(1d0,Deltax(j))

ENDIF

ENDDO

t = t+ATOL/QSum !update time

ENDDO

The subroutine rhs(x,Q) evaluates the right hand side Q of equation (1) at x.
Note that in the case QSum =

∑ |Qi| = 0 the algorithm has to terminate since the
solution is constant, which has to be intercepted appropriately. This algorithm is
not significantly longer than Euler’s method and very easy to implement. To the
best knowledge of the authors, such a deterministic algorithm using constant jumps
together with automatic time adaptivity has not been considered previously.

3 Numerical study

In this section we study the numerical properties of our algorithm and compare it
to several other numerical methods. The computations were carried out on an Intel
Pentium III PC at 866MHz running Microsoft Windows 2000. The executable was
created using a COMPAQ FORTRAN compiler.
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Table 1: Considered reaction mechanism
Name #Species #Reactions Reference Website

n-decane 1218 4825 [3] www.ensic.u-nancy.fr/DCPR/

Anglais/GCR/softwares.htm

Table 2: Initial conditions for the test system

Mechanism Species Mole fraction Temp. [K] Pressure [Pa]

n-decane nC10H22 0.01346 1500 1.01325 × 105

O2 0.20867

N2 0.77787

In order to choose an appropriate chemical system we have examined seven differ-
ent combustion systems with an increasing number of species and reactions. From
these preliminary studies we chose the stoichiometric combustion of n-decane. With
the increasing effort of scientists to model fuels consisting of higher hydrocarbons,
detailed chemical mechanisms of this size will become more common in future. The
chemical model is specified in Table 1. The initial conditions given in Table 2
complete the initial value problem. It comprises 1218 equations which are strongly
coupled. The elementary reactions introduce a spectrum of time scales which vary
over many orders of magnitude. Hence the system of ODEs is very stiff and an ideal
test case for our method. The simulation time tstop = 10−3 s is chosen to ensure
ignition has been captured and the chemical system is sufficiently close equilibrium.

In order to obtain an accurate numerical solution for our IVP, and to assess the
efficiency of the new method, various other numerical methods were tested. In all
cases we made use of the CHEMKIN libraries [5] to evaluate the chemical source
terms. When attempting to solve the IVP with standard explicit methods like Euler
or fourth order Runge-Kutta one encounters the following problems. Using constant
time steps, both methods are unable to produce any non-divergent approximation
unless the step size is chosen extremely small. For instance, at a step size of 10−12

Euler’s method is estimated to take almost one year to calculate up to tstop = 10−3 s.
Furthermore, conventional step size adaption techniques are found to reduce the step
size quickly to exceedingly small values (10−15 or smaller) even for mild accuracy
requirements. The method by Runge and Kutta exhibits only marginally better
performance for both adaptive and non-adaptive modes of operation. This kind of
behaviour is well-known for stiff systems and is pointed out in many texts on nu-
merical ODE solution (e.g. [4]). We also employed the code ROCK4 (see Table 3)
which is an explicit fourth order Runge-Kutta method with extended stability do-
main along the negative real axis designed for mildly stiff differential equations. We
were not able to obtain a solution to our problem with this code. Finally, we de-
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cided to use the software packages DASSL and LSODE. Both codes are frequently
used and widely accepted [2, 10] and can therefore be considered as state-of-the-art
numerical tools for combustion problems similar to the IVP described above. The
references as well as links to websites where these packages can be obtained are given
in Table 3. For large combustion systems such as the one considered in this paper,
Schwer et al. [10] enhanced the performance of DASSL using the software package
DAEPACK. This package includes automatic differentiation and determines spar-
sity patterns. Due to the third body reactions in the chemical mechanism it would
have been necessary to reformulate the IVP to achieve a good degree of sparsity.
Only then could a significant speed up have been obtained. Since their method only
applies to chemical systems whereas ours is intended for general use, we decided not
to take this route. We also decided not to follow the hybrid approach suggested
by Valorani and Goussis [11]. They use the concepts embodied in the computa-
tional singular perturbation (CSP) method. However they tested this method on
a relatively small combustion problem, the ignition of a methane/air mixture (49
species and 260 reactions). They found that their method was significantly slower
than LSODE. Since their method makes use of the eigenvalues of the Jacobian its
efficiency is expected to decrease for systems of the size we are interested in this
paper.

Table 3: Considered ODE solver packages

Name Reference Website

DASSL [1] www.engineering.ucsb.edu/%7Ecse/

LSODE [9] www.llnl.gov/CASC/download/download home.html

ROCK4 [4] www.unige.ch/math/folks/hairer/software.html

Table 4: Conversion table for the values of ATOL
Index DASSL Index LSODE Index new algorithm

a 1.00 ×10−11 A 1.00 ×10−11 1 5.00 ×10−11

b 5.00 ×10−11 B 5.00 ×10−11 2 1.00 ×10−10

c 2.00 ×10−10 C 2.00 ×10−10 3 2.00 ×10−10

d 1.00 ×10−10 D 1.00 ×10−10 4 5.00 ×10−10

e 5.00 ×10−10 E 5.00 ×10−10 5 1.00 ×10−9

f 1.00 ×10−8 F 1.00 ×10−9 6 2.00 ×10−9

g 1.00 ×10−9 G 2.00 ×10−9 7 2.50 ×10−9

h 1.00 ×10−6 H 5.00 ×10−9 8 3.33 ×10−9

The new algorithm possesses one free input parameter, namely the absolute error
tolerance ATOL. In order to compare the performance of the new algorithm the rela-
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tive tolerances RTOL in DASSL and LSODE are chosen to be zero for the numerical
experiments. We found that for the test system considered, both packages perform
best for RTOL = 0. Eight numerical experiments for each method with different
values of ATOL are presented here. Table 4 displays an index and the corresponding
error tolerance for each solver. Besides these experiments a high precision run was
performed using DASSL with RTOL = 10−9 and ATOL = 10−15. In the following,
the result of this run is referred to as the “exact” solution. As an estimate of the
global error we measure the absolute overall deviation of the approximation x̃ from
the exact solution x of the ODE after the calculation has been performed (i.e. a
posteriori). Specifically, we employ

ctot :=
1

M + 1

M∑

j=0

∣∣x(tj) − x̃(tj)
∣∣, (2)

where the time interval [0, tstop] is split into M subintervals of equal length via

tj := j × tstop

M
.

For the numerical study M = 29 = 512 has been used. Formula (2) can also be
used for any quantity f which is a function of the solution by substituting f for x.
In particular, since the mass density � is a function of all chemical species, it was
chosen for evaluating the global a posteriori error ctot. For each entry in Table 4, one
run was performed. For each of these runs the CPU time was recorded and the error
in the density was calculated. The results are displayed in Figure 1, where each
point is labelled with an index whose corresponding value of ATOL can be obtained
from Table 4. From Figure 1 it is clear that the numerical effort does not change
significantly for different degrees of precision in the case of LSODE and DASSL.
Both packages perform similarly well for this test case. In contrast to the other
explicit methods considered we were able to obtain a numerical solution with the
new algorithm. For moderate precision the new algorithm is found to be faster than
DASSL or LSODE. Figure 2(a) illustrates how the density calculated for various
values of ATOL given in Table 4 converges to the exact solution. For any smaller val-
ues of ATOL the result from the new algorithm coincides with the exact density and
cannot be distinguished by visual inspection. Figure 2(b) reveals that the depen-
dence of the number of steps on ATOL is given (for sufficiently small values of ATOL)
by the power law aATOLb (with a = (2.7±0.9)×10−4 and b = −0.870±0.015 in this
case). Due to the structure of the algorithm, the CPU-time is roughly proportional
to the number of steps, which can also be established by combining Figures 1 and
2(b). For the current IVP we used the following strategy for selecting a reasonable
value of ATOL. Starting with a large value of ATOL, say 10−5, we then decreased ATOL

in successive steps by an order of magnitude each. Monitoring the total number
of occurred events (or equivalently the CPU-time) the algorithm behaves at some
point according to the power law noticed above, which can be identified most easily
in a log-log plot like Figure 2(b). Once this convergence is established, the numeri-
cal experiments indicate that the produced approximation is “sufficiently close” to
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Figure 1: CPU-time of the considered algorithms as a function of the total error
ctot of the mass density � for the n-decane mechanism

the exact solution. In Figure 3(a) the time evolution of some major species is dis-
played. This result was obtained with the new algorithm choosing ATOL = 2× 10−10

(corresponding to point 3 in Figure 1). The profiles from this simulation coincide
with the exact solution. In Figure 3(b), methane and the OH radical are shown,
which have been chosen as examples of species whose concentration exhibits sharp
gradients and small absolute values. Even for these species very good agreement
between the exact solution and the approximation by new algorithm can be found,
for this particular choice of ATOL. This also suggests that the error in the density is
a good indicator for the error in the species concentrations. Figure 4 shows how
the automatic step size adaption works in practice (for point 3). Since the total
number of steps for this run is 74476 we decided to plot the step size not for every
single step. Instead, the solution interval [0, tstop] is (as above) split into M = 512
subintervals over each of which the maximum, average and minimum step size (hmax,
havg and hmin respectively) is calculated. For the maximum and minimum curves
only every twentieth data point is shown. In this diagram, one can recognise the
following characteristic features, which are desirable for any kind of step size adap-
tion. At t = 0 and during the ignition (at t ≈ 2.5 ×10−4 s) the step size becomes
relatively small, because at these points in time the concentrations of several species
are rapidly changing (the right hand side Q of equation (1) is large in magnitude).
Recall that the step size is inversely proportional to the sum of the absolute values
of the components of the right hand side. At later times the step size becomes com-
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Figure 2: Convergence properties of the new algorithm

paratively large as the system approaches equilibrium (i.e., small right hand side).
Note also the large fluctuations, which reflect the sensitivity of the right hand side
towards the quantities of interest.

Even though these numerical tests are not exhaustive, one is tempted to conclude
that it is the idea of treating each component of the solution separately which
explains the relatively high performance and suitability for stiff systems. From
Figure 1 it is also clear that this algorithm is only suitable for situations where
moderate precision of the solution is sought. However, there are many situations
where high precision is not required, in particular when a system of ODEs must
be solved in the context of operator splitting (see for example [7]), where it is
important that the start up costs of the ODE solver are low. This is the case for
the new algorithm due to its simple explicit structure. However, a great advantage
of the new algorithm is that the numerical effort scales linearly with the number of
equations. This means that our algorithm is an ideal candidate for very large and
very stiff systems of ordinary differential equations. Such systems occur frequently
in dynamic process simulation of large scale plants in the chemical industry and
electronic circuit design. Other examples can be found in the numerical treatment
of some partial differential equations.

4 Conclusion

We have introduced and tested a new explicit algorithm for large (and possibly stiff)
systems of ordinary differential equations. This algorithm is simple and can be easily
implemented on a computer. It has no start-up cost, has automatic time stepping,
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Figure 3: Time evolution of selected species of the n-decane mechanism

and scales linearly with the number of equations.

We assessed the performance of the new algorithm by studying the isothermal ig-
nition of a stoichiometric mixture of n-decane and air at constant pressure. The
corresponding model contains more than 1000 strongly coupled and very stiff differ-
ential equations. We considered several numerical methods as possible candidates for
assessing the new algorithm, and chose the software packages DASSL and LSODE
to gauge its performance.

Several numerical experiments were performed. We found that the new algorithm
converges and the number of steps has a power law dependence on the a priori error
tolerance ATOL. The global a posteriori error was measured by the difference in the
density between a high precision run, obtained from DASSL, and the new method.
We established that the CPU-time also obeys a power law with respect to ATOL

due to the proportionality of the number of steps to the CPU-time. For moderate
precision the new algorithm outperforms both DASSL and LSODE. In addition, the
automatic step adaption was shown to be reasonable. Small steps are taken during
ignition and larger steps towards chemical equilibrium.

Although the numerical experiments demonstrate that the new algorithm works in
practice, there are open questions beyond the scope of this paper. We have not es-
tablished a theoretical convergence result. Another issue that remains to be clarified
concerns the fact that this new explicit algorithm performs so well. Theoretical sta-
bility results are required which provide an explanation of the robustness of the new
algorithm found in the numerical experiments that were carried out in this paper.
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