
The Semantics of Chemical Markup Language (CML) for Computational Chemistry : CompChem

Preprint Cambridge Centre for Computational Chemical Engineering ISSN 1473 – 4273

The Semantics of Chemical Markup
Language (CML) for Computational

Chemistry : CompChem

Weerapong Phadungsukanan 1, Markus Kraft 1, Joe Townsend 2, Peter

Murray-Rust 2

released: May 22, 2012

1 Department of Chemical Engineering and
Biotechnology
University of Cambridge
New Museums Site
Pembroke Street
Cambridge, CB2 3RA
UK
E-mail: mk306@cam.ac.uk

2 Department of Chemistry
University of Cambridge
Lensfield Road
Cambridge, CB2 1EW
UK

Preprint No. 117

Keywords: CML, CompChem, RDF, computational chemistry, thermochemistry, control vocab-
ulary, rule-based validation

mailto:mk306@cam.ac.uk

Edited by

CoMo
GROUP

Computational Modelling Group
Department of Chemical Engineering and Biotechnology
University of Cambridge
New Museums Site
Pembroke Street
Cambridge CB2 3RA
United Kingdom

Fax: + 44 (0)1223 334796
E-Mail: c4e@cam.ac.uk
World Wide Web: http://como.cheng.cam.ac.uk/

mailto:c4e@cam.ac.uk
http://como.cheng.cam.ac.uk/

Abstract

This paper introduces a subdomain chemistry format for storing computa-
tional chemistry data called CompChem. It has been developed based on the
design, concepts and methodologies of Chemical Markup Language (CML)
by adding computational chemistry semantics on top of the CML Schema.
The format allows a wide range of ab initio quantum chemistry calculations
of individual molecules to be stored. These calculations include, for exam-
ple, single point energy calculation, molecular geometry optimization, and
vibrational frequency analysis. The paper also describes the supporting in-
frastructure, such as processing software, dictionaries, validation tools and
database repositories. In addition, some of the challenges and difficulties in
developing common computational chemistry dictionaries are discussed. The
uses of CompChem are illustrated by two practical applications.

1

Contents

1 Introduction 3

2 CML Overview 4

3 CompChem Design 5

4 CompChem 8

4.1 Using Dictionary . 8

4.2 CompChem Convention . 11

4.3 Semantics of Properties and Parameters 15

4.3.1 Parameter and Property Containers 15

4.3.2 Data Containers . 18

5 Example Use Cases 20

5.1 MolHub . 20

5.2 Example A: Indexing computational chemistry data. 22

5.3 Example B: Titanium Species’ Thermochemistries. 22

6 Conclusions 23

7 Acknowledgments 25

References 26

2

1 Introduction

Computational Quantum Chemistry is a very popular area of research today and will
be even more popular in the future. This is due to several emerging key technologies.
Developments in computational quantum theory, better numerical methods, as well
as parallel and distributed computing, have significantly reduced the computational
time (from months to days or hours). With software packages such as Gaussian
[15], GAMESS (US) [32], and GAMESS-UK [17] properties of large or short-lived
molecules can be calculated which may be difficult or impossible to obtain exper-
imentally. Increasingly, this is done with little human intervention, as automated
chemical model generators are becoming more and more popular [35]. As a conse-
quence the amount of data available will very soon become too vast to be analyzed
manually. Regardless of how advanced the technology is, these calculations will al-
ways require resources which may be wasted if somebody else has completed the
same calculation already. For this reason efficient storage and retrieval of computa-
tional chemistry data is an important issue. To address this issue the development
of an easily accessible and usable infrastructure is necessary.

At present, most computational results are output as “log files” which are designed
to record information as human-readable plain text. The log files contain not only
information about the calculated properties, but also metadata, such as computing
environments, errors, warnings, etc. Many crucial pieces of information, such as
units, computational methods or algorithms, are usually omitted from the outputs
because they are often considered to be “obvious” [40] or are provided in separate
documentation. Moreover, the structure of the log files depends on the software
used, which creates difficulties in retrieving textual information among the different
formats. This impedes the automation of the data analysis which is essential in the
study of a large chemical system.

A typical solution to the problem is to extract the information from the log files
(known as “parsing”) and cast them into a format that is more efficient for retrieval
and processing. The eXtensible Markup Language [11] (XML) is usually selected
for storing data due to its universality and extensibility for both simple and com-
plex data. Furthermore, XML provides the means for checking conformance of the
structure and data ensuring that the XML instances meet the requirements of the
application in question. The fact that XML has become an industrial standard for
data storage and that most modern software is built to support XML is the strongest
testament to the usefulness of XML.

For chemistry applications, the Chemical Markup Language (CML) [16, 23–25] has
been developed based on the XML standard in order to provide the semantics for
chemical data. CML allows the representation of complex chemical objects by using
the hierarchical tree structure of XML. In addition, CML is accompanied by a num-
ber of methodologies [26, 27, 38] and infrastructures, such as CMLXOM [2], Jumbo6
[5], Jumbo-Converter [3] and CMLValidator [13], which support the development of
a more general computational chemistry format. The following features make CML
specifically suited for our purpose:

3

1. CML contains a set of hundreds of chemical name tags covering all aspects
of chemistry and so allows one to compose a suitable representation for any
chemical data;

2. CML is widely supported by chemistry software, such as, OpenBabel [29],
PyBel [28], Jmol [4], Avogadro [1], making it easy to integrate a subdomain
format of CML into most of the existing systems which use these libraries with
little modification;

3. CML has been developed over 15 years so the terminology, concepts and se-
mantics have become highly stable, complete and well understood with rela-
tively small changes in its schema and, as a result, it has been accepted by the
chemistry community.

The purpose of this paper is to use CML to develop a standard called CompChem,
which is suitable to represent computational chemistry information, including a set of
supporting open-source tools. Furthermore, we illustrate the use of CompChem for
managing computational chemistry data and for calculating thermodynamic prop-
erties.

The paper is structured as follows. We briefly review the important CML concepts
used throughout this paper in section 2. Then, we describe the requirements for
the design of CompChem in section 3. In section 4, we focus on the semantics and
the detailed specification of CompChem. Finally, in section 5, we report a recent
application with examples.

2 CML Overview

In this section, we briefly outline the key CML concepts and terminologies, which
are adopted by CompChem, for readers who are not familiar with CML. Detailed
discussions have already been published in Murray-Rust et al. [27] and Townsend
et al. [38]. The latest information of the ongoing developments are also publicly
available online at www.xml-cml.org. The development of CompChem is based on
the following components and concepts:

• XML Schema [36] is an XML-based schema language which specifies the
constraints on the structure of an XML document. It is also written in XML
and referred to as XML Schema Definition (XSD). The term “XML Schema”
(with a capital “S”) should not be confused with XML schema. The latter
is a term describing schema languages in general. XML Schema is one of the
most commonly used schema languages today. It was published as a W3C
recommendation in 2001 [39] to replace Document Type Definition (DTD)
and provide additional features for defining the constraints and validating the
contents of XML document.

• CML Schema [22, 25] is an XML Schema containing hundreds of chemical
definitions (XML tags and attributes). It covers most aspects of chemistry,

4

http://www.xml-cml.org/

e.g., CMLReact [18] for chemical reactions, CMLSpec [20] for spectral data,
CML for crystallography [14] and CML for polymers (PML) [8]. With the CML
Schema, one can determine if a CML document conforms to the specification
or not. For example, the schema will tell whether a CML document contains
a misspelled element name or an undefined attribute. This ensures that the
applications will not generate any errors due to using a “bad” CML document
as their input. In the latest version of CML Schema (version 3), the content
model restrictions have been lifted in order to make it more flexible for creating
any type of chemical documents.

• CML Convention is a set of rules and constraints on the content model of a
CML document. It is a subset of the CML Schema with some additional rules
for a specific chemistry domain, some of which cannot be defined using XSD.
When a convention is specified on a CML element (using the @convention

attribute), the structure of the element must conform to the rules defined
by the convention. The convention is represented by a short-hand notation,
known as a qualify name (QName [12]), which represents a globally unique
Uniform Resource Locator (URL).

• CML Dictionary is a collection of “controlled vocabularies” which are used
to add semantics to generic CML elements, especially for <parameter> and
<property>. There are several types of CML dictionaries, for example, prop-
erty and parameter dictionaries (specified using @dictRef), unit dictionaries
(specified using @unit) and unit type dictionaries (specified using @unitType).
The existing dictionaries can be found at http://www.xml-cml.org/dictionary/.

• Validation is the most important step to verify whether a CML document
conforms to the structure required by your application. The CML approach to
validation [38] consists of several steps, e.g., CML Schema, CML convention,
CML dictionary validations, and so on. These are usually performed sequen-
tially (as shown in Figure 1), however, they are completely independent. A
sophisticated online validator is available at http://validator.xml-cml.org/.

3 CompChem Design

The development of CompChem started back in the summer of 2009 with the initial
goal of archiving our published computational quantum chemistry results [30, 33,
34, 37, 41], which were calculated using the convenient software Gaussian 03, in
a machine readable format and stored in a queriable database for automating the
studies of chemical reactions in a combustion system. It was a collaborative effort
between chemical engineers and cheminformatic scientists to explore the power of
Semantic Web technologies for storing scientific data. The format was developed
purely using the existing CML without making any modification to its schema. The
number of elements we use in CompChem, see sections 4.2 and 4.3, is currently
relatively small compared to the whole set of CML elements available, but it is

5

http://www.xml-cml.org/dictionary/
http://validator.xml-cml.org/

XML Schema
Processor

XSLT
Processor

Input CompChem
document

CML
Schema

CompChem
Convention

XSLT

Validated
CompChem
document

XML Error
XML

Report

Figure 1: A linear schematic diagram of validation process for CompChem.

sufficient for most of the data that needs to be stored in the current work. It is very
likely that other CML elements will be included to support other functionalities in
later years as CompChem evolves.

Like other XML standards, the CompChem convention can only work well if it is
widely accepted and, until now, there has not been one for computational chemistry,
due to the varied nature of studies. This is a fact that we have to accept and, there-
fore, we only focus on formalizing the data calculated from the quantum chemistry
software in this work.

The design of the CompChem convention shares and inherits the common goals
of CML, Polymer Markup Language (PML) and other XML standards, which are
quoted from XML 1.0 W3C Recommendation [11]. (Readers are advised to read
this documentation for further details) These are as follows:

1. CompChem shall be straightforwardly usable over the Internet;

2. CompChem shall support a wide variety of applications;

3. CompChem shall be compatible with Standard Generalized Markup Language
(SGML);

4. It shall be easy to write programs which process CompChem documents;

5. The number of optional features in CompChem is to be kept to the absolute
minimum, ideally zero;

6. CompChem documents should be human-legible and reasonably clear;

6

7. The CompChem design should be prepared quickly;

8. The design of CompChem shall be formal and concise;

9. CompChem documents shall be easy to create;

10. Terseness in CompChem markup is of minimal importance.

Apart from these general goals, there are more specific goals which distinguish Com-
pChem from CML and other XML standards:

1. CompChem should be based on CML and reuse its components
where appropriate. This is a typical goal of all subdomain formats of CML.
Reusing CML and its components is the fundamental key to improve the qual-
ity and consistency of the format and reduce development cost and effort. In
addition, any future improvement made into CML and its technologies will also
be immediately applied to CompChem. In the development of CompChem,
we introduced no new components into the CML Schema. Instead, the new
concepts are defined using CML dictionaries and are applied to generic CML
containers, see Section 4.1.

2. CompChem should capture the semantics of most computational
chemistry calculations. This is the main goal of our work. It is to reduce
the flexibility in CML Schema and introduce a stricter structure into the doc-
uments so that software and applications know exactly how to process the
information. The semantics of CompChem is modelled based on the typical
nature of computational simulations or calculations, i.e., contains model input
and output steps, see Section 4.2.

3. CompChem shall support any chemical data. CML provides a rich set of
chemical data types in addition to standard XML data types. It is also possible
to build more complex chemical objects from the abstract CML data types and
components, thus, CompChem has gained this advantages from reusing CML.

4. CompChem should be able to be validated using standard processing
tools. This is an important consideration to make the CompChem platform in-
dependent. The development of CompChem involves using both CML compo-
nents and CML technologies. The CML components, i.e., CML elements and
attributes, are validated using CML Schema and any standard XML Schema
processor. The XML stylesheet, XPath [9] and XSLT [19] are chosen for im-
plementing and validating the CML conventions. Therefore, one should be
able to validate the CompChem convention by using any web browser capable
of rendering XSLT.

5. CompChem should represent both computational input and out-
put. CompChem is designed to be used as both input and output for the
calculations. The computation input contains critical information, such as
calculation model, basis set, level of theory, job type, etc., that defines the

7

calculation itself. This information is required for the search functionality of
the digital repository and the calculation output is usually what is returned
from the search. Being able to store input and output are required features of
CompChem.

6. CompChem should interoperate with other XML or CML models
(conventions). This is one of the common goals that is shared by all CML
works. Interoperability is a requirement for CompChem to be used in conjunc-
tion with other existing XML-based formats such as Dublin Core c© Metadata
(DCMI) and Object Reuse and Exchange (OAI-ORE) standards. This makes
CompChem not only reuse the CML components but also other well estab-
lished formats.

7. CompChem shall allow users to define and insert new concepts. As
discussed earlier, new concepts are added into CompChem through the use of
a dictionary mechanism. This is not only applied to the basic values, such as
<property>, <parameter>, @unit and @unitType, but also the complex model
objects. It is feasible to insert an entire new convention into CompChem,
although, it may not be understood by all standard chemistry tools.

8. CompChem Convention rules must be clear and well documented.
Although the convention rules are implemented into the CompChem conven-
tion validator using stylesheets, it is important that there must also be human
readable documentation. Clear documentation benefits both users and de-
velopers in the long term. We will adhere to this in all of our development.
In practice, we make the decisions on what are the rules that should be in
CompChem and then write documentation from these rules. After that, we
implement the rules into the convention validator. This discipline ensures that
there is always documentation for every convention we develop.

4 CompChem

4.1 Using Dictionary

Because dictionaries play a central role in defining the semantics within a Com-
pChem document, it is essential to fully understand the concepts and how the dic-
tionary referencing mechanism works. Both are explained in detail in this section.

Concepts are the building blocks of scientific knowledge. In natural language, similar
concepts can be expressed using several words or synonyms which are the common
causes of ambiguity, confusion and error when the information is being processed.
In software development, several similar concepts or synonyms can be grouped and
represented by a carefully pre-determined term or vocabulary, commonly known as
controlled vocabulary. Using controlled vocabulary, one can impose an order and
reduce ambiguity by allowing the same concepts to be labelled using a single unique
term.

8

In XML, the tags and attributes are predetermined terms, in other words, an XML
schema is a set of controlled vocabularies. CML is no exception. The CML elements
and attributes are predefined to cover almost all general aspects of chemistry and
computational chemistry. However, it is impossible and futile to predefine every pos-
sible chemistry concept into CML. For example, concepts like boiling point, melting
point, basis set, entropy, enthalpy, methodology, algorithm, etc., are not included
in the CML Schema. Instead, CML uses a dictionary and a referencing mechanism
to specify a new concept on the generic CML containers, such as <parameter>,
<property>, <scalar>, <matrix>, etc., which can be used to hold the values of any
types.

A new concept can be added as an entry into a CML dictionary without requiring
the CML Schema to be modified. The dictionary referencing mechanism consists of
3 steps; defining the new concept, creating a reference to the defined concept
and applying the reference to the CML generic container.

• Defining a new concept. In Figure 2 (1), we show a snippet of a CML
dictionary which is created according to the CML dictionary convention. A
dictionary can contain multiple child elements of entries allowing the vocab-
ulary in the same category to be grouped as one set. The figure only briefly
illustrates how a dictionary and its vocabulary should be defined so readers
are strongly advised to read the latest detailed specifications of the dictionary
convention on www.xml-cml.org for more information.

• Creating a reference to the defined concept. In CML, a qualify name
(QName) [12] is used to identify an entry in the dictionary. A QName contains
a namespace URI [12], a local part and a prefix. The prefix is only used as a
placeholder for the associated namespace URI and is declared in a namespace
declaration. Therefore, in order to be able to identify the dictionary, each
dictionary must have a unique identifier and it is specified using @namespace

on <dictionary>. This is not to be confused with the XML namespace which
is denoted by @xmlns. Specifying @namespace on <dictionary> does not
change the actual XML namespace of <dictionary>; it remains in the CML
namespace (http://www.xml-cml.org/schema).

Each entry must have a unique @id (unique within the dictionary) and this
is used as the local part of the QName. The combination of the dictionary
@namespace and entry @id generates a globally unique reference for the de-
fined concept. In Figure 2 (2), the prefix "cc" is associated to the same URI
(http://www.xml-cml.org/dictionary/compchem/) that is declared for the
CompChem-core dictionary’s @namespace. Using the entry id "job", a QName
"cc:job" is constructed as a reference in this step.

• Applying the reference. The reference or QName can be applied to a
container using @dictRef, shown in Figure 2 (3).

This referencing mechanism is not only applied to @dictRef but also @units, @unitType
and other attributes. Although the mechanisms are similar, the unit and unit

9

http://www.xml-cml.org/
http://www.xml-cml.org/schema
http://www.xml-cml.org/dictionary/compchem/

<dictionary
xmlns="http://www.xml-cml.org/schema"
convention="convention:dictionary"
title="CompChem concepts"
dictionaryPrefix="compchem"
namespace="http://www.xml-cml.org/dictionary/compchem/">

<entry id="job" term="job">
<definition>

 A computational job or task.
</definition>
<description>

 ...
</description>

</entry>
 .
 .
 .
</dictionary>

<module dictRef="cc:job"
xmlns:cc="http://www.xml-cml.org/dictionary/compchem/">

 ...
</module>

A declared CompChem namespace pre�x = “cc”

De�ne a new concenpt1

entry id = “job”

Create QName - “cc:job”2

Apply the QName using @dictRef3

CompChem Core Dictionary

CompChem Document

Figure 2: Diagram illustrating the dictionary referencing mechanism using
@dictRef in 3 steps. A snippet of the dictionary and its entry are shown
in the top (orange) box and a snippet of CompChem job module is show
in the bottom (blue) box.

10

type dictionaries are not defined using <dictionary> but rather <unitList> and
<unitTypeList> respectively. This is because the unit and unit type are common
concepts for scientific data so it has been defined in the CML Schema.

4.2 CompChem Convention

According to our design criteria that CompChem convention should capture the
typical underlying processes of quantum calculations and their relationships, the
proposed architecture described here is broad and may be applied to any computa-
tional modeling in general. The core concepts of CompChem contain the following
components:

1. Job list (jobList) In computational quantum chemistry, calculations are
often comprised of a series of subtasks, e.g., coarse optimization → fine opti-
mization → NMR Spectrum Analysis. Each job performs a different type of
calculation and passes the results to the next calculation job; this is because
most quantum chemistry software packages are designed to be modularized and
only to perform a single task at a time. The jobList concept is introduced to
capture this series of successive subtasks and links the information from one
subtask to the next subtask. It behaves like a wrapper for job modules.

2. Job (job) The job concept represents a computational job or a computer
simulation task, e.g., geometry optimization and frequency analysis jobs, per-
formed by quantum chemistry software. The job concept is the smallest mod-
ule that fully describes an overall picture of a computational modeling unit. It
consists of model parameters (initialization) and model optimizations or
calculations (calculation), model results (finalization) and computing
environments (environment). These four components are fundamental to ev-
ery simulation. However, it is not required that all four components be present
in every job. Only model parameters are mandatory. A module that contains
only model parameters may be used as an abstract quantum chemistry input.

3. Model initialization (initialization) The model initialization concept
represents the model parameters and inputs for a computational job. The
model parameters are one of the most important elements that exist in every
modeling study. Therefore, it is required in the CompChem convention.

4. Model calculation (calculation) A model calculation concept represents
the computation, the optimization or the iteration processes for the computa-
tional job specified by the initialization. The calculation process may or may
not be of interest to some scientists; therefore, it is an optional information in
CompChem.

5. Model finalization (finalization) A model finalization concept represents
the model output or result of a computational job. In some cases, a Com-
pChem module may only represent the model inputs and does not contain any
calculations, therefore, it is optional in CompChem.

11

6. Computing environment (environment) The computing environment con-
cept refers to the configuration settings with respect to the hardware platform,
software application and operating system. The environment also includes
metadata such as machine id, username, starting and finishing date time,
tools, compilers, and Internet Protocol address (IP address).

7. User defined concept CompChem allows users to define their own concepts
if the recommended concepts above do not fit into their requirements. A user
defined concept in CompChem is represented by a module element with a
@dictRef attribute whose value points to an entry in a dictionary that defines
the concept. Users are free to design any structure for a user defined module.
However, it is recommended to use existing structures or a structure that
has a schema for validation. Information in a user defined module cannot be
guaranteed to be understandable by all processing software tools.

Each concept, defined above, is associated with the core CompChem dictionary
(available at http://www.xml-cml.org/dictionary/compchem/), whose @dictRefs
and rules are given in Table 1. The rules in this table are coded into a stylesheet
which can be used to validate a CompChem document. It is anticipated that the
rules need to be modified or extended when more complex calculations, such as tran-
sition state searches or molecular dynamic simulations are included in CompChem.

Table 1: Rules of CompChem.

dictRef. rules

cc:jobList - A jobList module element MUST have an id attribute
the value of which MUST be unique within the module
specifying the compchem convention.

- A jobList module element MUST contain at least one job
module child element.

- A jobList module element SHOULD have a title attribute
the value of which MUST be a non-empty string specifying
a human-readable title for the module.

- A jobList module element MAY contain more than one
child element in any namespace.

cc:job - A job module element MUST contain exactly one initial-
ization module child element.

- A job module element MAY contain zero or more calcu-
lation module child elements.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to

be interpreted as described in RFC 2119 [10].

12

http://www.xml-cml.org/dictionary/compchem/

Table 1: Rules of CompChem. (cont.).

dictRef. rules

- A job module element MAY contain no more than one
finalization module child element.

- A job module element MAY contain no more than one
environment module element.

- The order of the calculation module elements in a job
module MUST represent the order of the calculation steps
but there is no restriction on the order of other child ele-
ment types.

- If a calculation module element is present, a finalization
module element MUST also be present as a child of a job
module element.

- A job module element SHOULD have a title attribute,
the value of which MUST be a non-empty string specifying
a human-readable title for the module.

- A job module element MAY also contain other child ele-
ments in any namespace.

cc:initialization - An initialization module element MUST NOT contain
more than one <molecule> child element. The <molecule>
MUST specify a convention using the convention attribute
and the convention SHOULD be one of the RECOM-
MENDED molecular conventions.

- An initialization module element MUST NOT contain
more than one <parameterList> element.

- An initialization module element MAY contain any num-
ber of user defined module element.

- An initialization module element MUST contain at least
one child of molecule, <parameterList> or user defined
module elements.

- An initialization module element MAY contain more than
one child element in any namespace but MUST NOT con-
tain a property child element or a <propertyList> child
element.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to

be interpreted as described in RFC 2119 [10].

13

Table 1: Rules of CompChem. (cont.).

dictRef. rules

cc:calculation - A calculation module element MUST NOT contain more
than one molecule child element. The molecule MUST
specify a convention using the convention attribute and
the convention SHOULD be one of the RECOMMENDED
molecular conventions.

- A calculation module element MUST NOT contain more
than one <parameterList> element.

- A calculation module element MUST NOT contain more
than one <propertyList> element.

- A calculation module element MAY contain any number
of user defined module elements.

- A calculation module element MUST contain at least one
child of molecule, <parameterList>, <propertyList> or
user defined module elements.

- A calculation module element MAY contain more than
one child element in any namespace.

cc:finalization - A finalization module element MUST NOT contain more
than one molecule child element. The molecule MUST
specify a convention using the convention attribute and
the convention SHOULD be one of the RECOMMENDED
molecular conventions.

- A finalization module element MUST NOT contain more
than one <propertyList> element.

- A finalization module element MAY contain any number
of user defined module elements.

- A finalization module element MUST contain at least
one molecule child, <propertyList> child or user defined
module element.

- A finalization module element MAY contain more than
one child element in any namespace but MUST NOT con-
tain a parameter child element or a <parameterList> child
element.

cc:environment - An environment module element MUST NOT contain
more than one <propertyList> element.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to

be interpreted as described in RFC 2119 [10].

14

Table 1: Rules of CompChem. (cont.).

dictRef. rules

- Any environment property element MUST be a child of
a <propertyList> element.

- An environment module element MAY contain more than
one child element in any namespace including any number
of user defined module elements. However, CompChem can
only understand a particular set of concepts.

- An environment module MUST contain at least one child
of <parameterList> or userDefinedModule elements.

- An environment module element MAY contain more than
one child element in any namespace but MUST NOT con-
tain a parameter child element or a <parameterList> child
element.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to

be interpreted as described in RFC 2119 [10].

Figure 3 shows a snippet of a CompChem document with the key features labeled
accordingly.

4.3 Semantics of Properties and Parameters

There is a core set of CML which is required for storing the actual contents and data.
Since CML Schema are content model free, it is necessary to precisely define how
the elements should be used. In this section, we list and describe the CML elements
which are often found to be useful in CompChem documents. The rules given here
for these components are meant to serve only as a guideline for using the common
CML components, such as <property>, <parameter>, <scalar>, <array>, and
<matrix>. If the given rules are not applicable, users are allowed to define their own
structures and annotate it with their own dictionary reference using the @dictRef

attribute. However, the new structures should be clearly specified and documented
in the user dictionary so that anyone is able to write a code that can process the
dictionary.

4.3.1 Parameter and Property Containers

A container is a general notion for an XML element that contains data. The Com-
pChem element parameter is also a container. The exact definition of parameter
depends on the context where it is used. In the context of CompChem, parameters

15

1 2

3
4

5
6

7

8

9

10

11

elementType=
elementType=

<module convention="convention:compchem" xmlns:convention="http://www.xml-cml.org/convention/"
xmlns="http://www.xml-cml.org/schema" xmlns:g="http://www.xml-cml.org/dictionary/compchem/gaussian/"
xmlns:iupac="http://www.iupac.org/" xmlns:cc="http://www.xml-cml.org/dictionary/compchem/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:cml="http://www.xml-cml.org/dictionary/cml/"
xmlns:si="http://www.xml-cml.org/unit/si/" xmlns:nonSi="http://www.xml-cml.org/unit/nonSi/">

<module dictRef="cc:jobList">
<module dictRef="cc:job" title="Geometry optimization with Gaussian 03">

<module dictRef="cc:initialization">
<molecule id="m-init" formalCharge="0" spinMultiplicity="1" convention="convention:molecular">

<atomArray>
<atom id="a1" elementType="O" x3="0.0" y3="0.0" z3="-0.39016"/>
<atom id="a2" "H" x3="0.76357" y3="0.0" z3="0.19508"/>
<atom id="a3" "H" x3="-0.76357" y3="0.0" z3="0.19508"/>

</atomArray>
</molecule>
<parameterList>

<parameter dictRef="cc:method">
<scalar>B97-1</scalar>

</parameter>
<parameter dictRef="cc:basis">

<scalar>6-311+G(d,p)</scalar>
</parameter>
<parameter dictRef="cc:goal">

<scalar>Geometry Optimization</scalar>
</parameter>
<parameter dictRef="g:goal">

<scalar>Opt</scalar>
</parameter>
<parameter dictRef="g:goal">

<scalar>Freq</scalar>
</parameter>
<parameter dictRef="g:opt_max_cycles">

<scalar dataType="xsd:integer" units="si:none">200</scalar>
</parameter>

</parameterList>
</module>
<module dictRef="cc:finalization">

<molecule id="m-final" formalCharge="0" spinMultiplicity="1" convention="convention:molecular">
<!-- omiited molecule -->

</molecule>
<propertyList>

<property dictRef="cc:num_rotational_symmetry">
<scalar dataType="xsd:integer" units="si:none">2</scalar>

</property>
<property dictRef="cc:rotational_constants">

<array dataType="xsd:double" size="3" units="nonSi:GHz">820.6456 433.0485 283.4658</array>
</property>
<property dictRef="cc:scf_energy">

<scalar dataType="xsd:double" units="nonSi:hartree">-76.4311688264</scalar>
</property>

</propertyList>
<identifier convention="iupac:inchi" value="InChI=1S/H2O/h1H2" />

</module>
</module>

</module>
</module>

Figure 3: The structure of CML for storing computational chemistry output:
(1) CompChem convention declaration, (2) CML convention namespace,
(3) a jobList module, (4) a job module, (5) an initialization module,
(6) Molecular convention declaration, (7) a basis set parameter speci-
fied by cc:basis dictionary reference, (8) a Gaussian specific parameter
declared in Gaussian dictionary, (9) a finalization module, (10) si:none
for dimensionless units, (11) CML identifier.

16

are a set of model conditions which can be numerical quantities, options, constraints,
text or any chemical objects, for example, a basis set (e.g., 6-311+G(d,p)), level of
theory, convergence criteria, calculation type (e.g., geometry optimization, frequency
analysis, NMR). Some values can be enumerated. For example, Gaussian 03/09 [15]
may need to know whether it should use symmetry in the wave function or not.
This option can be set to only either “NoSymm” or “Symm” according to the on-
line manual for Gaussian software [15] and this can be pre-enumerated for use in a
CompChem document with values “On” or “Off”.

In CompChem, a value cannot be added directly as a text child of a parameter. It
must be wrapped by a CML primitive data container, see Section 4.3.2, which is
usually one of <scalar>, <array> or <matrix>. For plain text, a scalar should be
used. This allows the computer software to understand exactly which variable type
(i.e., variable type in programming language) is suitable for the value of a given
parameter. In many cases, a primitive container is not sufficient and it requires a
complex object representation to hold the data. Figure 4 shows examples of both
primitive and complex chemistry objects. In Figure 4(b), we illustrate a complex
object using <table>.

<parameter dictRef="cc:basis">
<scalar>6-311+G(d,p)</scalar>

</parameter>

(a) simple basis set object of a parameter.

<property dictRef="cc:vibrations">
<table>

<array dataType="xsd:double" size="3" units="nonSi:amu" dictRef="cc:reduced_masses">
 1.0826 1.0452 1.0821

</array>
<array dataType="xsd:double" size="3" units="nonSi:mDyne.A^-1" dictRef=
"cc:force_consts">

 1.6569 9.1308 9.9834
</array>
<array dataType="xsd:double" size="3" units="nonSi:GHz" dictRef="cc:frequencies">

 1611.7139 3850.6027 3957.1237
</array>

</table>
</property>

(b) complex vibrational object of a property.

Figure 4: Simple (a) and complex (b) objects in CML.

Similar to parameter, a property is also another CML generic container which is
used to wrap any primitive or complex object data type. In the context of Com-
pChem, properties are derived quantities from the output of the model calculation,
for example, a set of vibrational frequencies of a molecule, electronic energy, derived
thermodynamical properties from statistical mechanics calculations. It is often found
that properties are numerical quantities rather than enumerated values or text so

17

primitive containers such as <scalar>, <array> and <matrix>, are usually sufficient
for storage. For complex objects, they are supported in exactly the same ways as
for the parameters.

CompChem also uses @dictRef to provide the semantics for parameter and property.
For example, in Figure 3, a parameter has a @dictRef value of cc:basis which
points to a cc:basis entry in a CompChem dictionary. Thus, this parameter can
be interpreted using the definition of the associated dictionary entry, i.e., cc:basis.

However, there is one exception for molecule elements. Although, an initial molecu-
lar geometry can be considered as a model parameter or a model input, CompChem
does not categorize it as parameter or property. This is to avoid creating unnecessary
concepts and to distinguish the molecule, which is fundamental to every computa-
tional chemistry calculation, from other parameters and properties. The semantics
of a molecule is considered to be implicit and is determined by its location in the
CompChem document. For example, if a molecule is a child of initialization or
calculation module, it is considered as an input, i.e., parameter, of that model or
calculation. If it is found as a child of finalization module, it is considered to be an
output, i.e., property, of the model.

4.3.2 Data Containers

CML provides elements to hold many different types of mathematical, scientific and
computational values, e.g., scalar, vector, matrix, array, etc., which we will refer to
as “data containers”. The rules of the key containers are given in Table 2. We will
briefly describe the more commonly used data containers.

• scalar is used to hold scalar data, which is a single value of type integer, real,
boolean, string, date, etc.

• array is used to hold a one dimensional array data structure of primitive data
type such as integer, real or boolean but it is not suitable for all data types
such as string and date, for example.

• matrix is used to hold a two-dimensional rectangular matrix data structure
of primitive data type such as integer and real, and it is not suitable for all
data types such as string, date or boolean, for example.

• zMatrix In many quantum chemistry calculations, some atomic coordinates
are represented using a z-Matrix coordinate system. CompChem adopts the
<zMatrix> from the CML schema and uses it as container for <length>,
<angle> and <torsion>.

18

Table 2: Rules of Data Containers.

CML Element rules

<scalar> - A <scalar> MUST conform to the CML Schema.

- The data type of <scalar> is REQUIRED and MUST
be specified using a @dataType attribute. The value of
@dataType attribute MUST be a primitive data type,
e.g., xsd:integer, xsd:double, xsd:real, xsd:float,
xsd:boolean, etc.

- A <scalar> MUST have units unless the @dataType is
an xsd:string. (si:none for dimensionless units).

- A <scalar> MUST NOT have unit and unit type if the
@dataType is an xsd:string.

<array> - An <array> MUST conform to the CML Schema.

- The data type of <array> is REQUIRED and MUST
be specified using the @dataType attribute. The value
of @dataType attribute MUST be a primitive data type,
e.g., xsd:integer, xsd:double, xsd:real, xsd:float,
xsd:boolean, etc., but it MUST not be an xsd:string.

- An <array> MUST have units even if they are dimen-
sionless (si:none for dimensionless units).

- The size of <array> is OPTIONAL and is specified using
the @size attribute with the minimum value of 1.

- The @delimiter attribute is OPTIONAL. If not set, the
array entries are separated by whitespace.

<matrix> - A <matrix> MUST conform to the CML Schema.

- The data type of <matrix> is REQUIRED and MUST
be specified using the @dataType attribute. The value
of @dataType attribute MUST be a primitive data type,
e.g., xsd:integer, xsd:double, xsd:real, xsd:float,
xsd:boolean, etc., but it MUST not be an xsd:string.

- A <matrix> MUST have units even if it is dimensionless
(si:none for dimensionless units).

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to

be interpreted as described in RFC 2119 [10].

19

Table 2: Rules of Data Containers. (cont.)

CML Element rules

- The dimension of a <matrix> is REQUIRED and MUST
be specified using @rows and @columns attributes with the
minimum values of 1.

- The @delimiter attribute is OPTIONAL. If not set, the
matrix entries are separated by whitespace.

<zMatrix> - A <zMatrix> MUST conform to the schema of CML
matrix.

- A <zMatrix> SHOULD be a child of a <molecule> in
molecular convention.

- A <zMatrix> MAY contain any number of <length>,
<angle> and <torsion>, which MUST also conform to the
CML Schema.

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to

be interpreted as described in RFC 2119 [10].

5 Example Use Cases

5.1 MolHub

MolHub is an online infrastructure for chemical data that is used in combustion ki-
netic studies (http://como.cheng.cam.ac.uk/molhub/), a web browser snapshot
is shown in Figure 5. Its architecture is highly flexible allowing add-on modules, i.e.,
plugins, to be added independently. It was originally named “CoMo CompChem”
(CMCC), which was published as part of Shirley et al. [34] for determining thermo-
chemistries and studying the equilibrium of new titanium gas phase species which
are involved in an industrial rutile chlorinator.

In MolHub the operating data resources are mainly in XML format (CompChem
for computational chemistry data) but it also offers alternative access to the raw
data (in legacy format), in the case that the XML formats do not contain the
required information. The resources are uniquely identified by URLs and linked
semantically by the Resource Description Framework (RDF) [21] allowing the data
to be accessed and queried using standard HTTP protocol. The design of URLs
and services are based on the REpresentational State Transfer (REST) principles
in which the URL represents the location of the resource and the HTTP method
represents the operation that can be applied to the resources.

20

http://como.cheng.cam.ac.uk/molhub/

Figure 5: MolHub - data repository for computational quantum chemistry.

21

The MolHub online service can be accessed either directly from a web browser or
from within software. Since MolHub’s core API is based on the pure HTTP protocol,
it is possible to use almost any programming language that provides HTTP libraries,
e.g., httplib in Python, URLConnection and HttpClient in Java, libcurl in C++,
etc. We achieve the goal of creating a collaborative environment, while at the
same time allowing the use of the programming language that works best in the
developer’s environment. However, simple web interfaces such as a form to upload
data are also provided. Users can access these features through the web browser
without additional tools, allowing them to easily interact with MolHub. The web
frontend is built using standard HTML5 and Javascript, in which the Javascript
codes communicate with our core API using Ajax (Asynchronous JavaScript and
XML).

5.2 Example A: Indexing computational chemistry data.

Semantics in CompChem are implicit, i.e., the relationships of elements are conveyed
based on a mutual understanding (not by RDF [21] and OWL ontologies [7]). The
implicit semantics of CompChem can be easily translated into RDF allowing each
resource to be identified and related in the form of subject-predicate-object triples
(RDF statements). So far, there exist no ontology for computational chemistry
which can be used as a starting point for a semantic conversion from CompChem to
RDF. The development of relationships in RDF is currently based on the demand
for very specific applications. The graph database (Triple store for RDF) has been
proven to be easy to understand and maintain (in comparison to multiple tables in a
relational database management system), especially for scientific data in which the
information is not frequently changing all the time.

At the current stage, MolHub has been developed to support the data of Gaussian 03
calculations (by converting into CompChem format) providing several online services
for calculating thermochemistries of existing online molecular resources. It automat-
ically converts the uploaded Gaussian log files into CompChem, RDF, HTML, N3
(Notation3, an RDF alternative) and PNG (Portable Network Graphics) images.
The RDF files are added to a triple store, i.e., we use OpenRDF [6] in this work,
offering a queriable back-end through SPARQL [31]. Various data formats are view-
able from the web browser without any additional software which makes it easy for
users to explore, and for search engines to discover and index our data.

5.3 Example B: Titanium Species’ Thermochemistries.

In our recent publication, Shirley et al. [34], we have demonstrated the use of Com-
pChem and RDF for investigating the thermodynamic properties of new titanium-
oxygen molecules. In that paper, the python codes were implemented to make a
SPARQL query to an early prototype of MolHub, i.e., “CoMo CompChem”. We
successfully illustrated several advantages of the graph database. First, the rela-
tionships between chemical entities are clear and it is easy to define a graph pattern

22

to match the desired criteria. Users with no specific training can quickly learn how
to make a query and produce a useful result. Second, resources are uniquely labeled
with a URL and exist online which make them promptly accessible from a small
script to a large application. Third, visualization of the data is very useful as the
molecule’s geometry reveals problems instantaneously if there are any. In MolHub
an embedded Jmol applet is implemented allowing users to rapidly see the 3D struc-
ture of the molecules in the database and hence there is no need to use an external
viewer.

In Figure 6, a snippet of a TiO2 molecule is shown. The calculations consist of two
separate jobs, which are the geometry optimization and the frequency analysis. Our
thermochemistry software, which runs on MolHub, reads the information in Com-
pChem format and produces the thermodynamic properties, such as entropy (S),
enthalpy (H), and specific heat capacity (Cp and Cv) and returns it as a download-
able web resource.

6 Conclusions

An XML-based data storage format, CompChem, has been proposed to capture com-
mon aspects of computational chemistry modeling, i.e., model inputs (parameters),
application model, calculation steps and model outputs (computed properties), into
a well-formed structured manner. The new format minimizes the loss of information
from its original source and adds semantics to the data set. The main contributions
are:

• The development of CompChem convention;

• The development of the validation tools, such as stylesheet and online CMLValidator;

• The digital repository, MolHub.

An important problem of the Semantic Web is that there is no generally-accepted
standardized concept in use today, causing difficulty in the ontology design. This
problem also applies to other chemistry domains. In order to insert a certain level
of semantic information to CompChem, the concept of control vocabulary has been
brought into use through a CML dictionary. The vocabulary terms used in Com-
pChem can be documented and inserted to CompChem documents. The term mod-
ifiers, such as datatype, units, relationships, etc., can be added into a CML dictio-
nary providing additional instructions to the processing software. The recent work
by Shirley et al. [34] uses this method to process thermochemistry as part of an
automated species screening investigation. However, we have yet to finalize a formal
computational chemistry ontology. It is clear that the development of such an ontol-
ogy cannot be undertaken by an individual, but must be driven by the community
and experts in related fields in order to guarantee that it will be of benefit to the
maximum number of people and therefore widely adopted.

23

<?xml version="1.0" encoding="utf-8"?>
<module convention="convention:compchem" xmlns:convention="http://www.xml-cml.org/convention/"

xmlns="http://www.xml-cml.org/schema" xmlns:g="http://www.xml-cml.org/dictionary/compchem/gaussian/"
xmlns:iupac="http://www.iupac.org/" xmlns:cc="http://www.xml-cml.org/dictionary/compchem/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:cml="http://www.xml-cml.org/dictionary/cml/"
xmlns:si="http://www.xml-cml.org/unit/si/" xmlns:nonSi="http://www.xml-cml.org/unit/nonSi/">

<module dictRef="cc:jobList">
<module dictRef="cc:job">
<module dictRef="cc:initialization">
<molecule convention="convention:molecular" id="mol-init-1" formalCharge="0" spinMultiplicity="1">
...

</molecule>
<parameterList>
<parameter dictRef="cc:basis">
<scalar dataType="xsd:string">6-311+G(d,p)</scalar>

</parameter>
<parameter dictRef="cc:method">
<scalar dataType="xsd:string">UB971</scalar>

</parameter>
<parameter dictRef="g:goal">
<scalar dataType="xsd:string">FOpt</scalar>

</parameter>
<parameter dictRef="cc:goal">
<scalar dataType="xsd:string">Geometry optimization</scalar>

</parameter>
<parameter dictRef="g:route">
<scalar dataType="xsd:string">#p uB971/6-311+G(d,p) Opt=(Tight, NewEstmFC, MaxCyc = 200) GFInput

 Freq=(HinderedRotor) Population=None Integral(Grid=UltraFine) Guess=Mix NoSymmetry</scalar>
</parameter>

</parameterList>
</module>
<module dictRef="cc:finalization">

</module>
</module>
<module dictRef="cc:job">
<module dictRef="cc:initialization">
<molecule convention="convention:molecular" id="mol-init-3" formalCharge="0" spinMultiplicity="1">

</molecule>
<parameterList>

</parameterList>
</module>
<module dictRef="cc:finalization">
<molecule convention="convention:molecular" id="mol-final-4" formalCharge="0" spinMultiplicity="1">
<atomArray>
<atom id="a1" elementType="O" x3="-2.071636" y3="1.038054" z3="-0.6913" />
<atom id="a2" elementType="Ti" x3="-0.924385" y3="0.140554" z3="0.051605" />
<atom id="a3" elementType="O" x3="-0.180469" y3="-0.872918" z3="-0.993896" />

</atomArray>
<bondArray>
<bond atomRefs2="a1 a2" id="a1_a2" order="D" />
<bond atomRefs2="a2 a3" id="a2_a3" order="D" />

</bondArray>
</molecule>
<propertyList>
<property dictRef="cc:scfenergy">
<scalar dataType="xsd:double" units="nonSi:hartree">-999.862822916</scalar>

</property>
<property dictRef="cc:vibrations">
<table>
<array dataType="xsd:string" size="3" dictRef="cc:labels">f1 f2 f3</array>
<array dataType="xsd:double" size="3" units="nonSi:amu" dictRef="cc:reduced_masses">

 18.3734 20.219 18.5392</array>
<array dataType="xsd:double" size="3" units="nonSi:mDyne.A^-1" dictRef="cc:force_consts">

 1.2673 11.5369 11.6911</array>
<array dataType="xsd:double" size="3" units="nonSi:GHz" dictRef="cc:frequencies">342.1553

 984.1014 1034.5665</array>
</table>

</property>
<property dictRef="cc:rotational_symmetry">
<scalar dataType="xsd:integer" units="si:none">1</scalar>

</property>
</propertyList>

</module>
</module>

</module>
</module>

...

...

...

Figure 6: A snippet of TiO2 data in CompChem format consisting of two job mod-
ules.

24

For data validation, a rule-based schema language for CompChem has been de-
veloped to ensure that computational chemistry data is formed according to our
specifications. The rule-based schema is developed using the XSLT standard and
provided in the form of a stylesheet which can be processed separately from CML
grammar-based validation using any XSLT processor. Although CompChem rules
in the stylesheet can check for all the structural details, it cannot be used to check
the validity of contents. For example, it cannot test whether the data type of a prop-
erty for the associated term matches the data type defined in a dictionary. Such an
assertion can be easily added to the stylesheet. A new method may be employed to
solve this problem in future work.

7 Acknowledgments

The authors are grateful to Churchill College Cambridge and the Development and
Promotion of Science and Technology Talents Project for the financial support of
WP.

25

References

[1] Avogadro: an open-source molecular builder and visualization tool. Version
1.0.3. URL http://avogadro.openmolecules.net/. Online; accessed 25-
April-2011.

[2] CMLXOM. URL https://bitbucket.org/wwmm/cmlxom/. Online; accessed
20-December-2011.

[3] JUMBO-Converters. URL https://bitbucket.org/wwmm/jumbo-

converters/. Online; accessed 20-December-2011.

[4] Jmol: an open-source Java viewer for chemical structures in 3D. URL http:

//www.jmol.org/. Online; accessed 24-October-2011.

[5] Jumbo6. URL https://bitbucket.org/wwmm/jumbo6/. [Online; accessed 20-
December-2011.

[6] OpenRDF - Aduna Software. URL http://www.openrdf.org/. Online; ac-
cessed 11-May-2012.

[7] OWL 2 Web Ontology Language, 2009. URL http://www.w3.org/TR/owl2-

overview/. Online; accessed 6-February-2012.

[8] N. Adams, J. Winter, P. Murray-Rust, and H. S. Rzepa. Chemi-
cal Markup, XML and the World-Wide Web. 8. Polymer Markup Lan-
guage. Journal of Chemical Information and Modeling, 48(11):2118–2128,
2008. doi:10.1021/ci8002123. URL http://pubs.acs.org/doi/abs/10.1021/

ci8002123.

[9] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siméon. XML Path Language (XPath) 2.0 (Second Edition), Dec 2010. URL
http://www.w3.org/TR/xpath20/. Online; accessed 26-December-2011.

[10] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels, Mar
1997. URL http://www.ietf.org/rfc/rfc2119.txt. Online; accessed 24-
December-2011.

[11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Fifth Edition), W3C, 2008. URL
http://www.w3.org/TR/xml/.

[12] T. Bray, D. Hollander, A. Layman, R. Tobin, and H. S. Thompson, Rzepa.
Namespaces in XML 1.0 (Third Edition), Dec 2009. URL http://www.w3.

org/TR/xml-names/. Online; accessed 26-December-2011.

[13] CMLValidator service. URL http://validator.xml-cml.org/. [Online; ac-
cessed 20-December-2011].

26

http://avogadro.openmolecules.net/
https://bitbucket.org/wwmm/cmlxom/
https://bitbucket.org/wwmm/jumbo-converters/
https://bitbucket.org/wwmm/jumbo-converters/
http://www.jmol.org/
http://www.jmol.org/
https://bitbucket.org/wwmm/jumbo6/
http://www.openrdf.org/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1021/ci8002123
http://pubs.acs.org/doi/abs/10.1021/ci8002123
http://pubs.acs.org/doi/abs/10.1021/ci8002123
http://www.w3.org/TR/xpath20/
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://validator.xml-cml.org/

[14] N. Day, J. Downing, S. Adams, N. W. England, and P. Murray-Rust. Crys-
talEye. URL http://wwmm.ch.cam.ac.uk/crystaleye/. Online; accessed 26-
December-2011.

[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.
Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scal-
mani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toy-
ota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Chal-
lacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and
J. A. Pople. Gaussian 03, Revision C.02, 2003. Gaussian, Inc., Wallingford,
CT, 2004.

[16] G. V. Gkoutos, P. Murray-Rust, H. S. Rzepa, and M. Wright. Chemical Markup,
XML, and the World-Wide Web. 3. Toward a Signed Semantic Chemical Web
of Trust. Journal of Chemical Information and Computer Sciences, 41(5):1124–
1130, 2001. doi:10.1021/ci000406v.

[17] M. F. Guest, I. J. Bush, H. J. J. Van Dam, P. Sherwood, J. M. H. Thomas,
J. H. Van Lenthe, R. W. A. Havenith, and J. Kendrick. The GAMESS-UK elec-
tronic structure package: algorithms, developments and applications. Molecular
Physics, 103(6-8):719–747, 2005. doi:10.1080/00268970512331340592.

[18] G. L. Holliday, P. Murray-Rust, and H. S. Rzepa. Chemical Markup, XML,
and the World Wide Web. 6. CMLReact, an XML Vocabulary for Chemical
Reactions. Journal of Chemical Information and Modeling, 46(1):145–157, 2006.
doi:10.1021/ci0502698.

[19] M. Kay. XSL Transformations (XSLT) Version 2.0, Jan 2007. URL http:

//www.w3.org/TR/xslt20/. Online; accessed 26-December-2011.

[20] S. Kuhn, T. Helmus, R. J. Lancashire, P. Murray-Rust, H. S. Rzepa, C. Stein-
beck, and E. L. Willighagen. Chemical Markup, XML, and the World Wide
Web. 7. CMLSpect, an XML Vocabulary for Spectral Data. Journal of Chem-
ical Information and Modeling, 47(6):2015–2034, 2007. doi:10.1021/ci600531a.
URL http://pubs.acs.org/doi/abs/10.1021/ci600531a.

[21] F. Manola and E. Miller. Resource Description Framework (RDF) Primer, 2004.
URL http://www.w3.org/TR/rdf-primer/. Online; accessed 6-February-
2012.

27

http://wwmm.ch.cam.ac.uk/crystaleye/
http://dx.doi.org/10.1021/ci000406v
http://dx.doi.org/10.1080/00268970512331340592
http://dx.doi.org/10.1021/ci0502698
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://dx.doi.org/10.1021/ci600531a
http://pubs.acs.org/doi/abs/10.1021/ci600531a
http://www.w3.org/TR/rdf-primer/

[22] P. Murray-Rust and H. Rzepa. Chemical Markup Language (CML) Schema
version 3. URL http://www.xml-cml.org/schema/. Online; accessed 24-
December-2011.

[23] P. Murray-Rust and H. S. Rzepa. Chemical Markup, XML, and the World-
wide Web. 1. Basic Principles. Journal of Chemical Information and Computer
Sciences, 39(6):928–942, 1999. doi:10.1021/ci990052b.

[24] P. Murray-Rust and H. S. Rzepa. Chemical Markup, XML and the World-Wide
Web. 2. Information Objects and the CMLDOM. Journal of Chemical Infor-
mation and Computer Sciences, 41(5):1113–1123, 2001. doi:10.1021/ci000404a.

[25] P. Murray-Rust and H. S. Rzepa. Chemical Markup, XML, and the World
Wide Web. 4. CML Schema. Journal of Chemical Information and Computer
Sciences, 43(3):757–772, 2003. doi:10.1021/ci0256541.

[26] P. Murray-Rust, S. Adams, J. Downing, J. Townsend, and Y. Zhang. The
semantic architecture of the World-Wide Molecular Matrix (WWMM). Journal
of Cheminformatics, 3(1):42, 2011. doi:10.1186/1758-2946-3-42.

[27] P. Murray-Rust, J. Townsend, S. Adams, W. Phadungsukanan, and J. Thomas.
The semantics of Chemical Markup Language (CML): dictionaries and conven-
tions. Journal of Cheminformatics, 3(1):43, 2011. doi:10.1186/1758-2946-3-43.

[28] N. O’Boyle, C. Morley, and G. Hutchison. Pybel: a Python wrapper for
the OpenBabel cheminformatics toolkit. Chemistry Central Journal, 2(1):5,
2008. ISSN 1752-153X. doi:10.1186/1752-153X-2-5. URL http://journal.

chemistrycentral.com/content/2/1/5.

[29] N. O’Boyle, M. Banck, C. James, C. Morley, T. Vandermeersch, and G. Hutchi-
son. Open Babel: An open chemical toolbox. Journal of Cheminformat-
ics, 3(1):33, 2011. ISSN 1758-2946. doi:10.1186/1758-2946-3-33. URL http:

//www.jcheminf.com/content/3/1/33.

[30] W. Phadungsukanan, S. Shekar, R. Shirley, M. Sander, R. H. West, and
M. Kraft. First-Principles Thermochemistry for Silicon Species in the Decom-
position of Tetraethoxysilane. The Journal of Physical Chemistry A, 113(31):
9041–9049, Jul 2009. doi:10.1021/jp905494s.

[31] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF, 2008.
URL http://www.w3.org/TR/rdf-sparql-query/. Online; accessed 11-May-
2012.

[32] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki,
N. Matsunaga, K. Nguyen, T. S.Su, Windus, M. Dupuis, and J. Montgomery.
General Atomic and Molecular Electronic Structure System. J. Comput. Chem.,
14:1347–1363, 1993.

[33] R. Shirley, Y. Liu, T. S. Totton, R. H. West, and M. Kraft. First-principles
thermochemistry for the combustion of a ticl4 and alcl3 mixture. The Journal
of Physical Chemistry A, 113(49):13790–13796, 2009. doi:10.1021/jp905244w.

28

http://www.xml-cml.org/schema/
http://dx.doi.org/10.1021/ci990052b
http://dx.doi.org/10.1021/ci000404a
http://dx.doi.org/10.1021/ci0256541
http://dx.doi.org/10.1186/1758-2946-3-42
http://dx.doi.org/10.1186/1758-2946-3-43
http://dx.doi.org/10.1186/1752-153X-2-5
http://journal.chemistrycentral.com/content/2/1/5
http://journal.chemistrycentral.com/content/2/1/5
http://dx.doi.org/10.1186/1758-2946-3-33
http://www.jcheminf.com/content/3/1/33
http://www.jcheminf.com/content/3/1/33
http://dx.doi.org/10.1021/jp905494s
http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1021/jp905244w

[34] R. Shirley, W. Phadungsukanan, M. Kraft, J. Downing, N. E. Day, and
P. Murray-Rust. First-Principles Thermochemistry for Gas Phase Species in
an Industrial Rutile Chlorinator. The Journal of Physical Chemistry A, 114
(43):11825–11832, 2010. doi:10.1021/jp106795p. URL http://pubs.acs.org/

doi/abs/10.1021/jp106795p.

[35] J. Song. Building Robust Chemical Reaction Mechanisms: Next Generation of
Automatic Model Construction Software. PhD thesis, Massachusetts Institute of
Technology, Cambridge MA, USA, February 2004. URL http://hdl.handle.

net/1721.1/30058.

[36] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema
Part 1: Structures Second Edition, W3C Recommendation, Oct 2004. URL
http://www.w3.org/TR/xmlschema-1/. Online; accessed 21-December-2011.

[37] T. S. Totton, R. Shirley, and M. Kraft. First-principles thermochemistry for
the combustion of in a methane flame. Proceedings of the Combustion Institute,
33(1):493–500, 2011. doi:10.1016/j.proci.2010.05.011.

[38] J. Townsend and P. Murray-Rust. CMLLite: a design philosophy for CML.
Journal of Cheminformatics, 3(1):39, 2011. doi:10.1186/1758-2946-3-39.

[39] w3schools. Introduction to XML Schema. URL http://www.w3schools.com/

schema/schema_intro.asp. Online; accessed 21-December-2011.

[40] J. Wakelin, P. Murray-Rust, S. Tyrrell, Y. Zhang, H. S. Rzepa, and A. Garćıa.
CML tools and information flow in atomic scale simulations. Molecular Simu-
lation, 31(5):315–322, 2005. doi:10.1080/08927020500065850.

[41] R. H. West, G. J. O. Beran, W. H. Green, and M. Kraft. First-principles
thermochemistry for the production of tio2 from ticl4. The Journal of Physical
Chemistry A, 111(18):3560–3565, 2007. doi:10.1021/jp0661950.

29

http://dx.doi.org/10.1021/jp106795p
http://pubs.acs.org/doi/abs/10.1021/jp106795p
http://pubs.acs.org/doi/abs/10.1021/jp106795p
http://hdl.handle.net/1721.1/30058
http://hdl.handle.net/1721.1/30058
http://www.w3.org/TR/xmlschema-1/
http://dx.doi.org/10.1016/j.proci.2010.05.011
http://dx.doi.org/10.1186/1758-2946-3-39
http://www.w3schools.com/schema/schema_intro.asp
http://www.w3schools.com/schema/schema_intro.asp
http://dx.doi.org/10.1080/08927020500065850
http://dx.doi.org/10.1021/jp0661950

	Introduction
	CML Overview
	CompChem Design
	CompChem
	Using Dictionary
	CompChem Convention
	Semantics of Properties and Parameters
	Parameter and Property Containers
	Data Containers

	Example Use Cases
	MolHub
	Example A: Indexing computational chemistry data.
	Example B: Titanium Species' Thermochemistries.

	Conclusions
	Acknowledgments
	References

