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Abstract

A novel chemical kinetic diesel surrogate model is introduced. The model con-
sists of chemistry for each main chemical group in diesel fuel: n-decane, 2,2,4,4,6,8,8-
heptamethylnonane, methylcyclohexane, and toluene. Ethanol chemistry is also in-
cluded should the effect of oxygenates on conventional diesel fuels need to be inves-
tigated. This kinetic model is optimised using an automatic optimisation procedure
and a novel heuristic for selecting reactions useful in optimisation is introduced. This
heuristic combines the Level of Importance (LOI) algorithm and reaction sensitivity
analysis to select the most relevant reactions for optimisation, thus including the im-
portance of timescales in optimization, which has previously not been the case. It
greatly reduces the time needed to select reactions for optimisation, and furthermore
identifies those that would be otherwise ignored. Error analysis is performed on the
optimised chemical kinetic mechanism and shows that the optimisation improves its
overall response when compared to a wide range of experimental data.
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1 Introduction

As demand for fossil fuels continues to soar, it is important to investigate methods for
increased engine efficiency. Hydrocarbon combustion has a wealth of undesirable con-
sequences, including climate change and pollution, which can lead to poor human health
[9][25]. It is desired to mitigate these effects by increasing engine efficiency. Computa-
tional simulations of engine systems allow researchers to investigate the effects of system
changes without performing complex and time-consuming experiments. The chemical
kinetics of combustion are of particular importance in these simulations.

Diesel is a common fuel for engine combustion, but its chemical kinetics are notoriously
complex due to its high cetane number and wide mix of hydrocarbon species. Diesel
engines rely on auto-ignition of the fuel mixture, but this must occur at the correct time
in the cycle to provide good fuel efficiency and avoid engine damage. It has not been
possible, as yet, to study the most complex aspects of diesel fuel. Diesel fuels have a high
carbon number, which makes different experimental setups difficult due to relative resis-
tance to knock when compared to gasoline or jet fuels. There is, however, experimental
data measuring ignition delay times for diesel fuel surrogates in shock tubes, and this data
has been extensively used throughout this work for model validation purposes.

It is desired to have a chemical kinetic mechanism, such as a diesel surrogate mechanism,
model a wide range of combustion criteria. It is not possible to know the exact reac-
tion rate of each elementary reaction. Therefore, the elementary reaction rates within the
mechanism are subject to a degree of uncertainty. Some of the more basic reactions have
been experimentally investigated and have approximate bounds [10][2]. Others, however,
have not been investigated due to experimental constraints, lack of thermochemical data,
or otherwise, and therefore have been created based on previous knowledge or thermo-
chemical calculations. It can be considered reasonable and advantageous to alter some of
these reaction rates within set limits to improve the model [7] [19].

Recently, several approaches have been proposed in literature, many of which have close
resemblances to the presented work [28] [34] [27] [33]. Ziehn and Tomlin [34] present a
software package that is able to calculate global sensitivities and their variances (thereby
ranking them), whilst You et al. [33] focus on identifying difficult experimental data
points and incorporating experimental uncertainty into mechanism optimisation. Sheen’s
papers [27, 28] focus on how uncertainty effects optimisation and how model uncertainty
can be minimised during the optimisation process. These techniques mainly focus on
model uncertainty rather than model optimisation. Whilst model uncertainty is an im-
portant and relevant area of research, this paper focuses on model optimisation; model
uncertainty analysis will be the subject of future work.

An important step in those procedures is that of selecting the most influential reactions
for optimisation, but none of the previously published works address a general procedure
for identifying such influential reactions. We propose that by adequately considering the
chemical lifetime of each species within the mechanism, we are able to put forth such a
general approach.

In this paper, a method for identifying important reactions for mechanism optimisation
is presented and demonstrated in the optimisation of a surrogate diesel fuel mechanism.
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The Level of Importance (LOI) technique is proposed to identify the most important,
or relevant, species, therefore allowing timescales to be considered in the optimisation
process [11]. Reaction sensitivities are performed on reactions containing these species
in simulations representative of physical process conditions. It is shown that the reactions
that have high sensitivities and important species have a greater impact on the overall
system optimisation. This proposed method of reaction selection is therefore general
and applicable to different optimisation procedures. As will be discussed, the LOI is
a local parameter from which global values are obtained either by integration or use of
accumulated maximum values over a given range. Global sensitivity indices, such as
those proposed by Ziehn and Tomlin [34], can in principle be applied. One then would
not include the chemical timescales explicitly in the optimisation.

A novel four component diesel surrogate fuel is developed and presented; this surrogate
is one of the most advanced diesel kinetic mechanisms presently found in literature. Each
of the four components (n-decane, methylcyclohexane, heptamethylnonane, and toluene)
was chosen to represent a hydrocarbon class typically found in diesel fuels. Optimisa-
tion was performed on the reactions selected by the LOI and reaction sensitivity analysis,
and an optimised kinetic mechanism was created. This kinetic mechanism was then com-
pared to both experimental data and the original mechanism. Simple error analysis shows
that the optimised mechanism more closely matches the experimental data than the non-
optimised one. In the present study ignition scenarios are emphasized as this is most
relevant condition for the further use of the optimised mechanism. However, it should
be noted that the procedure is in principle the same if flame parameters are considered,
or even both, in which case integrated or accumulated values of the LOI and sensitivity
parameters are to be used [12].

2 Methods

2.1 Level of Importance

The level of importance (LOI) technique is used to identify both important and unim-
portant species and reaction pathways in large kinetic mechanisms by combining species
timescales and sensitivities [12] [11], and thereby rank species according to their rele-
vance. Løvås showed that this ranking is correlated to important reaction paths [11], as
will be discussed below.

The LOI for a certain species is defined as [12]:

LOIj
i = Sijτ

C
i (1)

where LOIj
i is the level of importance of species i with respect to parameter j, Sij is the

sensitivity of species i to the perturbation of the parameter, typically the concentration of
species j, and τC

i is the chemical lifetime of species i.

Sensitivity is described, in its most general form, as the dependence of a particular value
ci on a parameter kj . The absolute sensitivity used in the LOI calculations in this work is:
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Sij =
∂ci
∂cj

(2)

where ci is concentration of species i, and cj is the concentration of species j.

The chemical lifetime of a species can be approximated by using the diagonals of the
Jacobian matrix for the mathematical system [30] [13]:

τC
i = − 1

Jii

(3)

The approximation has been justified by comparing τC
i to eigenvalues calculated by rig-

orous computational singular perturbation (CSP) analysis [13]. It was shown that for a
large part of the timescale range, the system is close to linear.

It is important to note that LOI represents a local value, from which a unique global
ranking parameter has to be obtained. In the present work, there is adopted an integrated
value from the main reaction domain similar to Løvås [11], and also common for obtaining
global values from local CSP pointers [17].

2.2 Reaction Sensitivity Analysis

An important species is involved in many reactions, which in turn need to be ranked
and sorted. Normalised sensitivity analysis can be performed on reactions as well as on
species. In this case, the reaction rate coefficient of an elementary reaction is perturbed
instead of species concentration. Therefore, in Equation 2, ci is the concentration of
species i, but kj is the rate coefficient of reaction j. Furthermore, the relative sensitivity,
rather than the absolute sensitivity, is used [31]:

Sr
OH,j =

kj

cOH

∂cOH

∂kj

(4)

where Sr
OH,j is the relative sensitivity. In the present work, OH is used as species i, as

ignition delay times are defined by the maximum change in OH concentration. Ignition
delay times are the central factor in engine knock, a key parameter in engine design and
efficiency. Depending on the case of study, the choice of target species can be changed.

It was decided to use this basic definition of reaction sensitivity due to its easy application
in a wide range of commercial and open-source software. There are many varieties of
sensitivity that can be explored in future work, such as individual or combined Arrhenius
parameter sensitivity within a certain rate coefficient.

2.3 Optimisation Procedure

The chemical model was optimised using an automatic optimisation procedure with an
objective function at its core. The objective function, based on that found in the paper by
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Sheen et al.[28], is at the core of this procedure [8]:

Φ1(x) =
N∑

i=1

[ηexp
i − ηi(x)] (5)

where N is the number of experimental data points used in the optimisation, ηi(x) is
the model response to a set of model parameters x, and ηexp

i is the experimental data
corresponding to x. In this particular case, ηexp

i is the set of shock tube ignition delay
times from experiments and ηi(x) is the set of ignition delay times as computed by the
model. Arrhenius coefficients selected by the method outlined in §3.4 were chosen as the
free parameters of the model [4]. This optimisation procedure has been applied in various
previous works with a high level of success [24] [3] [18].

By minimising the objective function, the model response becomes closer to the experi-
mental data and the model is thereby optimised. The optimisation procedure allows the
modeller to limit the amount that each parameter can be altered, so that an optimum so-
lution that is outside the error bounds is not presented. For most of the reactions consid-
ered, for which there is little to no experimental or theoretical investigation, the maximum
bounds of error were considered to be one order of magnitude.

Assuming a unique minimum of the objective function, this makes the optimum set of
parameters values to defined by:

x∗ = arg min[Φ1(x)] (6)

A global search for a point near the minimum to this objective function is performed using
a low discrepancy sequence. For this work, a Sobol sequence [29] is used to investigate
the parameter space. However, other Monte Carlo type approaches are applicable for this
purpose.

3 Chemical Kinetic Mechanism

The time needed to optimise a kinetic model is a monochrome increasing function of
the number of free parameters chosen. When investigating small systems, the number of
possible free parameters is small and manageable. However, when the system gets larger,
a selection procedure must be used to find the Arrhenius parameters that will be the most
effective when optimising the model.

3.1 Diesel Kinetic Mechanism

A four-component chemical kinetic diesel surrogate fuel model was developed contain-
ing n-decane, 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), and
toluene. The n-decane (C10H22) kinetic mechanism is a combination of Seiser et al.’s
n-heptane kinetics, [26] and Westbrook et al.’s linear alkane combustion chemistry [32].
HMN (C16H34, and also known as iso-cetane) from Oehlschlaeger et al.’s HMN kinetic
mechanism [20] was used to represent the branched alkanes present in diesel fuel. MCH
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(C7H14) from Orme et al. [21][23], with toluene sub-mechanism, was used to represent
cycloalkanes and aromatic species in the surrogate model. A small sub-mechanism from
Marinov [16] was added to the kinetic mechanism to account for the effects of oxygenated
species on traditional diesel fuels.

The kinetic mechanism was reduced using the direct relation graphing (DRG) method and
species lumping [14][1]. Each sub-mechanism was separately reduced using the DRG,
and added together. Duplicate species and reactions were analysed and removed as nec-
essary. Further reduction on this surrogate kinetic mechanism was performed to create
the reduced mechanism, containing the 326 species and 2616 reactions. This reduced
mechanism was tested against the full one at conditions between 850K and 1400K, as
well as between 1 and 15 bar, with only minimal differences being noticed at the lowest
temperature and pressure, and none at high temperatures.

3.2 Species Selection

An LOI analysis was performed on n-decane, HMN, and MCH at conditions represen-
tative of the temperature, pressure, and composition of an experimental data point. The
reactant-specific species with the highest LOI values (i.e. the top 10 % of species) were
identified. A reactant-specific species is defined as a species that is the product of com-
bustion of one particular species, rather than a general product of combustion of any
hydrocarbon.

Table 1: Selection of important non-reactant-specific intermediates as calculated by the
LOI

N-Decane Iso-Cetane (HMN) Methylcyclohexane
CH4 H2 CO
CO CO H2O
H2 CH4 H2
H C2H2 CH4

CH2O CH3 H
C2H2 H O
H2O2 OH H2O2

Table 1 shows the species that consistently have high LOI values independent of varying
conditions. This table shows that many of the same species are considered important
regardless of the starting reactant. All these species are indeed known to be crucial for
the correct prediction of important combustion targets, indicating the robustness of the
method.

Table 2 presents some of the reactant-specific intermediates with high LOI values. An
‘N’ before or after a species implies that a number of different isomers had a high LOI
value, thereby adding complexity. Note that MCH does not appear in the list of reactant-
specific intermediates. Further investigation showed that MCH decomposes rapidly at the
beginning of the reaction. This table gives a starting point for optimisation, but there is
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Table 2: Selection of important reactant-specific intermediates as calculated by the LOI

N-Decane HMN Methylcyclohexane
NC10H22 HMN C6H6

C10KET-N AC10H20 C6H5OH
C8O3-N AC9H18 Fulvene

C7H14O1-3 HMNO2-N CY13PD
C10H20-N NC11H22 C5H10-1
AC8H18 NC15H30 IC5H8
C5H10-1 C10KET-N C3H3
C8H16-N JC8H16 C ·OCCCJO
C10O4-N C6H12-1 C ·CC ·CC

C8H15 C5H10-1
C10H19 C7H14O1-3
C9H18-1 AC12H24

C10H20-N

still an abundance of reactions associated with each of these species. Therefore, reaction
sensitivity is needed, as will be discussed in §3.3, in order to select the overall most
important reactions that can be subject to optimisation.

A problem involving artificially large species lifetimes can arise when the LOI is used
on a reduced kinetic mechanism. When a mechanism is reduced using the DRG method,
species with low fluxes are removed, along with the reactions in which they participate
[14] [15]. This procedure can cause an unphysical build-up of species’ concentrations
where reaction pathways have been removed.

These large concentrations cause no discernable problems until the LOI is considered,
where the chemical lifetimes of these species become unphysically large. Therefore these
species have an artificially inflated LOI value. Methods are being tested to automatically
identify species with these unphysically large lifetimes.

3.3 Reaction Sensitivity

Whilst the important core reactions for optimisation are well-documented, it is much more
difficult to find reactant-specific reactions that can be optimised to improve the kinetic
model capabilities. The LOI has indicated which species are involved in these reactions;
however, as discussed above, it is necessary to use a selection method, such as that de-
scribed in §3.4, in order to rank the set of reactions in which the important species interact.
These reactions are important for tailoring a multi-component kinetic model, such as the
diesel one put forth in this work, to a wide range of different data sets.

The LOI does not provide information about important pathways through each sub-mechanism.
However, the reaction sensitivities, as computed by the equation shown in §2.2, can be di-
vided into two separate classes: the core reactions and the reactant-specific reactions.
Core reactions contain species with high LOI values, such as the ones seen in Table 1, and

8



they frequently can be identified through literature searches (i.e. by reading Baulch et al.
[2]).

Hundreds of reaction sensitivities were computed; the selected reactions presented in Fig-
ures 1 and 2 are used to help illustrate the new reaction selection technique presented in
§3.4.

The reactions presented in Figure 1 are those that contain species with high LOI values.
The reactions with the highest sensitivity values were selected to be used in the optimisa-
tion procedure.

Figure 1: Example reaction sensitivities: n-decane

However, the wide range of sensitivity values can also be seen in Figure 2, and each
of these reactions contains different numbers of species with high LOI values. This illus-
trates that a high reaction sensitivity alone is not necessarily sufficient to identify reactions
that are useful in the optimisation process which has often been used as a guiding condi-
tion. The combination of the two parameters ensures the proper selection and ranking of
reactions to optimise as outlined in the following subsection.

3.4 Selection Heuristic

As there may be thousands of reactions that are specific to each sub-mechanism in the
kinetic model, a systematic procedure is needed to help identify those reactions that are
influential to the model response of interest, i.e. those that are ‘optimisable.’ It may not
be necessary to alter every optimisable reaction to suitably improve the model response,
but a heuristic is necessary nonetheless to identify those that have the most influence. The
heuristic presented here combines the the LOI and sensitivity work presented in §3.2 and
§3.3.

It is proposed to first investigate reactions containing important reactant-specific interme-
diates, as seen in Table 2. Sensitivity analysis is performed on these reactions to find those

9



Figure 2: Example reaction sensitivities: HMN

with the highest sensitivity, such as those identified in Figure 2. The reactions with the
highest sensitivities, such as reactions 2, 4, and 5 in Figure 2, were selected for potential
optimisation. Furthermore, reactions with a majority of species with high LOI values,
i.e. two out of three or three out of four but lower sensitivities (such as reactions 7–10
in Figure 2), were considered for optimisation. Reactions with either of these character-
istics were found to have the greatest effect on optimisation. Such a procedure is easily
implementable by automatic means.

4 Optimisation Results and Discussion

Fifteen separate optimisation calculations were performed. Six experimental data sets
with 97 data points from three different sources were used [21][22][20]. From these
calculations, a set of parameters originally identified by the selection heuristic and shown
by the optimisation procedure to be influential to the model optimisation were gathered.
The list of optimised reactions is given in Table 3. It can be noted that without the heuristic
presented in §3.4 (i.e. with sensitivity and timescale analysis combined), the last nine of
the reactions in this table would have been overlooked. These reactions were found to be
important in low-temperature ignition delay kinetics. Furthermore, it was found that the
final reaction in Table 3 has an effect on the combustion of both MCH and toluene. The
heuristic has allowed the mechanism to be optimised to a further degree that would have
otherwise been impossible without time consuming trial and error based analysis.

4.1 MCH and Toluene results

Figure 3 shows how MCH combustion simulation of the resulting optimised mechanism
compares to experimental data at different equivalence ratios and pressures. Improve-
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Table 3: Summary of optimised reactions based on LOI and reaction sensitivities

Reaction
AC11H23 + C5H11−2 −−⇀↽−− HMN
C5H11−2 + SC11H23 −−⇀↽−− HMN
C7H15−2 + CC9H19 −−⇀↽−− HMN
HMN + H −−⇀↽−− HMN−R2 + H2
HMN + OH −−⇀↽−− HMN−R1 + H2O
CO + H2O→HCO + OH
H + O2→O + OH
H2O2 + O2→2 HO2
2 HO2→H2O2 + O2
C8H17−1 + C2H5 −−⇀↽−− NC10H22
C6H13−1 + PC4H9 −−⇀↽−− NC10H22
NC10H22 + OH→C10H21−1 + H2O
C2H4 + C8H17−1 −−⇀↽−− C10H21−1
C3H6 + C7H15−1 −−⇀↽−− C10H21−2
C10OOH5A −−⇀↽−− C10O2−5 + OH
C10OOH4B −−⇀↽−− C10O4−7 + OH
C10OOH5−3O2→C10KET5−3 + OH
C8OOH1−2O2→C8KET1−2 + OH
CH3 + HC15H30 −−⇀↽−− HMN−R7
CC8H17 + JC8H16 −−⇀↽−− HMN−R5
C6H6 −−⇀↽−− C6H5 + H

ments on the reduced kinetic mechanism can clearly be seen, especially at lower temper-
atures.

The optimised kinetic mechanism was tested further against MCH shock tube experiments
which were performed at lean and rich conditions. The comparison of both the optimised
and reduced kinetic mechanisms can be seen in Figure 4. Subfigure 4a shows that the
optimised mechanism matches the experimental data more closely than the unoptimised
one. However, subfigure 4b shows that the optimised kinetic mechanism actually per-
forms more poorly than the reduced one in rich conditions. Whilst this is undesirable, it
illuminates the importance of the optimisation range selections. The next stage in kinetic
mechanism development would involve further optimisation for this range.

The ‘effectiveness’ of an optimisation can be quantified using error analysis. This can
be illustrated by simply comparing each experimental data point value to the value given
from the chemical kinetic model using the following equation:

ε =
N∑

n=1

∣∣∣∣ηexp − ηsim

ηexp

∣∣∣∣ (7)

where ε is the defined error quantity. Although derived by basic means, ε is useful for
comparing how much the reduced and optimised kinetic mechanisms differ from the ex-

11



10

100

1000

104

105

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Experiment
Reduced_Mech
Optimised_Mech

Ig
n

it
io

n
 D

el
ay

 (
s

)

1000/T (1000/K)

(a) 1 atm

10

100

1000

104

0.6 0.65 0.7 0.75 0.8 0.85

Experiment
Reduced_Mech
Optimised_Mech

Ig
n

it
io

n
 D

el
ay

 (
s

)

1000/T (1000/K)

(b) 2 atm

10

100

1000

104

0.65 0.7 0.75 0.8 0.85

Experiment
Reduced_Mech
Optimised_Mech

Ig
n

it
io

n
 D

el
ay

 (
s

)

1000/T (1000/K)

(c) 4 atm

Figure 3: MCH shock tube ignition delay times at Φ = 1 for varying pressures. Experi-
mental data from Orme et al. [21].

perimental data. Table 4 shows that the optimised mechanism is indeed more accurate
than the original one when compared to MCH ignition delay time data, even though the
optimised mechanism has sacrificed some of the high temperature accuracy for low tem-
perature accuracy instead, even though shock tube experiments are more easily performed
at higher temperatures.

The optimisation process was also successful when toluene ignition delay was considered,
despite the fact that it was not included in the optimisation procedure itself. Figure 5 and
figure 6 show that the optimised mechanism compares better to toluene shock tube data
than the reduced mechanism. By identifying sub-mechanisms that are interlinked, it has
been possible to minimise the number of optimised reactions whilst still noticing a positive
impact on mechanism performance. Further work can still be performed to improve the
toluene sub-mechanism response to experimental data.
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Figure 4: MCH shock tube ignition delay times at 1 atm. Experimental data from Orme
et al. [21].

Table 4: Conditions and cumulative error between MCH shock tube experimental data
and both the reduced and optimised mechanism

P (bar) T (K) Φ ε−Reduced Mech ε - Optimised Mech
1.01 1174–1851 1 44.08 13.17
2.03 1223–1617 1 23.10 3.88
4.05 1218–1530 1 9.59 3.51
1.01 1227–1555 0.5 24.83 5.98
1.01 1399–2026 2 4.09 6.23

Table 5: Conditions and cumulative error between toluene shock tube experimental data
and both the reduced and optimised mechanism

P (bar) T (K) Φ ε−Reduced Mech ε - Optimised Mech
3.04 1338–1641 0.33 56.35 29.25
3.04 1358–1758 1 26.37 8.45
15 - 22 971–1173 1 71.98 35.96

It should be noted that medium and low temperature kinetics are emphasized throughout
this work. These temperatures have a greater effect on knock and in-cylinder pressure
rises when the kinetic mechanism is used in engine simulations and is also considered
more challenging with respect to kinetic modelling.
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Figure 5: Toluene shock tube ignition delay times at 3 atm and varying Φ. Experimental
data from Burcat et al. [5].

Figure 6: Toluene shock tube ignition delay times at Φ = 1 and P = 15 - 22 bar. Experi-
mental data from Davidson et al. [6].

4.2 N-decane results

Figure 7 shows the n-decane combustion at different equivalence ratios and pressures. For
n-decane, much more experimental data is available for elevated pressures, which repre-
sents and extra challenge for the optimised model. This shows that the optimised kinetic
mechanism performs equally well at low equivalence ratios as higher ones. Ignition delay
at lower temperatures is greatly improved.

Subfigure 7c shows the improvement of the optimised kinetic mechanism over the re-
duced one even at high pressures of 50 bar. Whilst the optimised kinetic mechanism still
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Figure 7: N-decane shock tube ignition delay times. Experimental data from Pfahl et al.
[22].

gives slow ignition delay times when compared to experimental data, it is a noticeable
improvement over the reduced one.

Table 6 shows the difference in ε when both kinetic mechanisms are used to simulate
different n-decane shock tube experimental data sets; it quantifies the differences seen in
Figure 7. This table shows that the optimised kinetic mechanism is an improvement on
the reduced one by approximately an order of magnitude for each different data set.

The effect of the reactions selected by the LOI procedure is most noticeable during low
temperature n-decane combustion. At higher temperatures, i.e. above 1000K, reactions
10, 11, and 13–18 in Table 3 were found to have little effect on ignition delay times.
However, they have a much greater effect on ignition delay times in low temperature
conditions, i.e. between 750 and 1000 K. When these reactions were not optimised, it was
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Table 6: Conditions and cumulative error between n-decane shock tube experimental data
and both the reduced and optimised mechanism

P (bar) T (K) Φ ε−Reduced Mech ε - Optimised Mech
15 819–1308 0.5 57.28 4.61
15 730–1301 1 413.43 25.47
15 743–1275 1 124.10 11.98
50 733–962 0.67 984.69 35.01
50 810–947 1 679.46 28.44
50 827–912 2 211.17 7.08

found that the simulated ignition delay could be increased by nearly 1 ms.

4.3 Iso-cetane results

Finally, optimisation of HMN was performed at a wide range of pressures and equiva-
lence ratios. Figure 8 shows that in this case the optimised mechanism was particularly
successful at high pressure and low temperatures. However, overall it can be concluded
that also for HMN the optimised model outperforms the original mechanism for all con-
ditions. Error analysis, as shown in Table 7, proves again that this new optimised kinetic
mechanism is more accurate than the original reduced one.

Table 7: Conditions and cumulative error between HMN shock tube experimental data
and both the reduced and optimised mechanism

P (bar) T (K) Φ ε−Reduced Mech ε - Optimised Mech
8.1–40.8 1007–1494 0.5 12.48 10.67
9.9–46.9 953–1309 1 31.14 9.41
8.4–47.1 879–1300 1.5 85.88 26.31

5 Conclusions

The problem of identifying import reactions for optimisation in large chemical kinetic
mechanism (over 2000 reactions) is discussed, and a technique for automatically and re-
liably identifying reactions important for kinetic mechanism optimisation is presented.
This technique is applied to a chemical kinetic surrogate model for diesel fuel containing
chemistry for n-decane, HMN, MCH, and toluene.

The technique for identifying reactions important for optimisation is a combination of
species’ importance, as measured by the LOI, and reaction sensitivity. The Level of Im-
portance (LOI) method is used to identify potentially important reactant intermediates by
means of timescale analysis. Reactions including the important species are identified.
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Sensitivity analysis is performed on these reactions. Reactions with either the highest
sensitivity values or with the most important species are identified and used for model
optimisation. A total of 23 reaction rates were optimised, several of which were identified
using the proposed heuristic, and would have otherwise not been considered. The method
can be automated and implemented for any type of optimisation tool in hand. The op-
timised kinetic mechanism was compared against a wide range of shock tube data sets.
Error analysis showed the optimised mechanism had better prediction capabilities than
the original one.

In future work, it is desired to apply this heuristic to different chemical kinetic mecha-
nisms. Optimisation procedures can aid a modeller to refine individual reaction rates, and
by identifying reaction rates that can be optimised, this process can be expedited. It is also
desired to investigate the possibility of extending the reaction rate sensitivity capabilities.
By introducing either global sensitivity or individual Arrhenius parameter sensitivities, it
may be possible to refine the heuristic. If this sensitivity can be linked automatically with
the LOI, the optimisation process will be even more quick and intuitive.
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Figure 8: Optimisation comparison for iso-cetane shock tube ignition delay times (25-40
bar). Experimental data from Oehlschlaeger et al. [20].
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