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Abstract

Bayesian parameter estimates for a computationally expensive multi-response
jet-milling model are computed using the Metropolis-Hastings and Wang-Landau
Markov Chain Monte Carlo sampling algorithms. The model is accompanied by data
obtained from 74 experiments at different process settings which is used to estimate
the model parameters. The experimentally measured quantities are the 10th, 50th and
90th quantiles of the resulting particle size distributions. Parameter estimation is per-
formed on a population balance jet-milling model comprised of three subprocesses:
jet expansion, milling and classification. The model contains eight parameters re-
quiring estimation and can compute the same quantities that are determined in the
experiments. As the model is computationally expensive to solve, the sampling al-
gorithms are applied to a surrogate model to establish algorithm specific parameters
and to obtain model parameter estimates. The resulting parameter estimates are given
with a discussion of their reliability and the observed behaviour of the two sampling
algorithms. Comparison of the autocorrelation function between samples generated
by the two algorithms shows that the Wang-Landau algorithm exhibits more rapid
decay. Trace plots of the parameter samples from the two algorithms appear to be
analogous and encourage the supposition that the Markov Chains have converged to
the distribution of interest. One- and two-dimensional density plots indicate a uni-
modal distribution for all parameters, which suggests that the obtained estimates are
unique. The two-dimensional density plots also suggest correlation between at least
two of the model parameters. The realised distribution generated by both algorithms
produced consistent results and demonstrated similar behaviour. For the application
considered in this work, the Wang-Landau algorithm is found to exhibit superior
performance with respect to the correlation and equivalent performance in all other
respects.
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1 Introduction

The use of models to emulate physical systems is widespread in both research and indus-
try. The popularity of modelling stems from practical concerns, primarily the expense and
difficulty involved in performing experiments [25]. A well-developed model can be em-
ployed instead of performing costly and time-consuming experimental work; however the
integrity of the model is a fundamental concern. Any model sufficiently sophisticated to
emulate complicated physical systems will contain parameters requiring estimation. The
method utilised to perform such estimation is a non-trivial decision, as poor parameter
estimates will undermine the usefulness of the model. Issues that must be considered are
both the accuracy and the computational expense of obtaining the parameter estimates.

Although many methods have been proposed for parameter estimation, the current state
of the art is often held to be the use of Bayesian theory in conjunction with Markov
Chain Monte Carlo (MCMC). Bayesian theory is used to define uncertainty of model
parameters as a distribution based on prior information and existing data. The basic tenet
of Bayesian methods is that information about one aspect of a system can be used to
make statements regarding other parts. Generally, there is uncertainty inherent in the
experimental responses. This makes using Bayesian theory particularly appropriate as we
can exploit properties of the experimental uncertainty in the derivation for the distribution
of the model parameters. Establishing such a distribution is non-trivial and there is a
multitude of suggested methods; a summary of which would exceed the scope of this
work and will not be attempted.

Once this posterior distribution is constructed, a realisation of the distribution is needed to
obtain the parameter estimates, for which we turn to sampling algorithms. The prominent
concern in implementing any sampling algorithm is that the method move through the
support of the target distribution rapidly, or shows ‘good mixing’ [19], as poor mixing
will require more computations. A comprehensive list of sampling algorithms and theory
is beyond the scope of this paper; however it would be remiss to fail to mention some of
the more important developments.

The two fundamental and most widely used samplers are the Metropolis-Hastings algo-
rithm [23], which is implemented in this paper, and the Gibbs sampler [12] which is a
special case of single-component Metropolis-Hastings [21]. When using either of these
algorithms, correlation between the parameters can cause slow mixing which may be im-
proved by using reparameterisation techniques; a review of which is included in [19].
Another strategy to improve mixing is by modifying the distribution being sampled from
by using importance sampling [17], simulated tempering [18] or simulated annealing [13].
Another approach is to implement self-correcting features to tune the algorithm as it iter-
ates. An algorithm developed specifically to address directional adaption is presented in
[20] with a general review of such methods presented in [3, 32]. The Wang-Landau al-
gorithm [37], which is compared to Metropolis-Hastings in this paper, combines adaptive
methodology with alternate distribution sampling, simulated tempering in this specific
case. The methods available to quantify the quality and performance of the algorithms
are extensive. In this paper we will make use of very basic illustrative plots, however a
review of more sophisticated methods can be found in [14].
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While there is extensive literature regarding the theoretical aspects of sampling tech-
niques, as well as innumerable studies of various aspects of the implementation, the ten-
dency is to focus on features of the implementation, such as the required sample size. In
this paper the focus instead is directed towards a straight-forward practical application of
and comparison between the performance of the algorithms. The overall methodology
used in this paper has been previously applied for single response data in a particle granu-
lation context in [8–11, 26, 36] and for a multireponse internal combustion engine model
in [29].

The purpose of this paper is to demonstrate model parameter estimation for a popula-
tion balance jet-milling model via the application of two MCMC algorithms, Metropolis-
Hastings and Wang-Landau. These algorithms are applied to a multi-response computa-
tionally expensive model where quadratic response surfaces are used as a surrogate model.
The entire parameter estimation process is shown, along with demonstrations of some ba-
sic tools to ascertain the validity of the results and to compare the performance of the
two MCMC algorithms. The emphasis throughout is on general techniques which may be
applied elsewhere.

The structure of this paper is as follows: Section 2 has a description of the experimental
system. Section 3 describes the jet-milling model. Section 4 contains an overview of
the Bayesian theory and the MCMC sampling algorithms used along with details of our
specific application and the construction of the surrogate model. In section 5 we describe
specific settings for the implementation used. In section 6 we show the results of the
implementation and compare the results from the two algorithms. In section 7 we draw
conclusions and discuss recommendations for future work.

2 Experimental system

Jet milling is used as a size reduction unit operation when the desired particle size is less
than 10µm [22]. This process produces a very finely ground product with a narrow size
distribution without risk of contamination. The feed particles and a gas are injected into
a mixing chamber where the inflow of the gas promotes breakage by causing particle to
particle and particle to wall collisions. As it is not possible to classify particles during
the milling process, an air classification system is typically added externally that sifts the
end product into coarse and fine material. The coarse particles are recycled back into the
system and the fine ones proceed to the next unit operation. A basic schematic illustrating
a simple jet milling system, as portrayed in [22], can be seen in Figure 1.

The experimental results used in the forthcoming parameter estimation were acquired by
GlaxoSmithKline (GSK) using 8-inch micronisers. A collection of 74 batches were per-
formed using the process conditions described in Table 1. The end product was analysed
using the Malvern wet method [1, 2]. The measurements made were x10, x50, and x90,
which are the 10th, 50th and 90th percentiles of the resulting particle size distribution
(PSD).
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Figure 1: General schematic of a jet milling system (taken from [22]).

Table 1: Process conditions used in experiments.

Process conditions Value Units
Constants
Feed gas temperature 293.15 K
Grinding gas temperature 293.15 K

Process conditions varied
Feed particle size distribution (PSD) characteristics:
x10 100 – 300 µm
x50 250 – 500 µm
x90 550 – 800 µm

Grinding pressure 2 – 8.5 barg
Feed pressure 5 – 9.5 barg
Feed mass flow rate 2 – 7.5 kg/h
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3 Model description

The model used in this work is a population balance model of a jet milling process, de-
veloped by GSK, where the entire process is divided into three subprocesses:

1. Jet expansion,

2. Milling (breakage),

3. Classification.

The overall process is modelled with a population balance model for an ideally mixed
vessel with inflow and classified outflow that has eight parameters requiring estimation.
The model inputs are the grinding pressure, the feed pressure, the feed mass flow rate
and a Rosin Rammler characterisation of the initial PSD. The model outputs the resulting
PSD as a characterisation of x10, x50 and x90 as well as the specific energy input and the
fraction of solid material in the total flow. The collection of parameters employed in the
model, their sources and physical definitions are shown in Table 2.

The population balance equation is:

dw

dt
= −(I −B)S w + ṁfeed Xw,feed − P disc w , (1)

where w represents a discretised characterisation of the particle distribution.

The jet expansion subprocess, using the construction in [31], gives the mass flow of the
gas as:

ṁgas = pgrindA0

√
κMw

RTgas

(
2

k + 1

) k+1
k−1

, (2)

from which we can calculate the kinetic energy, as given in [27], as:

Ek =
1

2
ṁgas v

2
gas (3)

and the specific energy, also from [27], as:

Esp =
Ek

ṁfeed
, (4)

and the fraction of solid material in the total flow is computed as:

Xsolid =
ṁfeed

ṁfeed ṁgas
. (5)
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Table 2: Variables used in the model.

Parameter Description Source of value

Population balance equation
I Identity matrix
B Breakage matrix Model parameter
S Breakage frequency vector Model parameter
ṁfeed Feed mass flow rate Model parameter
Xw,feed Feed mass distribution Process condition
P disc Probability discharge Model parameter

Jet expansion
A0 Nozzle area Process condition
Ek Kinetic energy Model response
Esp Specific energy Model response
Mw Molecular mass Process condition
pgrind Grinding pressure Process condition
R Universal gas constant Process condition
Tgas Grinding gas temperature Process condition
vgas Gas velocity Process condition
Xsolid Solid mass fraction Model response
κ Heat capacity ratio Process condition

Breakage
kr Feed PSD parameter Process condition
m Feed PSD parameter Process condition
ṁgas Gas mass flow rate Model parameter
τ Empirical parameter Parameter estimation
β Empirical parameter Parameter estimation
λ Empirical parameter Parameter estimation

Air classification
kdisc Discharge consant Parameter estimation
Mholdup Mass of solid in milling chamber Model parameter
x50d Cut size Parameter estimation
kx50d Holdup constant (on cut size) Parameter estimation
kσ50d Holdup constant (on spread) Parameter estimation
σ50d Spread Parameter estimation
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The breakage subprocess is described by the breakage matrix B, where the ith and jth
element of B is:

Bij =
Si−1 − Si

Sj
, (6)

which uses the elements of the breakage frequency vector S [6]. The ith element of S is
defined as:

Si = (mgasτ)β
(

xi
xmax

)λ
, (7)

where xi is the size class under consideration and xmax is the uppermost size of the dis-
cretisation of the particle distribution [22].

For the air classification submodel, we use the construction in [22] as:

Pdisc,i = kdisc ṁgas

[
1− 0.5

(
1 + erf

(
lnxi − lnxd√

2 ln σd

))]
, (8)

where

xd = x50d[kx50d(1 +M2
holdup)] (9)

and

σd = σ50d[kσ50d(1 +M2
holdup)] . (10)

This model has been implemented in Matlab and a single evaluation takes approximately
5 seconds CPU time. Since use of sampling algorithms typically requires making a large
number of model evaluations, using the model directly is prohibitively slow. A commonly
used method in this situation is to use a surrogate model. In addition, past experience with
this model has provided recommended parameter range constraints to define the model
parameter space which are set out in Table 3.

4 Parameter estimation methodology

In this section we briefly discuss the construction of the surrogate model and review
the Bayesian theory employed along with the implementation of the MCMC algorithms.
Both the Metropolis-Hastings and the Wang-Landau algorithms are stated in a generalised
form.

This parameter estimation process begins with creating the surrogate model. In this im-
plementation we make use of an in-house developed software package, MoDS, to generate
quadratic response surfaces using evaluations of the original model. The surrogate model
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Table 3: Model parameters to be estimated with physical limits and limits chosen for
construction of response surfaces.

Physical limits Chosen limits
Parameter Model value Unit low up low up Scaling

θ1 τ 10−3 kg−1 0 ∞ 1 2 linear
θ2 λ − 0 ∞ 1 3 linear
θ3 β − 0 ∞ 1 3 linear
θ4 x50d µm 0 ∞ 5 20 linear
θ5 σ50d − 1 ∞ 1 3 linear
θ6 kx50d 100 m6/kg2 0 ∞ 0.5 3 linear
θ7 kσ50d 100 m6/kg2 0 ∞ 0.01 0.1 linear
θ8 kdisc kg−1 0 ∞ 0.5 5.5 linear

Metropolis-Hastings

OR

Wang-Landau

Evaluate Surrogate model:Evaluate Original
model:
Values from Table 2

Generate
surrogate model
(CCD)

MoDS MCMC Sampling

Quadratic response
surface values:

( , , )b b b0 i ij

Uses:
Experimental
process conditions;
Initial parameter
ranges

Parameter

estimates

Uses:
Experimental data;
Initial parameter
ranges

Figure 2: Overview of parameter estimation process used in this work.

is then used in lieu of the original model with the MCMC algorithms. Both parts of this
process employ initial estimates of likely ranges of the parameters which are based on
physical limits or past experience which appear in Table 3.

The entire process with component parts is summarised in Figure 2.

4.1 Definitions

We begin by introducing some terminology and notation. The model simulates an exper-
imental process on which experiments have been performed. Any experiment is charac-
terised by a number of settings prescribed by the experimenter, i.e. a vector of

process conditions: ξ = (ξ1, . . . , ξM)>,
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with M components. The resulting measurements can be expressed as

experimental responses: ηexp = (ηexp
1 , . . . , ηexp

L )>,

with L components.

The corresponding model predictions produce a vector of

model responses: η = (η1, . . . , ηL)>,

which also has L components.

The model responses depend on the process conditions and on a vector of

model parameters: θ = (θ1, . . . , θP )>,

with P components. The values of these are unknown a priori and need to be determined
by parameter estimation.

When we consider sequences of experiments or model evaluations as a sequence of pro-
cess conditions we denote this by superscript indices in parentheses: The nth experiment,
performed at the process conditions ξ(n) =

(
ξ

(n)
1 , . . . , ξ

(n)
M

)>, yields responses ηexp,(n) =(
η

exp,(n)
1 , . . . , η

exp,(n)
L

)>, and the nth model evaluation, also performed at the process con-
ditions ξ(n), yields responses η(n) := η(ξ(n), θ) =

(
η

(n)
1 , . . . , η

(n)
L

)>.

4.2 Response surfaces

The methods by which the parameter estimates can be generated are determined in part
by the operational behaviour of the model. In this case, direct evaluation of the model is
prohibitively slow which suggests the use of a surrogate model; in our case we will make
use of quadratic response surfaces.

Specifically, the lth response of the model evaluated at the nth process condition ξ(n) is
replaced by the second order polynomial in model parameter space:

η
(n)
l (θ) = β

(n)
l,0 +

P∑
i= 1

β
(n)
l,i θi +

P∑
i= 1

P∑
j≥ i

β
(n)
l,ij θi θj, (11)

where β(n)
l,0 , β(n)

l,i , and β(n)
l,ij are the coefficients of the constant, linear, and quadratic terms,

respectively [11, 16, 29].

We determine the coefficients of our surrogate models (11) by performing least-squares
fitting to model evaluations on a Central Composite Design (CCD) in model parame-
ter space. A CCD includes all points of a full factorial design (2P corner points of the
hypercube), two points on every axis, located symmetrically, and the centre point [30].
Construction of response surfaces has previously been used to good effect under similar
circumstances for a wide variety of applications [11, 15, 16, 24, 28, 29, 34].
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4.3 Bayesian preliminaries

We estimate the model parameters with a Bayesian methodology based on the construc-
tion given in [5] for multi-response experimental data. The construction used is derived
in detail in [29].

A Bayesian approach is based on the idea that uncertainty in the model parameters θ can
be represented by a probability density p(θ), called a prior distribution. When provided
with new information, such as experimental data, which have a corresponding probability
density p(ηexp|θ), the model parameters can be updated, resulting in a posterior distribu-
tion p(θ|ηexp) of the unknown parameters. This is the concept that is expressed by Bayes’
Theorem:

p(θ|ηexp) ∝ p(ηexp|θ)p(θ). (12)

For ease of reference, we can also state the theorem as:

Posterior ∝ Likelihood× Prior.

Thus, in order to make estimates of our model parameters using the posterior distribution,
we need to construct the likelihood and the prior distribution.

4.3.1 Likelihood

The likelihood embodies the distribution of the experimental data, where we will make
the common assumption that the experimental response is equal to the model response
plus a Gaussian error:

ηexp,(n) = η
(
ξ(n), θ

)
+ ε(n) with ε(n) ∼ NL(0,Σ), (13)

where ε(n) is the L-dimensional vector of the measurement errors which are normally
distributed with zero mean and covariance matrix Σ. Further, Σ is assumed to be inde-
pendent of the process condition ξ, but the L components of the error vector for any one
experiment may be correlated. Then the likelihood can be shown to be: [5, 29]

p
(
ηexp,(1), . . . , ηexp,(N)

∣∣θ,Σ) = (2π)−NL/2(det Σ)−N/2 exp
{
− 1

2
tr
[
Σ−1S(θ)

]}
, (14)

where:

S(θ) :=
N∑
n=1

ε(n)ε(n)>.

4.3.2 Prior distributions

The choice of prior distributions is a non-trivial, much-debated subject in the literature.
From (14) we have two objects, θ and Σ, for which we need to state prior beliefs. We
begin by assuming their independence:

p(θ,Σ) = p(θ) p(Σ). (15)
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For our prior of θ, we consider a constant (uniform) distribution over a hypercube C which
is defined as the region in P -dimensional space such that θj ∈ [−1, 1] for all j = 1, . . . , P ,
which gives a prior probability density for θ as

p(θ) =
1

|C|
1{θ∈C}, (16)

where | · | denotes the size/volume of a set and 1{·} is the indicator function.

If Σ is unknown – the case referred to as non-informative – we choose the Inverse-Wishart
non-informative prior

p(Σ) ∝ (det Σ)−α−(L+1)/2 exp
[
− 1

2
tr
(
Σ−1Ψ

)]
, (17)

where α > 0 and Ψ ∈ RL×L are positive definite arbitrary parameters.

4.3.3 Posterior distributions

The application of Bayes’ Theorem gives the posterior densities (up to constant factors)
as:

p
(
θ,Σ

∣∣ηexp,(1), . . . , ηexp,(N)
)

∝ (det Σ)−α−(N+L+1)/2 exp
{
− 1

2
tr
[
Σ−1

(
S(θ) + Ψ

)]}
· 1{θ∈C}. (18)

As we are interested in the marginal posterior density for θ, we integrate over all positive
definite matrices Σ which gives:

p
(
θ
∣∣ηexp,(1), . . . , ηexp,(N)

)
=

∫
Σ pos. def.

p
(
θ,Σ

∣∣ηexp,(1), . . . , ηexp,(N)
)
dΣ

∝
[

det
(
S(θ) + Ψ

)]−α−N/2 · 1{θ∈C}. (19)

Using these constructs we have expressions for the posteriors (18) and (19) only up to
constant positive factors. While these normalisation factors can in principle be found, it
is not necessary when an appropriate sampling method is used.

Further we define a constant ε and assign values to α and Ψ in (19), such that:

α = ε, (20)

Ψ =

 2 ε . . . 0

0
. . . 0

0 . . . 2 ε

 . (21)

4.4 Sampling algorithms

4.4.1 Metropolis-Hastings

The Metropolis-Hastings algorithm creates a continuous space discrete time Markov Chain
with a stationary distribution identical to the distribution of interest, called π(x). In sim-
ple terms, this means sequentially choosing values of x, or states, to move into such that
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a state x is visited with frequency density π(x). A generalised statement of the algorithm
is given in Algorithm 1. Notice that (23) has the factor π(x′)/π(x) implying that we
need only the density π(x) up to a constant normalisation factor. Hence, if we wish to
sample from the posteriors given in (18) or (19), we need only substitute π(x) with those
expressions.

To apply Algorithm 1 to our application, we set the states x to be θ and the density of
interest to be the posterior density p(θ | ηexp). We also use the proposal density q(x→ x′)
(as explained in Step 1 of Algorithm 1) to be q(x → x′) = q(θ → θ′) = δ 1

|X |1{θ′∈X} +

(1− δ) 1
|X (θ)|1{θ′∈X (θ)}, where X (θ) is the intersection of the hypercube X and the hyper-

cube with edgelength ∆ centred at θ. The idea behind this choice is to jump completely
uniformly in X with probability δ to ensure coverage of the entire space but, to reduce
rejections, we jump with probability (1 − δ) to a subspace of the hypercube centered on
the current position in X .

An important requirement for implementation is that the created Markov Chain must fulfil
the condition of ergodicity and the condition of balance, which is usually extended to a
condition of detailed balance. The condition of ergodicity requires that from any state x
one can move, with some number of intermediate steps, to any other state x′ and if the
chain runs long enough it will return to x at some future point [21]. The condition of
detailed balance requires that the transition probability q(x → x′) between each pair of
states x and x′ is such that:

π(x)q(x→ x′) = π(x′)q(x′ → x). (22)

This means that the probability of moving from q(x → x′) is the same as moving from
q(x′ → x). It can be shown that the Metropolis-Hastings algorithm has this property,
given weak conditions on q and π [35]. One says that the chain has converged when these
conditions have been met. In practice, it is not possible to establish with full certainty that
a chain has converged. However, there are diagnostic methods, which will be employed
in section 6 that may indicate non-convergence.

4.4.2 Wang-Landau

The Wang-Landau algorithm is an extension of the Metropolis-Hastings algorithm which
attempts to improve mixing by adaptively sampling from alternative distributions. A full
description of a generalised form of the Wang-Landau algorithm can be found in [4]. The
basic idea is that we begin with a state space X and a probability measure π. One can
then create a partition such that X = ∪Xi where Xi ∩Xj = ∅ and π is reweighted in each
Xi. The primary difficulty in this method is in calculating the weights so that sampling is
appropriately distributed across the partitions. The Wang-Landau algorithm addresses this
issue by simultaneously computing the weights and sampling from the new distribution.
A generalised form of the Wang-Landau algorithm is set out in Algorithm 2.

This method naturally lends itself to simulated tempering where distributions are gen-
erated that are close to π but easier to sample from [18]. The implementation in this
paper is such that one selects a so-called ‘temperature ladder’ consisting of T temperature
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Algorithm 1: Metropolis-Hastings algorithm

1 Choose a proposal density q(x→ x′) which is a probability density function for
choosing a new state x′ given that we are currently positioned in the state x.

2 Set i = 0. Start with any initial state x(0) for x.

while i < N do

3 Propose a new state x′ sampled from (any) proposal density q(x→ x(i)).
4 Compute the quantity

αaccept :=
π(x′) q(x′ → x(i))

π(x(i)) q(x(i) → x′)
. (23)

5 Perform a rejection step, i. e. with probability r := min{1, αaccept}, accept the
proposed state x′, i. e., set x(i+1) = x′, otherwise, set x(i+1) = x(i).

6 Set i← i+ 1.

7 STOP.

14



classes. For each step of the ladder, the posterior density function is taken to a power
1/T , which has the effect of smoothing the distribution. Prior to the execution of each
Metropolis-Hastings step, a temperature class is selected and the acceptance/rejection is
decided based on the smoothed distribution. The benefits of using this method is improved
mixing of the sampling due to the curve smoothing effect as one ascends the ladder, how-
ever its usage incurs additional complications. A method is required which will select a
temperature class for each iteration that will ensure good mixing between the tempera-
ture classes. This is accomplished by checking after each iteration if an approximately
‘equal’ distribution has been obtained and adjusting the weights attached to each temper-
ature class before selecting the temperature for the next iteration. Additionally, only the
samples generated in the first temperature class are pertinent to the distribution of inter-
est. This being the case, we discard all samples generated in the other temperature classes
which can amount to a substantial portion of the samples generated.

5 Details of implementation

To simplify calculations throughout, the model parameters are coded using a linear trans-
form to restrict the range of each parameter θi by transforming it to a corresponding θ′i
such that −1 < θ′i < 1. The linear transformation used for each parameter with given
bounds is:

bi,1 =
2.0

θi,upperbound − θi,lowerbound
, (26)

bi,0 = 1.0− bi,1 × θi,upperbound, (27)

θ′i =
θi − bi,0
bi,1

. (28)

The values used with this model for θi,lowerbound and θi,upperbound are listed as the chosen
limits in Table 3.

As this is a linear mapping, the properties of vector addition and scalar multiplication
are preserved. Samples are generated by the sampling algorithm while restricted to this
interval and then decoded when the results are presented.

5.1 Surrogate model

The construction of the second order response surfaces is based on a Central Composite
Design (CCD). In addition to the cornerpoints of a full factorial design, the centre point
and two points in each direction are evaluated. With the assumption that the full factorial
design is based on [-1, 1], the CCD becomes rotatable if the axis points are a certain
distance away from the centre point. This distance parameter D needs to be equated by
the following equation if rotatability of the design is required,

D = 2k/4 , (29)
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Algorithm 2: Wang-Landau algorithm
1 Set i = 0. Set constants a0 = 0, κ = 0 and select c ∈ (0, 1).

Set T = number of partitions/temperature classes.
Choose a proposal density qρ((x, T (i))→ (x′, T ′)) which is a probability density
function for choosing a new state (x′, T ′) given that we are currently positioned in
the state (x, T (i)) and T ′ is a function of ρi(.).
Define function fa,b(j) = 1

b−a
∑b

k=a+1 1{T (k)=j} when a ≤ b and 0 otherwise.
Define {γn}, as some positive decreasing sequence.
Define T -dimensional vector φ0 where φ0(j) ∈ R and φ0(j) > 0 for j = 1, . . . , T .
Define function ρi(n) such that:

ρi(n) =
φi(n)∑T
j=1 φi(j)

. (24)

2 Start with any initial state (x(0), T (0)).

while i < N do

3 Propose a new state (x′, T ′) sampled from proposal density
qρ((x

(i), T (i))→ (x′, T ′)).
4 Compute the quantity

αaccept :=
π(x′, T ′)

π(x(i), T (i))
×
(
qρ((x

′, T ′)→ (x(i), T (i)))

qρ((x(i), T (i))→ (x′, T ′))

)
. (25)

5 Perform a rejection step, i. e. with probability r := min{1, αaccept}, accept the
proposed state (x′, T ′), i. e., set (x(i+1), T (i+1)) = (x′, T ′), otherwise, set
(x(i+1), T (i+1)) = (x(i), T (i)).

6 For j = 1, . . . , T ; Set φi+1 = φi(j)
(

1 + γai1{T (i+1)=j}
)

.
Calculate ρi+1(j).
if Max1≤j≤T |fκ,(i+1)(j)− 1

T
| ≤ c

T

then
Set κ = i+ 1, and ai+1 = ai + 1.

else
ai+1 = ai.

7 Set i← i+ 1.

8 Discard samples from all temperature classes, except T (i) = 1 ∀ i.
9 STOP.
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where k is the number of dimensions of the design; in this application k is set equal to the
number of model parameters being estimated. However, it is possible for the values of the
uncoded parameters outside [-1, 1] to take on physically impossible values, e. g., become
negative. Hence, the rotatability of the CCD is ignored for the forthcoming parameter
estimation and points selected such that

D = 0.5 . (30)

5.2 MCMC settings

The number of samples generated and the number samples at the beginning of the chain
that are discarded to eliminate the influence of the starting position, called ‘burnin’, are
typically of interest in MCMC implementations. We have chosen to forego investigation
of these elements and instead use arbitrarily large values for both factors and then validate
after the fact that these sizes are sufficient. For all of the sample runs, 6 million samples
were generated for Metropolis-Hastings and 5 million were generated for Wang-Landau
over all of the temperature classes. It is important to note that the practice of discarding
the samples generated in any class except T = 1 when employing Wang-Landau implies
that the number of samples we have for analysis is significantly less than the 5 million
generated. The amount of burnin will be chosen after the remaining algorithm specific
settings have been established. Additionally, preliminary testing has established a value
of ε = 0.001 to be used in (21) as a value which works well in this system. The scripts
for both algorithms have been implemented in R.

The criterion we will use to establish the remaining settings is by examining the accep-
tance rates. It is a known result that an optimal rate of convergence, under certain condi-
tions, is at an acceptance rate of 0.234 [33]. We will use this as a guideline to determine
appropriate algorithm specific settings.

5.2.1 Metropolis-Hastings acceptance rate analysis

The values for δ and ∆, which are the probability of a large jump and the edgelength,
respectively, will be established by performance.

Samples were generated using all combinations of:

1. δ values: 0.3, 0.4, 0.5; and

2. ∆ values: 0.004, 0.005, 0.006, 0.007.

The resulting acceptance rates can be seen in Figure 3. We can observe a downward
shift in the acceptance rates when δ increases. In addition, we can clearly see that the
acceptance rates decrease as the edgelength ∆ increases. From this plot we select the
combination of settings which are closest to our theoretical best acceptance rate for further
scrutiny. The selected combinations of settings are when δ = 0.3 and ∆ = 0.005. Further,
with 6 million samples available for analysis, we will set the burnin at 1 million samples.
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Figure 3: Acceptance rates for Metropolis-Hastings; ε = 0.001.
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5.2.2 Wang-Landau acceptance rate analysis

The Wang-Landau algorithm also has settings and functions that must be established be-
forehand.

Our first concern is the spacing of the temperatures. In this case, we have defined a
constant ratio between adjacent temperatures called Iinv to create geometric growth in the
temperatures. In this specific case we have set Iinv = 0.2.

The quantity for δ retains its Metropolis-Hastings definition as the probability of a large
jump however, with Wang-Landau, each temperature class j = 1 . . . T requires an indi-
vidual edgelength ∆j . We set these as:

∆j =

√
1

Ij−1
inv

×∆1, (31)

where ∆1 is the edgelength for the first temperature class, or the distribution of interest.

The mechanism for selecting the next temperature class using the weights ρi is the Gibbs
sampler. For details about Gibbs sampling see [12].

We also need to determine initial values to update the weights, ρi, for the temperature
classes. Specifically, from [4] we have:

c = 0.4, (32)
a = 2.0, (33)

tol = 1.0× 10−5, (34)

where the sequence γan is defined as:

γan =aan γan < tol, (35)

γan =n−1 otherwise. (36)

As done previously, with the inclusion of a third factor T , samples were generated using
all combinations of:

1. δ values: 0.3, 0.4, 0.5;

2. ∆1 values: 0.004, 0.005, 0.006, 0.007; and

3. T : 15, 25, 35.

The plot of the acceptance rates appears in Figure 4 where we can observe the same trends
with respect to ∆ and δ as with Metropolis-Hastings. The effect of the number of tem-
peratures, T , causes the choice to be less clear using this criteria, however an additional
consideration is that the larger the number of temperature classes, the more samples we
will discard. In this case, from the combinations that are near the optimal rate, we selected
the one that discards the fewest samples. The settings selected are δ = 0.5, ∆ = 0.004,
T = 15. The 5 million samples generated yielded 342,820 samples in the lowest temper-
ature class for analysis, of which an additional 100,000 are discarded for burnin.
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Figure 4: Acceptance rates for Wang-Landau; ε = 0.001, Iinv = 0.2.
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6 Results

6.1 Diagnostic plots and convergence

The choices that have been made in the implementation need to be validated by exam-
ining the generated chains to acertain if they are exhibiting undesirable behaviour. Two
common methods for quick assessment of a chain are the examination of the autocorre-
lation function (ACF) and trace plots. It should be emphasised that these plots are not
guarantees of convergence or that the chain is well behaved. They are useful to see if the
required properties are not being met and may suggest ways to fix any problems.

6.1.1 ACF Plots

The first set of diagnostic plots that we will examine are the ACF plots. These figures show
the autocorrelation function for each parameter plotted against the number of iterations
between the values, where the distance between steps is referred to as the ‘lag.’ Ideally
we would like the autocorrelation to quickly decline to zero.

By comparing the ACF plots for Metropolis-Hastings in Figure 5 and Wang-Landau in
Figure 6, it is readily seen that there is a significant difference in the behaviour of the
autocorrelation of the eight model parameters. Although the Wang-Landau results are far
from the ideal case, combined with the fact that a lag of 3000 could easily be considered
excessive, the rate of decay is much faster than for Metropolis-Hastings. The Metropolis-
Hastings results show the autocorrelation function is decreasing for all of the parameters,
although quite slowly and not at a rate as satisfying as with Wang-Landau. In either case,
there is a strong suggestion that a large number of samples will be necessary.

6.1.2 Trace plots

Next we turn our attention to the adequacy of the number of samples generated, the burnin
and convergence of the chain. We may make a quick assessment of these factors by the
use of trace plots, which are the sample values plotted against the step index. Ideally,
there should be no relationship between the value of the sample and its location in the
chain. Trends in the early part of the chain would indicate insufficient burnin and overall
patterns may suggest a lack of convergence. Loosely speaking, we want trace plots that
look like white noise, with no detectable pattern.

The plots shown in Figure 7, for Metropolis-Hastings, overall demonstrate encouraging
behaviour. There is no sudden shift in the pattern to indicate insufficient burnin and the
chains appear to be meeting the conditions of detailed balance and ergodicity. The plots
for θ′2, θ′3 and θ′5 demonstrate a near textbook definition of what we want to see. The other
plots, while not as ideal, could be considered adequate, although the patterns suggest that
we have a slowly mixing chain which will require a large number of samples. One feature
that should be noted is the tendency of the plot for θ′4 to shift toward the upper limit. A
similar, if not as marked, downward trend can be seen in θ′7. It is likely that this can be
ascribed to the pre-chosen boundaries defined for these parameters being off-centre.
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Figure 5: Autocorrelation function for Metropolis-Hastings: δ = 0.3, ∆ = 0.005.
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Figure 6: Autocorrelation function for Wang-Landau: δ = 0.5, ∆ = 0.004, T = 15.
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The corresponding Wang-Landau plots in Figure 8 are not as classically perfect, however
there is a significant difference in the available number of samples. Where the Metropolis-
Hastings case has 5 million samples, after burnin of 1 million has been removed, the
Wang-Landau case has 242,820, after a burnin of 100,000 samples. However, the same
patterns can be observed in that θ′2, θ′3 and θ′5 appear to be mixing well while θ′4 and θ′7 are
vertically shifted. Overall, both sets of plots are encouraging, if suggestive that a change
in bounds for θ′4 and θ′7 should be attempted in future.

6.2 Analysis of the parameter distributions

6.2.1 Density plots

One method of examining the distribution generated by a Markov Chain is by viewing the
density plots for each parameter individually. It is highly desirable for the density plots to
appear to be unimodal, as then we will have a single optimal parameter value. Samples
in Figure 9 and Figure 10 appear to be creating a bell-shaped curve, except for θ′4 and
θ′7. In these cases, our observations from the previous plots are reiterated. In particular,
the distributions for those two parameters appear to be left and right truncated, respec-
tively. While this reinforces the suggestion that the imposed boundaries are truncating the
distribution, the truncation appears to be happening in the tails. This being the case, it is
conceivable that our parameter estimates will be usable.

6.2.2 Marginal posterior 2-D plots

Another consideration is the two-dimensional marginal posterior plots. The results for
Wang-Landau are shown in Figure 11 and Figure 12. The Metropolis-Hastings case
presented some difficulties in generating plots due to the large number of samples. The
results for Metropolis-Hastings shown in Figure 13 and Figure 14 represent a random
sample of 500,000 from the total of 5 million samples available. Both of these sets of
plots illustrate that a central ‘good’ region has been found by the algorithms. It should be
noted that it is not appropriate to make a direct comparison between the two algorithms
based on these plots, as the kernel density estimation for Metropolis-Hastings is based on
more points, which consist of a subset of the available points. Nevertheless, we see again
that realisation of θ′4 and θ′7 indicate that the bounds may benefit from further investigation,
however there are no other glaring errors or evidence of multi-modal solutions. Further,
the similarities between the corresponding plots indicate that both methods are creating
a realisation of the same distribution. One feature to note is the linear appearance of the
plots produced by both algorithms for θ′2 vs. θ′3. This shape suggests correlation between
these two parameters, which if verified indicates a method to simplify the model.
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Figure 7: Trace plots; Metropolis-Hastings: δ = 0.3, ∆ = 0.005.
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Figure 8: Trace plots; Wang-Landau: δ = 0.5, ∆ = 0.004, T = 15.
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Figure 9: Marginal posterior probability densities; Metropolis-Hastings: δ = 0.3, ∆ =
0.005.
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Figure 11: Wang-Landau paired marginal posterior; 1 of 2.
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Figure 12: Wang-Landau paired marginal posterior; 2 of 2.
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Figure 13: Metropolis-Hastings paired marginal posterior; subset of 500,000 samples; 1
of 2.
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Figure 14: Metropolis-Hastings paired marginal posterior; subset of 500,000 samples; 2
of 2.
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6.3 Parameter estimates and high probability density regions

We now turn to extracting estimates for the model parameters from the realised distribu-
tions. The usual summary statistics, e. g., mean and standard deviation, in general do not
yield very useful values in these circumstances. Instead, the value of highest probability
density (HPD) together with the bounds of the high probability density region (at some
given confidence level) should be used [7]. While this procedure leads to a good “best”
estimate with error bars, one should bear in mind that the densities contain much more
information, and in cases where the distributions are multi-modal, it may not make sense
to pick a best estimate or construct error bars. In this application, the evidence of the one-
and two-dimensional density plots suggest that it is reasonable to do so.

In this case, we will use 100 (1-α) posterior credibility intervals, with α = 0.0455, which
corresponds to 2 standard deviations. The values for the estimated parameters are the
points of maximum density from their respective posterior marginal densities with error
bars that represent a credibility region.

The constructed estimates and credibility regions for both sampling algorithms are dis-
played in Figure 15. First, it should be noted that the two sampling algorithms yield
largely the same estimates and ranges which supports the claim that the Markov Chain
has converged and the samples are drawn from the distribution of interest. The vertical
shift of θ′4 and θ′7 are apparent in that, while the estimated model parameter values appear
to be within the credibility region, the error bars collide with the predefined boundaries.
Additionally, the ranges of the error bars are far wider than for the other estimates, with
the bars being skewed. This suggests that the probability weight is not being equally
distributed, again likely due to sub-optimal bounding for the model parameters.

6.4 Varied starting position

A last aspect that we should examine is the choice of initial values. By beginning the
chain at different points, we can establish if the sample size and burnin are sufficient,
or if they are having an impact on the end results. Table 4 shows the uncoded values
for the Wang-Landau HPD point of maximum density with errors for the chain we have
been analysing for five randomly generated starting vectors. The previous observations
are borne out in that the results for θ4 and θ7, the HPD regions are bounded on one edge
by the predefined boundaries, although the credibility regions themselves are similar. The
chains that have been generated largely exhibit similar bounds and points of maximum
density. Of the five alternate chains, Run 3 exhibits the most significant deviation from
the other chains, which may be attributed to a particularly poor set of initial conditions.
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7 Conclusions

We have demonstrated a Bayesian approach to parameter estimation for a computationally
expensive jet-milling model. The method uses both the experimental data and the uncer-
tainties associated with the measurements to create a posterior distribution for the model
parameters. The Metropolis-Hastings and Wang-Landau sampling algorithms were used
to independently create a realisation of the distribution. Both algorithms produce consis-
tent model parameter estimates. Their behaviour is compared and assessed.

The parameter estimation process starts by constructing a posterior distribution for our
model parameters. A realisation of the posterior distribution is generated using the Metropolis-
Hastings and Wang-Landau sampling algorithms. These algorithms require a large num-
ber of model evaluations and would be intractable using the original computationally ex-
pensive model. We make use of quadratic response surfaces as surrogate models in order
to obtain parameter estimates in a reasonable timeframe. The model parameter estimates
are extracted from the realised distribution in the form of credibility regions, described by
a point of maximum density with associated error bars.

The two sampling algorithms were demonstrated to produce similar model parameter es-
timates. The behaviour of the algorithms was assessed by examination of autocorrelation
function plots, trace plots and parameter marginal posterior density plots. The autocorre-
lation functions indicated that the Wang-Landau algorithm showed a markedly superior
rate of decay. The trace plots suggested that good mixing was occurring for both algo-
rithms; which supports the belief that the Markov Chain has converged and the samples
are being generated from the distribution of interest for each algorithms. One- and two-
dimensional marginal density plots suggested a unimodal bell-shaped distribution for each
parameter. The fact that both algorithms produce the same results, strongly suggests that
the Markov chains have converged and gives us further confidence in the model parameter
estimates. In addition, the parameter estimates were shown to be largely independent of
the initial values for the chains by examination of the credibility regions.

The process of obtaining the parameters estimates and testing their validity has suggested
characteristics of the model and surrogate model that should be investigated or altered.
The 2-D marginal posterior density plots suggest the existence of correlation between at
least two of the parameters. A high degree of correlation between parameters indicates
that the model could be simplified without degrading its functionality. The tendency of
two of the parameter samples to be vertically shifted in the trace plots as well as the
truncation in the density plots indicate that the bounds placed on the model parameter
space are impacting the Markov Chains. As the truncation appears to be confined to the
tails of the distributions, estimates obtained using point of maximum density should be
usable; however the error bars are likely to be affected. This behaviour suggests that the
initial bounds for the parameters used to generate the surrogate model need to be modified
for the affected parameters. It also demonstrates a drawback of this methodology in that
you need to define an initial range for the parameters. While bounds can be defined by
preliminary testing, the ability to begin with less specific information is desirable.

In the course of this investigation, we have taken arbitrarily large values for the number
of samples generated and burnin for the Markov Chains. Further study of minimum val-

36



ues for both elements, particularly in reference to the implementation of Wang-Landau
would be both useful and of interest. The Wang-Landau algorithm contains a number of
numerical parameters which were arbitrarily established, such as Iinv and the method of
generating the sequence ∆j . Similarly, for both algorithms ε was set equal to 0.001, as
a value that worked well for the system considered in this paper. Further investigation of
these values would be of interest. Additionally, many more sophisticated diagnostic tech-
niques have been described in the literature and could be implemented to further assess
the behaviour of the Markov Chains and the validity of the results.
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Nomenclature

Roman symbols

a Wang-Landau numerical parameter -
an Wang-Landau numerical parameter -
A0 Nozzle area m2

bi,0 Variable for defining linear transform to [−1, 1] -
bi,1 Variable for defining linear transform to [−1, 1] -
B Breakage transition matrix -
c Wang-Landau numerical parameter -
C n dimensional Hypercube where n is the number of parameters

(theoretical)
-

D Distance parameter for Central Composite Design -
Ek Kinetic energy kJ/kg
Esp Specific energy kJ/kg
I Identity matrix -
Iinv Inverse temperature ratio -
k Number of dimensions of Central Composite Design -
kdisc Discharge constant kg−1

kr Initial PSD parameter -
kx50d Hold-up constant (on cut size) 100m6/kg2

kσ50d Hold-up constant (on spread) 100m6/kg2

m Initial PSD parameter -
ṁfeed Feed mass flow rate kg/h
ṁgas gas mass flow kg/s
Mw Molecular weight kg/kmol
Mholdup Concentration of solid kg/m3

NL(x, y) Gaussian distribution with mean x and covariance matrix y -
pgrind Grinding pressure barg
P disc Discharge probability -
q(x→ y) Transition probability from state x to state y -
R Universal gas constant J/(kmol K)
S Breakage frequency vector 1/s
Si ith breakage frequency 1/s
T Number of temperature classes -
Tgas Gas temperature K
tol Lower limit for resolution -
vgas velocity of gas m/s
x10 Particle class (10th pencentile) µm
x50 Particle class (50th pencentile) µm
x50d Cut size µm
x90 Particle class (90th pencentile) µm
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xi Discrete particle size classification -
Xsolid Fraction of solid material -
Xw,feed Mass fraction characterisation µm
X n dimensional Hypercube with edgelength ∆, where n is the num-

ber of parameters estimated
-

Greek symbols

α Parameter for Inverse-Wishart distribution -
β Empirical parameter -
β

(n)
l,0 Constant coefficient of response surface for lth response of model

at n process condition
-

β
(n)
l,i i Linear coefficients of response surface for lth response of model

at n process condition
-

β
(n)
l,ij i Quadratic coefficients of response surface for lth response of

model at n process condition
-

γn Positive increasing sequence -
δ Probability of making a large jump -
∆ Edgelength for MCMC jumps -
∆i Wang-Landau edglength for nth temperature -
ε(n) Vector of measurement errors -
η Vector of model responses -
ηexp Vector of experimental responses -
ηexp
i ith experimental response -
η

exp,(n)
i nth experimental response for ith process conditions -
ηexp,(n) Experimental responses for ith process conditions -
ηi ith model response -
η(n) Model responses for ith process conditions -
η

(n)
i nth model response for ith process conditions -
θ Vector of model parameters -
θi ith model parameter -
θ′i ith linearly transformed (coded) value for θ -
κ Wang-Landau numerical parameter -
κ Heat capacity ratio -
λ Empirical parameter -
π Markov Chain with stationary distribution identical to distribution

of interest
-

ρi Wang-Landau function to select next temperature class -
σ50d Spread -
Σ Covariance matrix -
τ Empirical parameter 10−3 kg−1

φn Wang-Landau frequency parameter -
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ξ Vector of experimental process conditions -
ξi ith experimental process condition -
ξ

(n)
i nth experiment performed at ith process conditions -
ξ(n) Experiments performed at ith process conditions -
Ψ Positive definite matrix for Inverse-Wishart distribution -
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