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Abstract

A multi-objective optimization scheme based on stochastic global search is devel-
oped and used to examine the performance of an HCCI model containing a reduced
chemical kinetic mechanism, and to study interrelations among different model re-
sponses. A stochastic reactor model of an HCCI engine is used in this study, and
dedicated HCCI engine experiments are performed to provide reference for the opti-
mization. The results revealed conflicting trends among objectives normally used in
mechanism optimization, such as ignition delay and engine cylinder pressure history,
indicating that a single best combination of optimization variables for these objec-
tives does not exist. This implies that optimizing chemical mechanisms to maintain
universal predictivity across such conflicting responses will only yield a predictivity
tradeoff. It also implies that careful selection of optimization objectives increases
the likelihood of better predictivity for these objectives. This may have a particu-
lar importance in those practical applications where a high degree of predictivity for
a limited number of responses is needed, but only a reasonable computational ex-
pense can be afforded. These insights are utilized here to develop a highly predictive
HCCI model of engine cylinder pressure history, and to evaluate the model’s ability
to predict exhaust emissions. The insight provided by multi-objective optimization
on the interplay among different model responses could be of great help for guiding
mechanism reduction process and for customizing models based on specific needs.
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1 Introduction

Kinetics-based modeling has become an essential tool in combustion studies and for de-
veloping combustion systems and technologies. But due to the high computational ex-
pense associated with detailed kinetics modeling, reduced kinetics are favored especially
when time and resources are limited or when the modeling aims mainly at evaluating
potential alternatives or obtaining a preliminary insight. Kinetic mechanism reduction
speeds up computations but inevitably compromises model predictivity. This necessitates
the application of an optimization step to guide the reduction process and restore as much
predictivity as possible. Approaches for optimizing chemical reaction rates of reduced
mechanisms vary from the simple deterministic gradient-based to the more sophisticated
stochastic and evolutionary search methods. These latter methods have recently gained
wide acceptance and use because of their effectiveness and ability to handle complex
search landscapes. Optimization based on evolutionary search is often employed for a
single objective [6—8, 11, 12, 14], but there have been also some studies that utilize mul-
tiple objectives to enhance the predictivity over a wide range of applications [9, 13].

In general practice, reduced mechanisms are optimized primarily to match experimental
ignition delay times. These mechanisms are sometimes also tuned manually to match
other responses of interest (i.e. objectives) after a good fit with ignition delay times is
established. Some recent studies utilizing multi-objective optimization used flame in-
formation in addition to ignition delay times in an attempt to expand the predictivity to
combustion systems where flame propagation plays a major role [9].

But as the above approaches focus on optimizing reduced mechanisms to fit mainly igni-
tion delay data, predictivity of actual engine responses is often undermined. This makes
such reduced mechanisms of less value for certain practical engine computations. The
current work aims specifically at improving predictivity of engine responses of special
interest, such as engine cylinder pressure and exhaust emissions. The work employs a
multi-objective optimization approach based on evolutionary genetic algorithm, where
subsequent search is guided by results from the preceding solutions. Successful solutions
from one generation are combined to serve as parents to the population of next generation,
with some random changes (i.e. mutations) allowed from time to time in order to explore
new regions in the search space and escape the traps of local minima.

As the main objective of the current work is to develop a more predictive model cus-
tomized for a given engine and a specific modeling setup, the optimization is performed
primarily using engine data, and results for ignition delay times are only used for com-
parison and guidance. In addition, the physical model and the mechanism are treated
as one model, and their uncertainties are addressed collectively, rather than individually.
Multi-objective optimization is used in this work to study the interrelations among dif-
ferent objectives of interest in order to identify best optimization strategies for achieving
targeted enhancement in predictivity.
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Figure 1: A flow diagram of the multi-objective genetic algorithm optimization scheme.

2 Optimization Scheme

Figure 1 shows a flow diagram of the optimization scheme applied in this study. The
scheme is built within the MATLAB environment, and uses MATLAB’s multi-objective
genetic algorithm search function that comes as part of the Global Search toolbox. A
stochastic reactor model (SRM) based on probability density function [1—4, 15] is used in
the scheme to simulate 12 different experiments simultaneously, and results are written to
corresponding output files. The code then reads these output files and calculates objective
functions for the selected responses based on reference experimental data. Aiming at
minimizing the objective functions, the genetic algorithm selects a new combination of
values for the optimization variables and writes it to the input files of the SRM. This cycle
is repeated until the optimization termination criteria are met.

The optimization variable set consisted of the three coefficients of Arrhenius equation
(i.e. the pre-exponential factor, the temperature exponent and the activation energy) for
selected reactions, as well as four variables from the SRM (average wall temperature,
residual gas fraction, turbulent mixing time and heat transfer coefficient). Constraints
were applied on all variables in the optimization set to preserve the general characteris-
tics of the original model. Variations of Arrhenius coefficients were constrained within
+50% of their original values, while SRM variables were constrained within presumed
reasonable ranges.



3 Engine Experiments

The experiments for this work were carried out on a half-liter single-cylinder research
engine running in HCCI mode. The specifications of this engine are listed in Table 1.
The engine has a pent-roof combustion chamber fitted with four valves. Fuel is delivered
intermittently via a port fuel injector located at the end of the intake port just above the
intake valves. Intake air passes through a conditioner to adjust its temperature, humidity,
and pressure as necessary.

Table 1: Engine specifications and valve timing information. Crank angles here are mea-
sured relative to firing TDC.

Parameter Value
Number of cylinders 1
Operation cycle 4-stroke
Combustion mode HCCI
Number of valves 4
Cylinder displacement (liters) 0.5
Bore x Stroke (mm) 84 x 90
Connecting rod length (mm) 159
Crank radius (mm) 45
Compression ratio 12:1
Fuel delivery system PFI
Cooling water temperature (°C) | 90
Lubrication oil temperature (°C) | 90

IVO (CAD) -356
EVC (CAD) -352
IVC (CAD) -156
EVO (CAD) 170

The experiments were performed at boosted intake pressure of 1.5 bar and intake air
temperature of 75°C. The engine was fueled with primary reference fuels at three different
volume ratios: PRF40 (i.e. 40% iso-octane and 60% n-heptane), PRF60 and PRF80. Load
sweeps were performed at three constant speeds of 1200, 1500 and 1800 rpm. Upper and
lower bounds of possible load range are first identified at each test condition, and then
test points are selected at reasonably-distanced intervals. The load range is bounded by
knocking and misfire limits, identified in this work respectively by maximum pressure
rise rate of 10 bar/deg and CoV in IMEP of 5%.

4 Results

The developed optimization scheme was applied on a reduced chemical kinetic mech-
anism for primary reference fuels that has 157 species and 1552 reactions. More de-
scription of the mechanism can be found in [3, 5]. A temperature sensitivity analysis



1-C8H18+0OH<=>A-C8H17+H20
20H+M<=>H202+M
N-C7H16+OH<=>14-C7H15+H20
CH3CHO+HO02<=>CH3CO+H202
N-C7H16+0OH<=>11-C7H15+H20
CH20+HO2<=>HCO+H202
N-C7H16+0OH<=>12-C7H15+H20
B-C8H1604H=>0C8H1500H+0OH
12-C7H14+H02<=>13-C7H1502
1-C8H16+HO2<=>D-C8H1600H
1-C4H8+1-C4H9<=>A-C8H17
1-C8H16+HO2<=>B-C8H1600H
2CH302=>CH20+CH30H+02
1-C8H18+0OH<=>C-C8H17+H20
HO2+OH<=>H20+02
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Figure 2: Normalized temperature sensitivities for the fifteen most dominant reactions in
the 157 species PRF mechanism with PRF60 and at engine speed of 1200 rpm
and equivalence ratio of 0.3.

was conducted, using CHEMKIN’s single zone HCCI model, to identify the fifteen most
dominant reactions in terms of heat release at various engine operating conditions (Figure
2 depicts results for one of these conditions). Arrhenius coefficients for selected reac-
tions along with the selected SRM parameters were then optimized against results from
12 experiments at different operating conditions.

The optimization objectives included cylinder pressure and CO and HC emissions. Ob-
jective functions for these responses were formulated in the form of sum of non-weighted
squared differences between engine experiment and SRM model values. Five points on
the cylinder pressure curve (10° BTDC, 5° BTDC, TDC, 10° ATDC, and 30° ATDC) were
selected to calculate the pressure objective function, and single-point squared differences
were used to calculate the CO and HC objective functions.

12 5
OFpressure = Z Z(Psim,i - Pexp,i)?‘ (1)
i=1 j=1
12
Ol::CO = Z(COsim,i - COexp,i>2 (2)
i=1
12
OFHC = Z(Hcsim,i - Hcexp,i)2 (3)
i=1
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Figure 3: Solution space and Pareto front for cylinder pressure and ignition delay time
objective functions. A clear conflict exists between the two, suggesting that a
single best solution for the two cannot be obtained.

Ignitions delay times corresponding to all solution points were calculated offline using
a closed homogeneous batch reactor model in CHEMKIN, and shock tube experimental
data from [10] were used for calculating the ignition delay objective function. The calcu-
lation was based on nine temperature points on the ignition delay curve, and the objective
function, in this case, was formulated in the form of sum of non-weighted squared relative
differences, as follows:

9
Tsim,' - Texp,’ 2
OFignition delay — Z(;) “)

i—1 Texp,i

This modified formulation takes into account the large difference in ignition delay mag-
nitude at low and high temperatures.

Pressure objective function is plotted against that of the ignition delay in Figure 3, and
Pareto front (i.e. the set of optimum solutions) is identified. The plot shows a typical trend
for competing objectives, where improvement in predictability of one objective comes,
more or less, at the expense of the other.

The original mechanism (i.e. the one with the original set of Arrhenius coefficients) per-
formed quite well, with its solution falling on the obtained Pareto front and in the region
where the two objective functions are closest to their minimum, considering all solutions



obtained within the bounds of current optimization. This may indicate that a deliberate ef-
fort was made originally to optimize this reduced mechanism so that it provides a tradeoff
in predictivity between ignition delay and pressure history.

The results show, however, that significant improvement in pressure predictability can be
achieved if the model is optimized solely for pressure objective. This potential is demon-
strated in figures 4, 5, and 6 where predicted cylinder pressures for original and optimized
models are plotted against experimental data for a wide range of operating conditions.
It should be noted that the SRM parameters in the original model, here and later, were
optimized for best pressure fit. For both original and optimized models, a fixed residual
gas composition, extracted from exhaust gas for an arbitrary but representative operating
condition, was used. The initial pressure at [IVC was obtained from the experimental data,
and the initial temperature was estimated using a GT-Power 1-D gas dynamics model for
the test engine. The SRM model calculates the air mass based on initial conditions, and
then uses given equivalence ratio to calculate the fuel mass.

The original model generally under-predicted the pressure value, and the optimization
has seemingly shifted the model chemistry to a higher temperature regime to compensate
for the low reactivity (see Figure 10). While this had a significantly positive impact on
pressure predictability, higher reactivity meant shorter ignition delays in general, as can
be seen in Figure 7.

Figure 8 shows the solution space and Pareto front for the objective functions of pressure,
CO emissions and HC emissions. While the best solution for cylinder pressure also gives
the best solution for HC emissions, a clear conflict exists between pressure and HC emis-
sions on one side and CO emissions on the other side. The original model here also gives
a compromise between these conflicting responses.

Predictions for CO and HC emissions at 1200 rpm and different PRF and equivalence
ratios are shown in Figure 9. The original model significantly over-predicts the CO con-
centration especially as the equivalence ratio increases. A comparison of temperature
histories (Figure 10) indicates that, in order to obtain the best CO fit, the combustion
is almost turned off. Optimization for HC emissions has resulted in slight qualitative
improvement, but the optimized model continued to significantly under-predict the HC
concentration at the high side of equivalence ratio.

5 Conclusion

In this work, the performance of a reduced PRF mechanism for modeling HCCI combus-
tion was examined using a multi-objective optimization approach. The results revealed
conflicting trends among objectives normally used in mechanism optimization, such as
ignition delay and engine cylinder pressure history, indicating that a single best combina-
tion of optimization variables for these objectives does not exist. Therefore, optimizing
chemical mechanisms to maintain universal predictivity across such conflicting responses
will only yield a predictivity tradeoff. Careful selection of optimization objectives should
increase the likelihood of better predictivity for these objectives. This is especially impor-
tant in practical engine studies where accurate prediction of only a few model responses
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Figure 4: Comparison of cylinder pressure at1200 rpm and different PRF and equiva-

lence ratios. Improved predictability of cylinder pressure is observed at all
conditions relative to the original model.
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Figure 5: Comparison of cylinder pressure at 1500 rpm. Here also, the improvement in

pressure predictability persists over the whole test range. The original model
fails to ignite with PRF80 at 1500 rpm.
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12



e
8 _- 7 \ T
x 10 =T I T~
- ‘ T T~ ™
12— T \ \ O Solution points | ~ _
b ! I~ 71"~ + Paretofront |
_ _ - S
10 — L | | |
\ | = 7 \ L :
c I =7 ! =T
5 . _ \
2 ~ = -
j 8 \ :/ - \L : L “
i =T T :
Q 6 - | | -
> — |
3 Pressure &HC ~ | ‘ 9:\ !
o Best Fit ~ \
o) 4 - L \ |
8 \ |- ! § w
I LT ! Ley © ‘
- -7 \ -7 3o PO
2 _ oS e !
0 \
150 \ﬁ\ ~ .
_ — Original Model
— . 0 0
CO Objective Function Pressure Objective Function
Figure 8: Solution space and Pareto front for cylinder pressure and CO and HC emis-

sions. The best solution for cylinder pressure gives the best solution for HC
emissions, while a clear conflict exists between pressure and HC emissions on
one side and CO emissions on the other side, suggesting nonexistence of a sin-
gle best solution for them.

13



1200 rpm - PRF40 1200 rpm - PRF40

6 6000
e Experiment e Experiment
— - — Original model — - — Original model
Best CO fit p Best HC fit
4 - 1 —~ 4000 —
= e S
= aQ \
S / Q
O N
O 2 / Q 2000, e \
¢ o "% e e
L \ [ ]
I ——C o -
015 02 025 03 0.35 015 02 025 03 0.35
1200 rpm - PRF60 1200 rpm - PRF60
6 6000
4! . o 40001
= \
9 - 3 NN
o) Y N\
O 20, ,/ Y 2000 = . .
\\ S i
ol / ‘ ° ‘ | ol ‘\\,,,‘7\ |
0.2 0.25 0.3 0.35 0.2 0.25 0.3 0.35
1200 rpm - PRF80 1200 rpm - PRF80
6 10000
8000
4 —_~
Q <~ | E 6000 A\
é - & [ \
3, . / o 4000 N\
/ ® \
2000 . °
0 IR 0 ‘ —
0.25 0.3 0.35 0.25 0.3 0.35
O] 0]

Figure 9: Predictions for CO and HC emissions at 1200 rpm and different PRF and
equivalence ratios. The original model significantly over-predicts the CO con-
centration especially as the equivalence ratio increases, which makes it difficult
to obtain a good fit without shutting off the combustion. Optimization for HC
emissions objective has only resulted in slight qualitative improvement.

14



1200 rpm, PRF40, ®=0.21 1200 rpm, PRF60, ®=0.21
2000 2000

<
E’ ---- Original model
5 —-—- Best pressure/HC fit
"é 1500 —— Best COfit ] 1500
“é& _
~
IE /// -~ - P
5 1000 L. ~ 0~ 1000 S~ I
.-g 7 {/ - =~ B
3 500
-50 0 50 -50 0 50
1200 rpm, PRF40, ®=0.29 1200 rpm, PRF60, ®=0.29
—~ 2000 2000
X
£ T N
© 1500 L ~ 1 1500 , NN
S J / N / S
IS / ~ / -
IE / / A
5 1000 ’/ / ] 1000 L7 ]
£ N R e
= _
O 500 : 500 :
-50 0 50 -50 0 50
1200 rpm, PRF40, ®=0.32 1200 rpm, PRF60, ®=0.32
o 2000 2000
2 // N ' . S
B 1500 . N | 1500 Cy 0N
o N r ~~
S ) ! ~ J ~
o ' /f ™
'q:) 1000 L {1000 ) 1
-E - /// ~ J// \
>
O 500 : 500 :
-50 0 50 -50 0 50
CAD (deg) CAD (deg)

Figure 10: Cylinder temperature history. Optimization for best pressure increases the
reactivity of the mechanism and lifts the chemistry to a higher temperature
regime. In contrast, the combustion is almost shut off to obtain the best fit for
CO emissions.

15



is sought, as it allows for the use of reduced chemistry models while ensuring sufficient
predictability of the targeted responses. These conclusions have been demonstrated in this
study through development of a highly predictive HCCI model for engine cylinder pres-
sure history, and through improving the model predictivity of engine exhaust emissions.

The use of multi-objective optimization offers more freedom for customizing kinetic mod-
els based on intended purpose. One could choose to optimize the kinetic model to give
a good compromise among a number of conflicting responses, or to give the best fit for
one or two selected responses. The approach, therefore, provides a practical alternative to
using computationally expensive detailed kinetic models in those cases where universal
predictivity is not required. It also provides useful insight on the goodness of the reduced
mechanism and, by exposing the interplay among different model responses, helps in
guiding the reduction process to give a better performance. Although the paper presents
results for only three engine responses, the approach can be extended to include any re-
sponse for which experimental results can be obtained.
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7 Definitions, Acronyms and Abbreviations

ATDC After top dead centre

BTDC Before top dead centre

CAD  Crank angle degree

CO Carbon monoxide

CoV Coefficient of variation

EVC  Exhaust valve closure

EVO  Exhaust valve opening

HC Hydrocarbons

HCCI Homogeneous charge compression ignition
IMEP Indicated mean effective pressure
IvC Intake valve closure

IVO Intake valve opening

PFI Port fuel injection

PRF Primary reference fuel

SRM  Stochastic reactor model

TDC  Top dead centre

o Equivalence ratio
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