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Abstract

We implement an algorithm which estimates parameters of an internal combustion
engine model using a Bayesian approach and employs an experimental design tech-
nique to iteratively suggest new experiments with the aim of decreasing the uncer-
tainty in the parameter estimates. The primary focus here is the application of the
methodology to a complex model whose computational expense limits the number
of model evaluations to an extent which necessitates the use of surrogate models. In
this work, we choose quadratic response surfaces as surrogates. The main goal of the
considered engine model is to predict emissions formed by in-cylinder combustion
during the closed-volume part of the engine cycle, employing detailed sub-models
for the chemical kinetics of the fuel, turbulent mixing, and convective heat transfer.
The model is applied here to an ultra-low emission Homogeneous Charge Compres-
sion Ignition (HCCI) engine fuelled with iso-octane. We find rapid convergence of
the iterative algorithm in the considered case, as shown by a substantial reduction in
parametric uncertainty in each iteration, using informative as well as non-informative
priors.
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1 Introduction

Computational models can be useful in reducing the development time and cost of new
products in the chemical industry and many others. This is particularly relevant in areas
where experimental measurements are expensive and time-consuming, as is the case with
internal combustion engines. However, creating predictive yet computationally cheap
models remains a significant challenge, and requires large amounts of research effort.
Automating the model development process to the greatest possible extent is therefore
desirable [25].

Any non-trivial model contains parameters which are often unknown or uncertain a priori
and an obvious question to ask then is what values of the parameters lead to the best
agreement between experiment and model. This problem has been referred to by a number
of names, including inverse problem, calibration, and parameter estimation [2, 40]. A
Bayesian approach to estimating parameters of a computer model was introduced in [23].
This has since been considered state of the art, and has been extended and applied in
numerous contexts (see for example [4, 21, 22, 44]).

Parameter estimation is widely seen as an iterative procedure, alternating with experi-
mental design [1, 4, 17]. The general aim of experimental design [16] is to determine
the most useful set of experiments to perform based on available information in the form
of previous experimental results or models. Experimental design has traditionally been
used most in conjunction with statistical analysis to determine which process condition
variables have a significant impact on the measured responses. It has become a standard
technique for planning series of experiments in virtually all areas of research. Experimen-
tal design for the purposes of parameter estimation [13] attempts to tune model param-
eters for improved accuracy by finding process conditions for the next experiment such
that the “information gain” is maximised, the goal being to minimise the variance in the
parameters. In [17], applications of this approach across the field of chemical engineer-
ing are reviewed. In [35], an application in combustion chemical kinetics is presented.
Advances in computing have caused an expansion in both the complexity of the models
and the sophistication of the design techniques. In [11], an experimental design technique
is described and demonstrated which integrates a method to select the parameters to be
estimated for models with large numbers of parameters.

Complex, physics-based models in common use today are usually sufficiently computa-
tionally expensive so that the number of evaluations which can be performed in practice
may be strongly limited. Whenever a model is too expensive to realistically be used in
a parameter estimation or experimental design context, it is usually replaced by a much
cheaper, often approximate model, called a surrogate. Surrogate models, in one form
or another, have been in use across many fields in many applications – too numerous
to review here exhaustively. In the area of combustion, the most common application
is the fast integration of chemical kinetic equations (see [30] for a brief, incomplete
overview). Common surrogates include quadratic response surfaces [12, 18, 38] and
High-Dimensional Model Representation [33, 45]. In [30], cubic natural splines have
been used to represent an internal combustion engine model as a whole, but applications
outside chemical kinetics remain scarce.
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It has been recognised that expensive models are particularly relevant to applications
in practice [36]. Gaussian process models are a popular choice as surrogates in such
cases [36, 44]. For example, in [21, 22], a Bayesian methodology employing Gaussian
process models is used to estimate parameters of a complex, highly multivariate model
for an imploding cylinder whilst accounting for a priori knowledge about the discrepancy
between the model and the system. In [43], two Bayesian optimisation algorithms for ex-
pensive functions, again using Gaussian process models, are presented. Although works
like these exist, direct optimisation attempts of expensive, black-box models are rare, ac-
cording to a recent review [39], partly due to the intrinsic difficulty of the problem. In [24],
it is shown that there may be a way to circumvent the problem in cases where the model
possesses fidelity parameters such as a mesh spacing and there exist strong correlations
between simulation results with low and high fidelity.

Despite these efforts in various fields, the authors are not aware of any use of expensive
models for the purposes of parameter estimation or experimental design in the field of
combustion in general, and in engine research in particular. While experimental design is
a standard technique in the engine calibration area (see for example [10]) and is a well-
established part of the engine development process (see for example [34]), only data-
driven polynomial models have been used in this context and, to the authors’ knowledge,
no attempt has been made to include complex, expensive models.

The purpose of this paper is to apply an iterative method for reducing the uncertainty in a
model by means of experimental design to a complex internal combustion engine model.
This model employs detailed chemical kinetics, and takes into account turbulent mixing
and convective heat transfer. Its computational expense limits the number of evaluations
to 101-103 per day on a single computing core, depending on the case simulated. Since pa-
rameter estimation and experimental design techniques tend to require much larger num-
bers of evaluations, the use of surrogate models is inevitable in this application. We
choose quadratic response surfaces as surrogates in this work. The main focus here is
to test the Bayesian parameter estimation and the experimental design technique and to
demonstrate convergence of the iterative algorithm for the considered internal combus-
tion engine model. For this reason, we restrict ourselves in the first instance to generating
“experimental” data by evaluating the model and introducing artificial errors.

The paper is structured as follows. In section 2 we briefly define our methodology, which
includes more detailed accounts of the parameter estimation and experimental design
techniques, and our choice of surrogate model. In section 3, we introduce the internal
combustion engine and the engine model the methodology is applied to. We furthermore
present the results for the iteratively improved parameter estimates. Finally, conclusions
are drawn and recommendations for future extensions are made in section 4.

2 Methodology

In this section, we define the iterative algorithm and then give details on the parameter
estimation and experimental design techniques chosen in this study. Subsequently, the
surrogates used are introduced.
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2.1 Definitions

We begin by introducing some terminology and notation used throughout. We are con-
cerned with some system or apparatus, such as an internal combustion engine test cell, on
which experimental measurements are carried out. Any experiment is characterised by a
number of settings prescribed by the experimenter, i.e. a vector1 of

process conditions: ξ = (ξ1, . . . , ξM)>

with M components. For the engine example, these could include engine speed, load,
inlet temperature, etc. The results of the measurements can be summarised into a vector
of

experimental responses: ηexp = (ηexp
1 , . . . , ηexp

L )>

with L components. Examples include peak in-cylinder pressure, emissions, etc.

We then consider a model of the system, which takes as inputs the same process conditions
as the system itself, and produces as output a vector of

model responses: η = (η1, . . . , ηL)>,

which, like the experimental response vector, has L components as well. In this work, we
shall not be concerned with multiple candidate models and their discrimination (see for
example [17]). In general, a model depends in addition to the process conditions also on
a vector of

model parameters: θ = (θ1, . . . , θP )>

with P components, for example heat transfer coefficients, chemical kinetic rate con-
stants, etc. The values of these are unknown a priori and need to be determined by
parameter estimation.

When we consider sequences of experiments or model evaluations at a sequence of pro-
cess conditions we denote this by superscript indices in parentheses: The nth experiment,
performed at the process conditions ξ(n) =

(
ξ

(n)
1 , . . . , ξ

(n)
M

)>, yields responses ηexp,(n) =(
η

exp,(n)
1 , . . . , η

exp,(n)
L

)>, and the nth model evaluation, also performed at the process con-
ditions ξ(n), yields responses η(n) := η(ξ(n), θ) =

(
η

(n)
1 , . . . , η

(n)
L

)>.

2.2 General algorithm

Once the system and the model to be considered have been defined, given some exper-
imental data, one can apply parameter estimation techniques to obtain model parameter
values which lead to “the best” agreement between experiment and model. It is then nat-
ural to use experimental design in order to determine the process conditions at which the
next experiment should be carried out such that the uncertainty in the parameter estimates
is maximally reduced. This is precisely the algorithm we are adopting here:

1. Design a new experiment, i.e. determine a point in process condition space at which
the new experiment is to be carried out.

1We assume all vectors to be column vectors.
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2. Perform the experiment at the chosen point in process condition space.

3. Estimate the model parameters taking into account all experimental data obtained
so far.

4. Repeat, i.e. go to step 1, until the model parameter estimates satisfy chosen require-
ments.

Algorithms similar to this have been used in a variety of applications outside of combus-
tion (see for example [1, 4, 17]).

The main aim of this work is to establish convergence of the algorithm for a complex,
computationally expensive model for internal combustion engines and thereby to test the
chosen parameter estimation and experimental design techniques. Here, we choose the
considered system to be the model itself, with some artificially introduced random errors.
That is, we generate “experimental” data by evaluating the model using a chosen “true”
value of the model parameters θ and adding randomly distributed noise to the model
responses (an approach also taken for example in [21, 22]).

2.3 Bayesian parameter estimation

In this section, we explain how model parameters can be estimated with a Bayesian
methodology similar to the construction given in [3] for multi-response experimental data.
This also extends our previous work on parameter estimation and uncertainty propagation
in the fields of granulation [6–8, 27] and combustion [37].

2.3.1 Preliminaries

In the following we set out the Bayesian framework used for the parameter estimation.
The main idea of the Bayesian approach is to treat all quantities as random variables
and systematically apply probability theory in order to derive conclusions. At any given
point in time, our knowledge or belief about the values of the model parameters θ can be
represented by a probability density p(θ), called the prior distribution. If new evidence
is presented in the form of experimental data, given as a probability function p(ηexp|θ),
then the knowledge about the model parameters can be updated, resulting in a posterior
distribution p(θ|ηexp) of the unknown parameters. This is the essence of Bayes’ Theorem:

p(θ|ηexp) ∝ p(ηexp|θ)p(θ) (1)

For ease of reference, we can also state the theorem as:

Posterior ∝ Likelihood× Prior

Thus, in order to make estimates of our model parameters using the posterior distribution,
we need to construct the likelihood and the prior distribution.
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2.3.2 Likelihood

The likelihood is essentially the distribution of the experimental data. At this point, we
need to make an assumption about how the experimental responses are distributed. A
common assumption, which we are going to adopt here as well, is that the experimental
response is equal to the model response plus a Gaussian error:

ηexp,(n) = η
(
ξ(n), θ

)
+ ε(n) with ε(n) ∼ NL(0,Σ), (2)

where ε(n) is the vector of the measurement errors which are normally distributed with
zero mean and covariance matrix Σ. It should be pointed out that (2) implicitly assumes
the model to be noise-free, or in other words deterministic. For simplicity, the covari-
ance matrix Σ of the experimental errors is assumed here to be independent of the process
condition ξ, i.e. the system is assumed to be homoscedastic, but the exposition which
follows can readily be generalised to the heteroscedastic case. The errors of individual
experiments are independent, but the L components of the error vector for any one exper-
iment may be correlated. So, written explicitly, equation (2) implies that the error ε(n) is
distributed according to

p
(
ε(n)|Σ

)
=

1

(2π)L/2(det Σ)1/2
exp

(
− 1

2
ε(n)>Σ−1ε(n)

)
.

Hence, as ηexp,(n) ∼ NL
(
η(ξ(n), θ),Σ

)
, the probability of observing a particular response

ηexp,(n) in the nth experiment is given by

p
(
ηexp,(n)

∣∣θ,Σ)
= (2π)−L/2(det Σ)−1/2 exp

{
− 1

2

[
ηexp,(n) − η(ξ(n), θ)

]>
Σ−1

[
ηexp,(n) − η(ξ(n), θ)

]}
= (2π)−L/2(det Σ)−1/2 exp

(
− 1

2
ε(n)>Σ−1ε(n)

)
. (3)

Making use of the assumption of independent experiments, the likelihood becomes

p
(
ηexp,(1), . . . , ηexp,(N)

∣∣θ,Σ) =
N∏
n=1

p
(
ηexp,(n)

∣∣θ,Σ)
= (2π)−NL/2(det Σ)−N/2 exp

(
− 1

2

N∑
n=1

ε(n)>Σ−1ε(n)

)
.

If we further introduce the L× L positive definite matrix

S(θ) :=
N∑
n=1

ε(n)ε(n)>,

then the likelihood simplifies to

p
(
ηexp,(1), . . . , ηexp,(N)

∣∣θ,Σ) = (2π)−NL/2(det Σ)−N/2 exp
{
− 1

2
tr
[
Σ−1S(θ)

]}
. (4)
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2.3.3 Prior distributions

The choice of prior distributions is a non-trivial, much-debated subject in the literature,
and we shall make no attempt at an exhaustive treatment here. Noting that we have two
objects, θ and Σ, for which we need to state prior beliefs, we begin by assuming their
independence:

p(θ,Σ) = p(θ)p(Σ) (5)

For our prior of θ, we consider a constant (uniform) distribution over a hypercube C which
is defined as the region in P -dimensional space such that θj ∈ [−1, 1] for all j = 1, . . . , P ,
which gives a prior probability density for θ as

p(θ) =
1

|C|
1{θ∈C} (6)

where | · | denotes the size/volume of a set and 1{·} is the indicator function.

For the prior of Σ, one can distinguish two scenarios: If Σ is known a priori, this case
is referred to as informative. For example, one may want to use the estimator Σ̂ for the
covariance matrix, also called empirical covariance matrix, which has been obtained from
previously collected experimental data. In this case, we can choose as an informative prior

p(Σ) = δ(Σ− Σ̂). (7)

If Σ is unknown – the case referred to as non-informative – we choose the Inverse-Wishart
non-informative prior

p(Σ) ∝ (det Σ)−α−(L+1)/2 exp
[
− 1

2
tr
(
Σ−1Ψ

)]
, (8)

where α > 0 and Ψ ∈ RL×L positive definite are arbitrary parameters. The Inverse-
Wishart non-informative prior is the multivariate generalisation of the widely used Inverse-
Gamma non-informative prior. These priors are termed proper, meaning that they are gen-
uine probability densities which integrate to unity, in contrast to improper priors which
integrate to infinity [5].

2.3.4 Posterior distributions

Using Bayes’ Theorem, we can now compute the posterior densities (up to constant fac-
tors):

p
(
θ,Σ

∣∣ηexp,(1), . . . , ηexp,(N)
)

Eqn. (1)
∝ p

(
ηexp,(1), . . . , ηexp,(N)

∣∣θ,Σ)p(θ,Σ)
Eqn. (5)
∝ p

(
ηexp,(1), . . . , ηexp,(N)

∣∣θ,Σ)p(θ)p(Σ)
Eqn. (6)
∝ p

(
ηexp,(1), . . . , ηexp,(N)

∣∣θ,Σ)p(Σ) · 1{θ∈C}
Eqn. (4)
∝ (det Σ)−N/2 exp

{
− 1

2
tr
[
Σ−1S(θ)

]}
p(Σ) · 1{θ∈C}
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In the informative case, inserting Eqn. (7), we obtain

p
(
θ,Σ

∣∣ηexp,(1), . . . , ηexp,(N)
)

∝ (det Σ)−N/2 exp
{
− 1

2
tr
[
Σ−1S(θ)

]}
δ(Σ− Σ̂) · 1{θ∈C}, (9)

whereas in the non-informative case, inserting Eqn. (8), we obtain

p
(
θ,Σ

∣∣ηexp,(1), . . . , ηexp,(N)
)

∝ (det Σ)−α−(N+L+1)/2 exp
{
− 1

2
tr
[
Σ−1

(
S(θ) + Ψ

)]}
· 1{θ∈C}. (10)

As we are interested in the marginal posterior density for θ, we integrate over all positive
definite matrices Σ. In the informative case, using Eqn. (9), the posterior is obtained as

p
(
θ
∣∣ηexp,(1), . . . , ηexp,(N)

)
=

∫
Σ pos. def.

p
(
θ,Σ

∣∣ηexp,(1), . . . , ηexp,(N)
)
dΣ

∝ exp
{
− 1

2
tr
[
Σ̂−1S(θ)

]}
· 1{θ∈C}. (11)

and in the non-informative case, using Eqn. (10), we obtain [5]

p
(
θ
∣∣ηexp,(1), . . . , ηexp,(N)

)
=

∫
Σ pos. def.

p
(
θ,Σ

∣∣ηexp,(1), . . . , ηexp,(N)
)
dΣ

∝
[

det
(
S(θ) + Ψ

)]−α−N/2 · 1{θ∈C}. (12)

We have determined the expressions for the posteriors (11) and (12) only up to constant
positive factors. While these normalisation factors can in principle be found, they turn out
not to be needed. The posterior densities can be used to derive credibility regions (prefer-
able to means and variance) of the unknown parameters as well as marginal distributions.

2.4 Experimental design

Experimental design can be regarded as an attempt to answer the question which future
experiments are most informative in order to reduce the estimated parametric uncertainty
in the model. In other words, experimental design provides a suggestion at which process
conditions ξ the next experiment should be performed in order to maximally reduce the
uncertainty in the unknown model parameters θ.

The experimental design technique we choose in this work is based on maximising the
Fisher information matrix [2, 16, 20] in some sense. The Fisher information matrix M is
defined as

M(ξ(1), . . . , ξ(N); θ)

:= E

( ∂

∂θ
log

N∏
i=1

p
(
ηexp,(i)

∣∣θ,Σ)) ( ∂

∂θ
log

N∏
j=1

p
(
ηexp,(j)

∣∣θ,Σ))>


= E

( N∑
i=1

∂

∂θ
log p

(
ηexp,(i)

∣∣θ,Σ)) ( N∑
j=1

∂

∂θ
log p

(
ηexp,(j)

∣∣θ,Σ))>
 .
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The Fisher matrix is based on a set of N experiments here, and we take the view that the
firstN−1 of these have already been performed, at the process conditions ξ(1), . . . , ξ(N−1),
and the N th experiment is the “next” one, for which we wish to determine the as yet
unknown process conditions ξ(N). The derivatives of log p

(
ηexp,(n)

∣∣θ,Σ) with respect to θ
are obtained from Eqn. (3) as

∂ log p
(
ηexp,(i)

∣∣θ,Σ)
∂θ

= −1

2

([∂η(ξ(n), θ)

∂θ

]>
Σ−1ε(n) + ε(n)>Σ−1∂η(ξ(n), θ)

∂θ

)

=
[∂η(ξ(n), θ)

∂θ

]>
Σ−1ε(n),

where in the last step we have made use of the fact that Σ−1, just like Σ, is symmetric. We
introduce the following notation for the derivatives of the model function with respect to
the model parameters θ for any arbitrary ξ, i.e. the Jacobi matrix,

J(ξ, θ) :=
∂η(ξ, θ)

∂θ
=


∂η1(ξ,θ)
∂θ1

· · · ∂η1(ξ,θ)
∂θP... . . . ...

∂ηL(ξ,θ)
∂θ1

· · · ∂ηL(ξ,θ)
∂θP

 . (13)

Furthermore, we use J (n) as shorthand for J
(
ξ(n), θ

)
. We then obtain the following ex-

pression for the Fisher information matrix:

M
(
ξ(1), . . . , ξ(N−1), ξ(N); θ

)
= E

( N∑
i=1

J (i)>Σ−1 ε(i)

)
×

(
N∑
j=1

J (j)>Σ−1 ε(j)

)>
= E

[
N∑
i=1

J (i)>Σ−1 ε(i) ·
N∑
j=1

ε(j)>Σ−1J (j)

]

=
N∑
i=1

N∑
j=1

J (i)>Σ−1
E
[
ε(i)ε(j)>]︸ ︷︷ ︸
=0 if i 6=j

Σ−1J (j)

=
N∑
i=1

J (i)>Σ−1
E
[
ε(i)ε(i)>]︸ ︷︷ ︸

=Σ

Σ−1 J (i)

=
N∑
i=1

J (i)>Σ−1J (i)

=
N−1∑
i=1

J (i)>Σ−1J (i) + J (N)>Σ−1J (N) . (14)

In the last line, we have summarised all contributions from the previous experiments, per-
formed at ξ(1), . . . , ξ(N−1), into the first term, and separated out the second term which is
the only one featuring the experimental responses at the unknown, sought-after process
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conditions. We note that due to the way the responses enter the Fisher matrix (14) via (13),
intuitively, one would expect the “information” to be “large” in regions of process condi-
tion space where the responses are most sensitive to the model parameters.

In order to determine the process conditions ξ(N) of the next experiment, we maximise
the Fisher information matrix in some sense. As the only dependence of the Fisher ma-
trix we are interested in is that on the new, sought-after process condition, we abbreviate
M(ξ) := M(ξ(1), . . . , ξ(N−1); ξ, θ). The meaning of “maximal” is not uniquely defined
for a matrix, and thus, maximisation of the Fisher matrix requires choosing a scalar ob-
jective function Φ, for which matrix invariants are commonly used. We consider here the
following four optimality criteria, i.e. objective functions (see for example [17] for a brief
review):

A: Φ(ξ) = −tr
(
M−1(ξ)

)
(15)

D: Φ(ξ) = det
(
M(ξ)

)
(16)

E: Φ(ξ) = min
i

{
λi
(
M(ξ)

)}
(17)

T: Φ(ξ) = tr
(
M(ξ)

)
(18)

In equation (17), λi(·) denotes the ith eigenvalue of its argument. The process condi-
tions ξ∗ of the next experiment to be carried out are then obtained by

ξ∗ := argmax
ξ

Φ(ξ). (19)

This optimisation problem is usually subject to constraints, either for physical reasons
(e.g. a pressure has to be positive) or for reasons imposed by the apparatus or costs. Here,
we apply constraints of the form ξlb ≤ ξ ≤ ξub, with ξlb and ξub denoting lower and upper
bounds respectively.

2.5 Surrogate models

The described methodology involves, both in the parameter estimation and in the experi-
mental design parts, large numbers of model evaluations, potentially in excess of 105. As
indicated in the introduction, however, in practically relevant applications, which are our
aim here, model evaluations are typically expensive, so one may be restricted to a much
smaller number of evaluations. In such applications, therefore, it is inevitable to replace
the actual model by a surrogate. In the current study, second order (i.e. quadratic) response
surfaces are chosen as surrogate models. These have found wide-spread use in numerous
applications [9, 12, 18, 38]. A large number of surrogate models, also called emulators or
meta-models, have been proposed in the literature in a wide variety of contexts (for ex-
ample [30, 33, 45]), but it is beyond the scope of the present work to investigate in detail
which type of surrogate is most suitable.

Specifically, the lth response of the model evaluated at the nth process condition ξ(n) is
replaced by the second order polynomial in model parameter space

η
(n)
l (θ) = β

(n)
l,0 +

P∑
i=1

β
(n)
l,i θi +

P∑
i=1

P∑
j≥i

β
(n)
l,ijθiθj, (20)
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where β(n)
l,0 , β(n)

l,i , and β(n)
l,ij are the constant, linear, and quadratic coefficients of the re-

sponse surface respectively.

We determine the coefficients of our surrogate models (20) by performing least-squares
fits to model evaluations on a Central Composite Design (CCD) in model parameter space.
A CCD includes all points of a full factorial design (2P corner points of the hypercube),
two points on every axis, located symmetrically, and the centre point [32].

Calculating the Fisher information matrix according to (14) involves evaluating the Ja-
cobi matrix J (ξ, θ) (Eqn. 13) at various ξ. It is straightforward to evaluate all but the
last term of the Fisher matrix, since we can calculate the model responses for the process
conditions ξ(1), . . . , ξ(N−1) from the response surface (20). For the unknown process con-
ditions ξ(N), the last term in (14), however, this approach is not suitable, because during
the optimisation process a large number of evaluations at different ξs not known a pri-
ori needs to be performed. In order to overcome this problem, we create another set of
response surfaces based on all the points that have been evaluated using the full model
for the construction of the response surfaces at the process conditions ξ(1), . . . , ξ(N−1).
This new set of response surfaces is now defined on the combined space of the model pa-
rameters θ1, . . . , θP and process conditions ξ1, . . . , ξM . Therefore, denoting the combined
vector as ϑ = (θ1, . . . , θP , ξ1, . . . , ξM) = (ϑ1, . . . , ϑP+M), the new response surface of
the lth response (l = 1, . . . , L) takes the form

γl(θ, ξ) = γl(ϑ) = βl,0 +
P+M∑
i=1

βl,iϑi +
P+M∑
i=1

P+M∑
j≥i

βl,ijϑiϑj. (21)

2.6 Remarks on implementation

Creation of the response surfaces was implemented in C++ in a code we call Model De-
velopment Suite (MoDS). It is designed to work with any model, treated as a black box,
given as an executable which performs input and output through files in various formats
including XML and delimiter separated value files (comma, tab, space, etc.).

The Bayesian parameter estimation described in subsection 2.3 was implemented in R.
In order to obtain samples from the posterior distributions (11) and (12) we employ
the Metropolis-Hastings algorithm [19, 28]. This algorithm employs a continuous-space
discrete-time Markov Chain which has a stationary distribution identical to the distribu-
tion to be sampled from. The collection of samples is then used to derive for example
credibility regions (preferable to means and variance) of the unknown parameters as well
as marginal densities, which can be plotted using kernel density estimation.

The experimental design part described in subsection 2.4 was implemented in Matlab.
The optimisation was carried out using the fmincon function. Derivatives of the model,
i.e. of the response surfaces (20) and (21), required for the calculation of the Fisher
matrix (14) through (13), were determined analytically.
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3 Application to an internal combustion engine model

In this section, we apply the methodology introduced above to a complex model for inter-
nal combustion engines.

3.1 The considered engine

The internal combustion engine considered here is a heavy-duty Diesel engine converted
for Homogeneous Charge Compression Ignition (HCCI) operation – a mode attractive
due to ultra-low emissions of NOx and particulate matter. The engine is operated with
iso-octane as a fuel at constant load in steady-state. Table 1 summarises the engine speci-
fication and operating condition.

Table 1: Engine specification and operating condition.

Operating mode HCCI

Bore 137.2 mm

Stroke 171.5 mm

Compression ratio 16.0-16.5

Inlet temperature 85◦C-95◦C

Speed 1800 RPM

Fuel iso-octane

Equivalence ratio 0.3

3.2 The considered engine model

3.2.1 Model description

The model we use in this work to simulate the engine described above is the Stochastic
Reactor Model (SRM), which has been successfully employed in a number of earlier
studies such as port fuel injected HCCI combustion [26], single early direct injection
HCCI [42], and dual injection HCCI [29]. Its applications include soot formation in
HCCI [31] and direct injection spark ignition (DISI) engines [14], and cycle-to-cycle
variations in spark ignition (SI) engines [15]. In [30], a surrogate model based on cubic
natural splines was developed for the SRM and applied to multi-cycle transient simulation
and control problems.

The SRM was originally inspired by Probability Density Function (PDF) transport meth-
ods. It employs detailed chemical kinetics and possesses sub-models for turbulent mixing
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and convective heat transfer, and a highly detailed population balance model for soot for-
mation.

As chemical kinetic fuel model, we use here a reduced mechanism for Primary Refer-
ence Fuels (PRFs, mixtures of n-heptane and iso-octane) consisting of 38 species and 44
reactions [41].

Since it includes detailed chemistry, the SRM can qualitatively predict emission trends of
CO, CO2, NOx, and unburnt hydrocarbons at modest computational cost of the order of
one hour on a single-core processor per engine cycle. While this is computationally rel-
atively cheap compared to other approaches, run-times are still too large for the numbers
of evaluations required here. Therefore, the use of surrogates is inevitable in this case.

The SRM contains by design several random sub-models. For the present work, however,
the model is operated in such a way that it does not make use of any of its stochastic
components, and hence is free of noise, as required by assumption (2).

3.2.2 Choice of process conditions, model parameters, and responses

Table 2: Variables and their bounds.

Variable type Variable name Lower bound Upper bound Coding

Process conditions
ξ1 = CR 16.0 16.5 none
ξ2 = Tin 85◦C 95◦C none

Model parameters
θ1 = A33 3.0× 106 cm3

mol·s 1.2× 107 cm3

mol·s logarithmic
θ2 = A37 1.09× 1017 cm3

mol·s 1.32× 1017 cm3

mol·s linear

Responses
η1 = pmax n/a n/a none
η2 = CA50 n/a n/a none

An internal combustion engine experiment may require large numbers of process condi-
tions and typically yields large numbers of responses. Likewise, any (sufficiently detailed)
engine model, such as the SRM, has large numbers of process conditions, responses, and
model parameters, possibly as many as of order 104 if one includes the parameters in the
chemical kinetic fuel model. Here, as a first step, we consider the SRM as a function
which maps two process conditions and two model parameters to two responses:

SRM : (ξ1, ξ2; θ1, θ2) 7→ (η1, η2)

As process conditions, we choose compression ratio CR and inlet temperature Tin, so
we have ξ = (ξ1, ξ2) = (CR,Tin). As model parameters, we choose θ = (θ1, θ2) =
(A33, A37), where A33 and A37 denote the forward pre-exponential factors of the rate
expressions for reaction 33 and 37 of the chemical kinetic fuel model respectively:

CO + OH 
 CO2 + H (Reaction 33)
H2O2 + M 
 2OH + M (Reaction 37)
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As responses, we choose the peak in-cylinder pressure pmax and the crank angle at 50%
heat release CA50. So we have η = (η1, η2) = (pmax,CA50). In short, the model function
we consider is

SRM : (CR,Tin;A33, A37) 7→ (pmax,CA50).

Table 2 lists the variables used together with their chosen bounds. The bounds were
determined such that stable combustion is achieved over the entire range, with CA50, i.e.
essentially ignition timing, varying between about 0 and 10 CAD aTDC.

The last column in table 2 describes the type of normalisation or mapping of variable
ranges θlb ≤ θ ≤ θub to the interval2 [−1,+1], often referred to as coding. Two types of
mapping are usually applied: linear

θ′i =
θi − (θi,ub + θi,lb)/2

(θi,ub − θi,lb)/2

and logarithmic coding

θ′i =
log θi − (log θi,ub + log θi,lb)/2

(log θi,ub − log θi,lb)/2
.

The main reason for coding variables is to avoid numerical ill-conditioning in some al-
gorithms for quantities with vastly different orders of magnitude. Logarithmic coding is
preferable to linear coding for quantities which vary over an order of magnitude or more.
In the following, coded variables are indicated by a prime.

3.2.3 “Experimental” data

As the main aim of the present work is to test the methodology under well-defined condi-
tions, we generate “experimental” data by evaluating the model using some “true” values
of the model parameters θ – an approach also pursued in [22] for example. We arbitrarily
choose the true system to be given by θ = (0, 0). In line with assumption (2), the model
is deterministic, i.e. it does not contain random components. Therefore, we artificially
introduce error by adding normally distributed noise with covariance matrix

Σ =

(
0.04 bar2 −0.028 bar · CAD

−0.028 bar · CAD 0.02 CAD2

)
(22)

to the responses η. The distribution of the responses, generated using 103 samples, is
shown in Figure 1.

3.3 Results

One of the key ingredients for performing parameter estimation and experimental design
with an expensive model is the surrogate model. Figure 2 shows a typical example of a
response surface (Eqn. 20) fitted to a central composite design in coded model parameter

2The unit interval [0, 1] is also frequently used.
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Figure 1: Normally distributed “experimental” responses at ξ = (16.25, 90◦C), centred
at “true” model response with covariance matrix (22).
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Figure 2: Quadratic response surface in model parameter space for the first response η1

(peak in-cylinder pressure) fitted to a Central Composite Design.

space for the first response η1, the peak pressure. The points represent the actual model
evaluations. A CCD in a two-dimensional space consists of nine points: the four corner
points of the hypercube, plus two points on both coordinate axes, located symmetrically
(we choose±

√
2, resulting in a rotatable design), and the origin. In the particular applica-

tion considered in this work, the response surfaces reproduce the actual model evaluations
very well throughout. While some curvature is present as expected, the behaviour of the
responses does not appear to deviate significantly from quadratic. Indeed that was the
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by the experimental design method using criteria D and T.

main reason for choosing the hypercube in process condition space around and close to
a stable engine operating point. At or near a critical operating point, say at the misfire
boundary, one would expect strongly non-linear and curved surfaces. Quadratic surfaces
may not be sufficient for such conditions.

We carried out six iterations of the algorithm described in subsection 2.2. As first “experi-
mental” data point, we arbitrarily take the midpoint of the hypercube in process condition
space, i.e. ξ = (16.25, 90◦C). We then perform the parameter estimation, and use the
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Figure 5: Evolution of the posterior densities of the coded model parameter θ′ using the
Inverse-Wishart non-informative prior through six iterations obtained with cri-
teria D and T. The “true” values are θ′ = (θ′1, θ

′
2) = (0, 0).
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Figure 6: Evolution of the posterior densities of the coded model parameter θ′ using an
informative prior through six iterations obtained with criteria D and T. The
“true” values are θ′ = (θ′1, θ

′
2) = (0, 0).
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experimental design technique to determine the next set of process conditions. The cho-
sen experimental design methodology was found to frequently suggest corner points of
the hypercube, which may not be surprising given the mathematical form of the Fisher
matrix (14). Figure 3 shows a typical example of an objective function surface, here for
the A-optimality criterion (15), which exhibits multiple local maxima located in differ-
ent corner points of the hypercube. This implies that, when trying to identify the global
maximum within the hypercube using local optimisation methods, care needs to be taken,
as in the example shown, starting from the midpoint with a gradient-based method would
lead to an incorrect corner point being identified as the maximum. The objective function
surfaces do vary with the best estimate θ, of course, as the Fisher matrix (14) is a function
of θ. However, even though the θs estimated using non-informative and informative priors
differ, in none of the cases studied this made a difference as to which point was suggested
for the next experiment.

In general, one would expect the different optimality criteria to suggest different points
in process condition space, but in this case it was found that there is frequent agreement.
Criteria D and T agreed in all iterations, and so did A and E. In the first iteration, all tested
optimality criteria (A, D, E, and T) suggest ξ∗ = (16.5, 95◦C) as the new experiment. We
arbitrarily choose the D and T-optimality criteria, i.e. the determinant and trace of the
Fisher information matrix. The sequence of points is shown in Figure 4.

Figures 5 and 6 show results of the Bayesian parameter estimation for the first six it-
erations, for the non-informative and the informative cases respectively. Recall that the
“true” parameter values are θ′ = (0, 0). Figure 5 shows the evolution of the posterior
density of θ for the Inverse-Wishart non-informative prior. As parameters of this prior, we
use α = ε and

Ψ =

(
2ε 0
0 2ε

)
,

with ε = 10−3. All posterior density plots have been generated using 105 samples. Of
these samples, the first 5×103 were discarded due to the fact that the Markov chain in the
Metropolis-Hastings algorithm goes through an initial phase, known as burn-in, required
to “forget” its initial state. It turns out that mean and standard deviation of the posterior
densities in general do not yield very good values for the parameters and their uncertain-
ties. Instead, the value of highest probability density together with the bounds of the high
probability density region (at some given confidence level) should be used [4]. While this
procedure leads to a good “best” estimate with error bars, one should bear in mind that the
densities contain much more information, and in cases where the distributions are multi-
modal, it may not even make sense to pick a best estimate or an error bar. The algorithm
is found to converge very rapidly in both the informative and the non-informative case,
with the informative estimates significantly more accurate than the non-informative ones.
This agrees with intuitive expectation, as the knowledge of the covariance matrix is made
use of in the informative case.

20



4 Conclusions

We have implemented an algorithm which estimates model parameters using a Bayesian
approach and employs an experimental design technique to iteratively suggest process
conditions for new experiments with the aim of decreasing the uncertainty in the parame-
ter estimates. The main focus here was the application to a complex internal combustion
engine model whose computational expense limits the number of model evaluations to an
extent which necessitates the use of a surrogate model. Quadratic response surfaces were
chosen as surrogates in this work. We have found rapid convergence of the algorithm in
the considered case, as shown by a substantial reduction in parametric uncertainty over
six iterations, for both informative and non-informative priors used in the parameter esti-
mation.

Regarding extensions of the present work, an important assumption has been that the ex-
perimental responses are equal to the model responses plus some Gaussian error (Eqn. 2),
which has a number of implications. First of all, in practice, distributions of experimental
errors may deviate from Gaussian which needs to be accounted for. Ignoring this may lead
to systematically incorrect parameter estimates even with high credibility. Secondly, how
much noise in the experimental data is tolerable? One would expect that more noise slows
convergence, but at what point does the methodology break down? Thirdly, for stochastic
models, ones which contain random components themselves, it needs to be investigated
how much noise in the model is tolerable. And lastly, in practice, virtually all models
have a systematic bias, i.e. they are unable to reproduce certain features of the data. If in-
formation on this is available a priori, it can be taken into account (see for example [22]),
but this may not be possible in general. Furthermore, it is clear that if the model exhibits
worse than quadratic non-linearities, more advanced surrogate models will be required. It
is less clear, though, what type of surrogate is most suitable in a particular case. Several of
these questions have been addressed individually at least to some extent in the literature,
but await application to a relevant combustion problem such as an internal combustion
engine as considered in this work.
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tification, propagation and optimization of a detailed kinetic model for ethy-
lene combustion. Proceedings of the Combustion Institute, 32(1):535–542, 2009.
doi:10.1016/j.proci.2008.05.042.

24

http://dx.doi.org/10.1243/14680874JER01806
http://dx.doi.org/10.1080/00102200802049414
http://dx.doi.org/10.1016/j.combustflame.2009.01.003
http://dx.doi.org/10.1023/A:1019188517934
http://dx.doi.org/10.1021/jp076861c
http://www.jstor.org/stable/2245858
http://dx.doi.org/10.1016/j.proci.2010.06.156
http://dx.doi.org/10.1007/s11081-006-0350-4
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1016/j.proci.2008.05.042


[41] A. J. Smallbone, A. R. Coble, A. Bhave, S. Mosbach, M. Kraft, N. M. Morgan, and
G. Kalghatgi. Simulating PM emissions and combustion stability in gasoline/diesel
fuelled engines. SAE Paper No. 2011-01-1184, 2011.

[42] H. Su, A. Vikhansky, S. Mosbach, M. Kraft, A. Bhave, K.-O. Kim, T. Kobayashi,
and F. Mauss. A computational study of an HCCI engine with direct injec-
tion during gas exchange. Combustion and Flame, 147(1-2):118–132, 2006.
doi:10.1016/j.combustflame.2006.07.005.

[43] J. Villemonteix, E. Vazquez, and E. Walter. Bayesian optimization for parameter
identification on a small simulation budget. 15th IFAC Symposium on System
Identification, SYSID 2009, Saint-Malo, France, 2009. Available at: http://hal-
supelec.archives-ouvertes.fr/hal-00368152/en.

[44] R. D. Wilkinson. Bayesian calibration of expensive multivariate computer experi-
ments. In L. Biegler et al., editors, Large-Scale Inverse Problems and Quantification
of Uncertainty, chapter 10. John Wiley & Sons, New York, 2010.

[45] T. Ziehn, K. J. Hughes, J. F. Griffiths, R. Porter, and A. S. Tomlin. A global sen-
sitivity study of cyclohexane oxidation under low temperature fuel-rich conditions
using HDMR methods. Combustion Theory and Modelling, 13(4):589–605, 2009.
doi:10.1080/13647830902878398.

25

http://dx.doi.org/10.1016/j.combustflame.2006.07.005
http://hal-supelec.archives-ouvertes.fr/hal-00368152/en
http://hal-supelec.archives-ouvertes.fr/hal-00368152/en
http://dx.doi.org/10.1080/13647830902878398

	Introduction
	Methodology
	Definitions
	General algorithm
	Bayesian parameter estimation
	Preliminaries
	Likelihood
	Prior distributions
	Posterior distributions

	Experimental design
	Surrogate models
	Remarks on implementation

	Application to an internal combustion engine model
	The considered engine
	The considered engine model
	Model description
	Choice of process conditions, model parameters, and responses
	``Experimental'' data

	Results

	Conclusions
	References

