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Abstract

In this paper we develop an efficient stochastic method to solve the time
evolution of a bivariate population balance equation which has been developed
for modelling nano-particle dynamics. We have adapted the existing stochas-
tic models used in the study of coagulation dynamics to solve a variant of
the sintering-coagulation equation proposed by Xiong & Pratsinis. Hitherto
stochastic models based on Markov jump processes have not taken into ac-
count the surface area evolution. We produce numerical results efficiently
with the direct simulation and mass flow algorithms and study the conver-
gence behaviour as the number of stochastic particles increases. We find a
marked preference for using the mass flow algorithm to determine the higher
order volume and area moments of the particle size distribution function. The
computational efficiency of these algorithms is remarkable when compared to
the sectional method that has been used previously to study this equation.
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1 Introduction

Population balance models may be often applied to study the evolution of the macro-
scopic properties of a microscopic system. A particularly important application in
the field of chemical engineering is that of nano-particle synthesis and evolution.
Such nano-particles are produced in vast quantities by industry. Two of the most
important industrial examples of nano-particle synthesis are the production of car-
bon blacks and powder ceramics. Both of these are produced in high temperature
reactors. It is useful to develop modelling techniques that can be used to simulate
the evolution of the macroscopic properties during the synthesis process. Particles of
varying sizes and geometry are produced through the coagulation of smaller particles
in the system. The simplest equation governing the evolution of the concentration
of the particles in the system as a function of particle mass (or equivalently volumes)
is the Smoluchowski equation [1]. This equation depends on the coagulation kernel,
which describes the rate per unit volume at which any two particles of given masses
coagulate. In some circumstances it is desirable to have additional information such
as the evolution of the surface areas of the particles in the system. This bivariate
evolution problem has recently received some attention. The Smoluchowski equation
may be modified easily to incorporate the interaction due to surface areas by using
a coagulation kernel that depends on the surface areas of the coagulating particles.
Additionally surface areas evolve due to sintering, which for our purposes describes
the tendency of a particle to change its morphology in such a way as to minimize
its surface area. The development of models incorporating this surface area evo-
lution include important contributions from Koch & Friedlander [2] and Xiong &
Pratsinis [3].

Three main approaches have been developed in the study of the population bal-
ance equation in nano-particle synthesis and evolution problems. The first of these
may be conveniently referred to as moment methods. Rather than solve for the
Smoluchowski equation or its generalizations directly, one derives a set of ordinary
differential equations relating various moments of the concentration. Frequently the
moments of the population density are the physically interesting quantities, how-
ever when other information is required moment methods are usually inapplicable.
Moment methods and their generalizations have been successfully applied to the bi-
variate evolution problem by Koch & Friedlander [2] who make particular reference
to the application of their method to the synthesis of a silica (SiO2) fume in a plug
flow reactor. This method was developed by Kazakov & Frenklach [4] to study the
formation and evolution of soot particles. In order to model both the free molecular
regime and the continuum regime as the coagulation process evolved they took the
coagulation moments to be the harmonic mean of the coagulation moments gener-
ated by using the kernels for both regimes. In the work of Kazakov & Frenklach
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sintering was not considered, and the surface area not explicitly tracked, however
the growth of fractal aggregates from spherical primary particles was modelled.

A bivariate method of moments has been implemented by Rosner & Pyykönnen [5]
to model the synthesis of alumina (Al2O3) aggregates in a laminar flame reactor. In
their work, Rosner and Pyykönnen solved for nine moments using a CFD generated
temperature profile for the laminar flame and a coagulation kernel depending on
an estimate of the diameter of the particles. Schwade & Roth [6] have used a
moment method with a log normal ansatz for the particle size distribution to solve an
inhomogeneous coagulation-sintering-diffusion-convection equation coupled to CFD
code that solves the gas flow. This models the production of silicon particles from
silane (SiH4) in a wall heated aerosol reactor.

The second main approach to solving the population balance equation are referred to
as sectional techniques. In this class of methods the configuration space of the par-
ticle volume (and surface area, if appropriate) is divided into a number of regions,
within each region the concentration may be chosen to obey a simple rule, typi-
cally being constant or inversely proportional to the volume. One then computes
the fluxes across neighbouring sections and solves a sparse matrix problem. The
procedure should generate a solution to the Smoluchowski equation under succes-
sive refinement of the sections. Hounslow [7] developed this discretized population
balance equation and used it to analyse the crystallization of nickel ammonium sul-
phate. The book by Ramkrishna [8] also sets out the method in some generality.
Furthermore the sectional method has been used by Lindackers et al. [9] to model
the formation and growth of silica particles.

The sectional method has been extended by Xiong & Pratsinis [3] to model the
bivariate population balance equation tracking both volume and surface area of the
aggregates. They used the sectional method to model the synthesis of titania (TiO2)
powder. In their subsequent paper Xiong et al. [10] applied their algorithm to the
evolution of titania, silica and silica-doped titania powders. This model has been
further improved in [11, 12, 13, 14] where the coagulation kernel has been modified
to take account of the structure of the aggregates, the computational effort of the
sectional method has been reduced and surface growth has been modelled. Despite
the fact that this model offers more insight into the physics of particle formation and
evolution it has not been widely used due to the immense numerical effort. Even
recently [12], run times of up to 100 days on a PC for one simulation have been
reported for a genuine bivariate sectional approach.

The third main class of methods to solve numerically the population balance equa-
tion are Monte Carlo methods. The first Monte Carlo approach is to model the
microscopic physical processes involved that give rise to the population balance
equation. This was the approach adopted by Gillespie [15]. The ideas behind this
method are explained further by Ramkrishna [8]. Nano-particle synthesis and evo-
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lution has been modelled using a bivariate Monte Carlo method for the continuum
regime by Tandon & Rosner [16] and for the free molecular regime by Rosner &
Yu [17]. Kruis et al. [18] compared several Monte Carlo methods and applied a new
algorithm to the numerical investigation of the chemical reactions in coagulating
droplets and the coating of particles with smaller particles. The main disadvantage
of this first type of Monte Carlo simulation is the high computational effort neces-
sary to reduce the statistic fluctuation in the computed solution, it is also rather
difficult to justify convergence of the algorithm to the solution of the population
balance equation purporting to describe the physical system.

The second type of Monte Carlo approach tackles the problem of solving the popu-
lation balance equation from a mathematical angle rather than from a physical one.
In this approach a stochastic process is generated in such a way that the sample
paths form a solution to the population balance equation in the limit as a model pa-
rameter, known as the scaling parameter, increases without bound. Since a number
of convergence proofs exist for these algorithms [19, 20, 21, 22] careful implemen-
tation of these algorithms will give numerical solutions with arbitrary accuracy. It
is typical that convergence rates are extremely fast, and frequently of orders of
magnitude faster that the sectional approach. At the forefront of the application
of these results to chemical engineering are Eibeck & Wagner [22, 23, 24, 25], and
Wagner [26] who have applied the methods to the study of coagulation and frag-
mentation of particulate systems. The methods of Eibeck & Wagner have been used
by Goodson & Kraft [27] to develop a majorant kernel which they used to increase
the efficiency of nano-particle coagulation simulations for a coagulation kernel in-
volving an effective fractal dimension to account for the geometry of the aggregates
in the ensemble. In Grosschmidt et al. [28] the authors used both a moment method
and a stochastic model using the majorant kernel derived by Goodson & Kraft to
model the formation of silica particles from a low pressure flame doped with a silane
precursor. The same majorant kernel was used by Balthasar & Kraft [29] to model
the formation of soot particles from a realistic premixed C2H2/O2/Ar laminar flame
model. They compared the stochastic results with some results obtained from the
moment method.

The paper is organized as follows. In Sect. 2.1 we present a modification of the
sintering-coagulation equation proposed by Xiong & Pratsinis [3]. After replacing
the sintering term by a finite difference we establish the weak form of the modified
equation. In Sect. 2.2 we form the stochastic method that solves this sintering-
coagulation equation. We assume convergence of the stochastic algorithm, and be-
lieve that this should be straightforward to prove, though do not present a proof in
this paper. We make use of a majorant kernel in Sect. 2.3 in order to dramatically
improve the efficiency of the algorithm. This algorithm, which we refer to as the di-
rect simulation algorithm (DSA) is written out in algorithmic terms in Sect. 2.4. We
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make some comments on the efficient selection of particles according to a probability
distribution, and on other techniques that are useful when implementing the algo-
rithm. In Sect. 3 we write the sintering-coagulation equation in terms of the mass
density rather than the number density. This leads to a bivariate formulation of the
mass flow algorithm (MFA) originally introduced by Eibeck & Wagner [24]. Sect. 4
is dedicated to studying the numerical results obtained from the implementations
of both the direct simulation and mass flow algorithms. The detailed comparison of
the methods is presented in Sect. 4.1. We find rapid convergence of both algorithms,
and present a set of graphs and tables showing the error and computational times
when one varies the number of stochastic particles in the simulations. In Sect. 4.2
we study the dependence of our results on the area step size parameter that was
introduced when the area derivative in the original sintering-coagulation equation
was replaced by a finite difference. Finally we draw our conclusions in Sect. 5.

2 Modelling

2.1 The Weak Form of the Sintering-Coagulation Equation

A decade ago Xiong & Pratsinis [3] proposed a modification of the Smoluchowski
equation that also modelled the sintering phenomenon. We refer to such extensions
as sintering-coagulation equations, they determine the temporal evolution of the
particle size distribution function nt(r, v, a), i.e., the number density of particles
in space, volume and surface area. In this paper we will assume that the parti-
cle distribution is spatially homogeneous and therefore there is no dependence on
the position vector r. Under these conditions a corrected version of the equation
proposed by Xiong & Pratsinis is given by

∂nt(v, a)

∂t
=

∂

∂a

(
1

t0

[
a − a0

(
v

v0

) 2
3

]
nt(v, a)

)

+
1

2

∫ v

v0

∫ a0v′
v0

a0

(
v′
v0

) 2
3

11H v′
v0

, v−v′
v0

(a

a0

)
βv,v′(a′, a − a′)nt(v

′, a′)nt(v − v′, a − a′) da′dv′

− nt(v, a)

∫ ∞

v0

∫ a0v′
v0

a0

(
v′
v0

) 2
3
βv,v′(a, a′)nt(v

′, a′) da′dv′ (1)

where we have set Hc,d = [c
2
3 +d

2
3 ,∞). The characteristic sintering time is denoted by

t0, which we take to be constant, however it is easy to extend our results to the case
when t0 is a function of volume and surface area; in particular if we take t0 ∝ (v/a)4

then we would recover a corrected model of Xiong & Pratsinis. In contrast to
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Koch & Friedlander [2] and inconsistent with other equations in their paper, Xiong
& Pratsinis [3] took the characteristic sintering time outside of the surface area
derivative. In doing so one finds that this does not reproduce the Smoluchowski
equation properly when integrated over the surface area. The quantities a0, v0 and
m0 in Eq. (1) are the surface area, volume and mass of the primary particles, i.e.,
the smallest particles in the system at the starting time t = 0. The coagulation
kernel βv,v′(a, a′) determines the rate per unit volume at which particles coagulate
and is given by

βv,v′(a, a′) =

(
kTa2

0

2πm0

) 1
2

K(x, x′) (2)

where we have defined

K(x, x′) =

(
1

ν
+

1

ν ′

) 1
2 [

(s(ν)σ)
1
2 + (s(ν ′)σ′)

1
2

]2

(3)

with x = (ν, σ) = (v/v0, a/a0) and s(ν) is the surface area accessibility function
given by

s(ν) = λ1ν
α−1 + λ2; λ1 = 21−α(DS − 2); λ2 = 3 − DS. (4)

We have written DS ∈ [2, 3] for the surface fractal dimension and α ∈ [0, 1] for the
surface area scaling factor. The temperature is denoted by T and k is Boltzmann’s
constant.

Throughout this paper we will impose the condition nt(v, a) = 0 for all pairs (v, a)

such that a < a0(v/v0)
2
3 or a > a0v/v0. Physically this implements the constraint

that the surface area of each particle lies between that of a perfect sphere and an
uncoalesced aggregate of primary particles. In particular if a0(v

′/v0)
2
3 � a′ and

a0((v − v′)/v0)
2
3 � a − a′ then a0[(v

′/v0)
2
3 + ((v − v′)/v0)

2
3 ] � a and it follows that

with our condition on nt(v, a) the indicator function in Eq. (1) performs no useful
purpose.

We will implement stochastic algorithms that make use of Markov jump processes.
One approach to implementation is to replace the derivative with respect to surface
area in Eq. (1) by a finite difference. Let us write the differential-integral equation
in terms of the dimensionless quantities x and τ = t/t0. The population density
function is also expressed in terms of the dimensionless quantity Nτ (x) where

Nτ (x) = t0a
2
0v0

(
kT

2πm0

) 1
2

nt(v, a) (5)

and a finite difference step size parameter Λ is introduced which determines the
discretization of the surface area variable σ. The equation for which we will construct
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a stochastic model is given by

∂Nτ (x)

∂τ
= ρΛ(x + Λ)Nτ (x + Λ) − ρΛ(x)Nτ (x)

+
1

2

∫ ν

1

∫ ν′

ν′ 23
K(x − x′, x′)Nτ (x

′)Nτ (x − x′) d2x′

−
∫ ∞

1

∫ ν′

ν′ 23
K(x, x′)Nτ (x)Nτ (x

′) d2x′; (6)

ρΛ(x) =

{
Λ−1

(
σ − ν

2
3

)
if ν

2
3 + Λ � σ � ν,

0 otherwise.
(7)

As a small abuse of notion we have defined expressions such as x + Λ to be equal to
(ν, σ + Λ). It will be convenient to define the region in configuration space given by

R = {(p, q) ∈ R
2 | 1 � p

2
3 � q � p}. (8)

It may be observed that supp ρΛ ⊆ R + Λ and supp Nτ ⊆ R, since as previously
remarked, each particle in the system has a surface area that lies between a0ν

2
3 and

a0ν where v0ν is the particle’s volume.

We construct next a weak form of this equation. Let ϕ : R → R be a bounded
continuous function on R. Integrate the product of Eq. (6) and ϕ(x) over R to
obtain

d

dτ

∫
R

ϕ(x)Nτ (x) d2x =

∫
R
{ρΛ(x + Λ)Nτ (x + Λ) − ρΛ(x)Nτ (x)}ϕ(x) d2x

+
1

2

∫
R

d2x

∫ ν

1

∫ ν′

ν′ 23
ϕ(x)K(x − x′, x′)Nτ (x

′)Nτ (x − x′) d2x′

−
∫
R

∫
R

ϕ(x)K(x, x′)Nτ (x)Nτ (x
′) d2x d2x′. (9)

At this point it is useful to write Nτ (x) = 11R(x)Nτ (x), the second term on the RHS
may be rewritten as

1

2

∫
R2

∫
R2

ψ(x, x′)11R(x)11R(x′)11R(x − x′) d2x d2x′ (10)

where
ψ(x, x′) = K(x − x′, x′)Nτ (x

′)Nτ (x − x′). (11)

Expression (10) can be rewritten using x �→ x + x′ as

1

2

∫
R2

∫
R2

ψ(x+x′, x′)11R(x+x′)11R(x′)11R(x) d2x d2x′ =
1

2

∫
R

∫
R

ψ(x+x′, x′) d2x d2x′.

(12)
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It follows that the weak form of Eq. (6) can be rewritten as

d

dτ

∫
R

ϕ(x)Nτ (x) d2x =

∫
R+Λ

ρΛ(x)Nτ (x)ϕ(x − Λ) d2x −
∫
R

ρΛ(x)Nτ (x)ϕ(x) d2x

+
1

2

∫
R

∫
R
{ϕ(x + x′) − ϕ(x) − ϕ(x′)}K(x, x′)Nτ (x)Nτ (x

′) d2x d2x′. (13)

Notice that∫
R+Λ

ρΛ(x)Nτ (x)ϕ(x − Λ) d2x =

∫
R+Λ

ρΛ(x)Nτ (x)11R(x)ϕ(x − Λ) d2x (14)

=

∫
R

11R+Λ(x)ρΛ(x)Nτ (x)ϕ(x − Λ) d2x (15)

=

∫
R

ρΛ(x)Nτ (x)ϕ(x − Λ) d2x (16)

since supp ρΛ ⊆ R + Λ.

Take Mb(R) to be the non-negative Borel measures on R. We will call P ∈ [0,∞)×
Mb(R) a measure-valued solution to the sintering-coagulation equation with initial
distribution P0 if P (0, ·) = P0 and∫

R
ϕ(x)P (τ, dx) =

∫
R

ϕ(x)P (0, dx) +

∫ τ

0

ds

∫
R
{ϕ(x − Λ) − ϕ(x)} ρΛ(x)P (s, dx)

+
1

2

∫ τ

0

ds

∫
R

∫
R
{ϕ(x + x′) − ϕ(x) − ϕ(x′)}K(x, x′)P (s, dx)P (s, dx′) (17)

holds for all bounded continuous functions ϕ defined on R and for all τ > 0.

2.2 The Stochastic Coalescent

In this section we propose a sequence of measure-valued random variables that
converge in distribution to a solution of Eq. (17). Let V > 0 be a (large) fixed real
number, define

S
N
V =

{
p ∈ Mb(R)

∣∣∣∣∣ p =
1

N

n∑
i=1

δ2
xi

,

∫
R

ν p(dx) � V

}
(18)

for each value of the scaling parameter N . In this formula δ2
xi

is the Dirac point
measure defined by δ2

xi
(Γ) = 11Γ(xi). For any sequence of UN

τ ∈ S
N
V define the

measure µN
τ ∈ Mb(R×R) by

µN
τ (Γ1 × Γ2) = UN

τ (Γ1)U
N
τ (Γ2) − 1

N
UN

τ (Γ1 ∩ Γ2). (19)
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Therefore N2µN
τ (Γ1, Γ2) is the number of distinct pairs of unordered indices i, j with

(xi, xj) ∈ Γ1×Γ2. With this interpretation it is clear that µN
τ is a non-negative Borel

measure.

We will produce a sequence, the stochastic coalescent of measure-valued random
variables UN

τ in S
N
V which has the property that the following is a martingale

MN
ϕ (τ) =

∫
R

ϕ(x)UN
τ (dx) −

∫
R

ϕ(x)UN
0 (dx)

−
∫ τ

0

ds

∫
R
{ϕ(x − Λ) − ϕ(x)} ρΛ(x)UN

s (dx)

− 1

2

∫ τ

0

ds

∫
R

∫
R
{ϕ(x + x′) − ϕ(x) − ϕ(x′)}K(x, x′)µN

s (dx, dx′) (20)

with zero as an accumulation point (where the notion of convergence is of conver-
gence in distribution).

It should be noted that∣∣∣∣12
∫
R

∫
R
{ϕ(x + x′) − ϕ(x) − ϕ(x′)}K(x, x′)UN

s (dx)UN
s (dx′)

− 1

2

∫
R

∫
R
{ϕ(x + x′) − ϕ(x) − ϕ(x′)}K(x, x′)µN

s (dx, dx′)

∣∣∣∣
=

1

2N

∣∣∣∣∫R
{ϕ(2x) − 2ϕ(x)}K(x, x)UN

s (dx)

∣∣∣∣
� 3‖ϕ‖∞

2N

∫
R

K(x, x)UN
s (dx) (21)

� 3 × 2
7
2‖ϕ‖∞
N

∫
R

ν
1
2 UN

s (dx) (22)

� 3 × 2
7
2‖ϕ‖∞V

N
→ 0 (23)

as N → ∞. We have used K(x, x) � 2
9
2 ν

1
2 for x ∈ R. Accordingly we assume that

if UNk
τ ⇒ P (τ, ·) (convergence in distribution) and MNk

ϕ (τ) ⇒ 0 as k → ∞ then
P is almost surely a solution to the sintering-coagulation equation Eq. (17). The
purpose of this paper is not to present an appropriate convergence proof, however
Norris [19, 20] and Eibeck & Wagner [22, 25] provide some important results in
this direction that we believe should generalize easily to cover the situation we are
studying.

Define the jump operators for any measure p ∈ Mb(R) by

Jc(p, x, x′) = p +
1

N

(
δ2
x+x′ − δ2

x − δ2
x′

)
; (24)

Js(p, x) = p +
1

N

(
δ2
x−Λ − δ2

x

)
. (25)

10



For each p ∈ Mb(R) we will use the notation that Φ(p) =

∫
R

ϕ(x)p(dx). Conse-

quently the generator associated with the martingale expression Eq. (20) is found
to be

GN(Φ)(UN
s ) = N

∫
R

ρΛ(x)[Φ(Js(U
N
s , x)) − Φ(UN

s )]UN
s (dx)

+
N

2

∫
R×R

[Φ(Jc(U
N
s , x, x′)) − Φ(UN

s )]K(x, x′)µN
s (dx, dx′). (26)

Next we introduce a majorant kernel K̂(x, x′), this is a symmetric positive definite

upper bound on K, i.e., K(x, x′) � K̂(x, x′) for all x, x′ ∈ R. Although Eq. (26)
has no dependence on the majorant kernel it is useful to write it in the form

GN(Φ)(UN
s ) = N

∫
R

ρΛ(x)[Φ(Js(U
N
s , x)) − Φ(UN

s )]UN
s (dx)

+
N

2

∫
R×R

{
K(x, x′)

K̂(x, x′)
[Φ(Jc(U

N
s , x, x′)) − Φ(UN

s )]

+

(
1 − K(x, x′)

K̂(x, x′)

)
[Φ(UN

s ) − Φ(UN
s )]

}
K̂(x, x′)µN

s (dx, dx′). (27)

It follows that MN
ϕ (τ) is a martingale in τ for all bounded continuous functions

ϕ : R → R if the time evolution of UN
τ obeys the differential relationship

E
(
UN

τ+dτ | UN
τ

) − UN
τ = E

(
(PN(UN

τ ) − UN
τ )(UN

τ ) | UN
τ

)
dτ (28)

for dτ � 0 and where the transition map PN is defined by

Φ((PN(UN
τ ) − UN

τ )(UN
τ )) = GN(Φ)UN

τ . (29)

Accordingly we take

(UN
s ) = N

∫
R

ρΛ(x)UN
s (dx) +

N

2

∫
R×R

K̂(x, x′)µN
s (dx, dx′); (30)

PN(UN
s ) =

N

(UN
s )

∫
R

ρΛ(x)Js(U
N
s , x)UN

s (dx)

+
N

2(UN
s )

∫
R×R

{
K(x, x′)

K̂(x, x′)
Jc(U

N
s , x, x′) +

(
1 − K(x, x′)

K̂(x, x′)

)
UN

s

}
K̂(x, x′)µN

s (dx, dx′).

(31)

In our analysis so far we have assumed only that UN
s ∈ Mb(R). If furthermore we
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assume that UN
s ∈ S

N
V then we find the explicit representations:

(UN
s ) =

n∑
i=1

ρΛ(xi) +
1

2N

n∑
i,j=1
i�=j

K̂(xi, xj); (32)

PN(UN
s ) =

1

(UN
s )

n∑
i=1

ρΛ(xi)Js(U
N
s , xi)

+
1

2N(UN
s )

n∑
i,j=1
i�=j

{
K(xi, xj)

K̂(xi, xj)
Jc(U

N
s , xi, xj) +

(
1 − K(xi, xj)

K̂(xi, xj)

)
UN

s

}
K̂(xi, xj).

(33)

Notice that in general PN does not map S
N
V to S

N
V . In order to generate sample

paths in S
N
V we make use of the fact that UN

s is a random variable. This allows us
to keep UN

s within S
N
V . Since PN is inside a conditional expectation in Eq. (28), we

may achieve this by making a suitable probabilistic interpretation of the transition
map PN .

The sample paths are generated by the following rule: given a state UN
τ , generate

an exponentially distributed waiting time τ̂ with parameter (UN
τ ), then chose UN

τ+τ̂

such that E(UN
τ+τ̂ | UN

τ ) = E(PNUN
τ | UN

τ ). For all s ∈ [0, τ̂) we set UN
s = UN

τ . To
see that this generates appropriate sample paths notice that the probability that
the waiting time τ̂ is within dτ of the current time is P(0 < τ̂ < dτ) = (UN

τ ) dτ ,
therefore

E
(
UN

τ+dτ | UN
τ

)
= E

(PN(UN
τ ) | UN

τ

)
(UN

τ ) dτ + UN
τ (1 − (UN

τ ) dτ) (34)

which may be rearranged to give Eq. (28).

2.3 Choice of Majorant Kernel

In this section we establish a simple upper bound on K(x, x′), this upper bound is

the majorant kernel K̂(x, x′) . We will need the inequalities (a+b)
1
2 � a

1
2 +b

1
2 which

is verified by squaring both sides, and (a
1
2 +b

1
2 )2 � (a

1
2 +b

1
2 )2+(a

1
2 −b

1
2 )2 = 2(a+b).

Accordingly

K(x, x′) =

(
1

ν
+

1

ν ′

) 1
2 [(

λ1σνα−1 + λ2σ
) 1

2 +
(
λ1σν ′α−1 + λ2σ

′) 1
2

]2

(35)

� 2

(
1

ν
1
2

+
1

ν ′ 1
2

) (
λ1σνα−1 + λ2σ + λ1σ

′ν ′α−1 + λ2σ
′) . (36)
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Take the RHS of Ineq. (36) to be the definition of K̂(x, x′). Let us define

θ(x) = λ1σνα−3/2 + λ2σν− 1
2 and ψ(x) = λ1σνα−1 + λ2σ. (37)

It is simple to express the majorant kernel in terms of these quantities, thus:

K̂(x, x′) = 2
(
θ(x) + ψ(x)ν ′− 1

2 + ψ(x′)ν− 1
2 + θ(x′)

)
. (38)

Set

c =
1

2N

n∑
i,j=1
i�=j

K̂(xi, xj) =
2(n − 2)

N

n∑
i=1

θ(xi) +
2

N

n∑
j=1

ν
− 1

2
j

n∑
i=1

ψ(xi). (39)

One of the computational advantages of using a majorant kernel is it takes O(1)
operations to update c if a new particle is added or an existing particle removed from
the system. The corresponding computation using the coagulation kernel K(x, x′)
instead of its majorant takes O(N) operations. Define the joint probability densities
for i 
= j by

p
(1)
ij =

θ(xi)

(n − 1)
n∑

k=1

θ(xk)

; p
(2)
ij =

ψ(xi)ν
− 1

2
j

n∑
k=1

ψ(xk)
n∑

�=1

ν
− 1

2
� −

n∑
k=1

θ(xk)

(40)

and p
(1)
ii = p

(2)
ii = 0. Set

κij = 2Nc(µ1p
(1)
ij + µ2p

(2)
ij );

µ1 =
2(n − 1)

Nc

n∑
k=1

θ(xk);

µ2 =
2

Nc

n∑
k=1

ψ(xk)
n∑

�=1

ν
− 1

2
� − 2

Nc

n∑
k=1

θ(xk). (41)

In particular K̂(xi, xj) = 1
2
(κij + κji) for i 
= j and µ1 + µ2 = 1. It is impor-

tant to notice that up to scale the joint probability distributions p
(k)
ij take a simple

product form for i 
= j. Computationally this means we may pick particles i and
j independently, rather than jointly. If the chosen indices i and j are equal then
we reject this choice and try again. This product property of the joint probability
distributions leads to a significant improvement in the computationally efficiency of
the algorithm.
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2.4 The Direct Simulation Algorithm

For UN
s ∈ S

N
V we introduce waiting time parameters associated with sintering and

coagulation:

s(U
N
s ) =

n∑
i=1

ρΛ(xi) and c(U
N
s ) =

1

2N

n∑
i,j=1
i�=j

K̂(xi, xj). (42)

It follows that the transition map PN is given by

PN(UN
s ) =

s

s + c

n∑
i=1

ρΛ(xi)

s

Js(U
N
s , xi)

+
c

s + c

n∑
i,j=1
i�=j

{
K(xi, xj)

K̂(xi, xj)
Jc(U

N
s , xi, xj) +

(
1 − K(xi, xj)

K̂(xi, xj)

)
UN

s

}(
µ1p

(1)
ij + µ2p

(2)
ij

)
.

(43)

In this equation s = s(U
N
s ) and c = c(U

N
s ). We may now use this information

to construct an algorithm to generate sample paths for the sintering-coagulation
equation:

1. Choose values for the scaling parameter N and the step size parameter Λ. Set
the time τ to zero.

2. Find an approximation p ∈ S
N
V to the initial particle distribution.

3. Generate a random time τ̂ which is exponentially distributed with parameter
s + c. Increase τ by τ̂ .

4. With probability
s

s + c

(44)

perform a sintering event (step 5), otherwise perform a coagulation event (step
6).

5. Sintering event:

(a) Pick an index i according to the distribution ρΛ(xi).

(b) Replace p by

p +
1

N
(δ2

xi−Λ − δ2
xi

). (45)

(c) Return to step 3.

14



6. Coagulation event:

(a) With probability µ1 use p
(1)
ij to generate indices (step i) otherwise use p

(2)
ij

to generate the indices (step ii).

i. Pick index i according to the distribution θ(xi). and pick j uniformly.
If i = j pick another j. Go to step 6(b).

ii. Pick indices i and j according to the distributions ψ(xi) and ν
− 1

2
j

respectively. If i = j reject this choice and perform the step again.

(b) With probability
K(xi, xj)

K̂(xi, xj)
(46)

replace p by

p +
1

N
(δ2

xi+xj
− δ2

xi
− δ2

xj
) (47)

otherwise do nothing (a fictitious jump).

(c) Return to step 3.

This algorithm has the property that at each time supp p ⊆ R. From the definition
of ρΛ, a particle for which a sintering event would reduce the particle’s surface area
below the minimum permissible has ρΛ(xi) = 0, accordingly there is no possibility
that such a particle would be chosen to undergo a sintering event. The parameter Λ
therefore acts as both a surface area step size and as a parameter that determines
when we regard the sintering process for any particular particle as complete.

We have been careful to make sure that for a coagulation event we do not pick equal
indices, had we not imposed this requirement the new measure p may not have been
non-negative. It is precisely this reason that the new measure µN

τ was introduced
during the development of the algorithm.

Coagulation events in this algorithm will cause the number of stochastic particles
under consideration to decrease with time. In order for the algorithm to cope well
with late times it is extremely useful to use the particle doubling method. Since
S

N
V ⊂ S

2N
V we may set U2N

τ0
= UN

τ0
if, after a time τ0, the particle number falls below

some preassigned value. We are then able to continue the algorithm with scaling
parameter 2N .
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Figure 1: A simple binary tree used to select particles according to a distribution θ

To implement the algorithm just presented it is necessary to choose a particle ac-
cording to a given distribution. One method of doing this is to use the inversion
method implemented using a binary tree. Let the distribution be θ, which need
not be normalized. We set up a binary tree as illustrated in Figure 1, each leaf of
the tree represents a particle index. In each node of the tree that is not a leaf, we
store the cumulative sum of all the contributions to θ obtained by moving to the
left of that node. Once the tree is set up we choose a random number Θ, uniformly
distributed between 0 and

∑
i θi. It is then a simple matter to climb the tree from

the root using the information stored in each mode to decide successively which
branches one takes until one finds a leaf corresponding to the particle index n such
that

∑n−1
i=1 θi � Θ <

∑n
i=1 θi. For a tree of size N it takes O(log N) operations to

climb the tree or to update the relevant quantities in the nodes when a particular θi

changes due to a coagulation or a sintering event. This method works well in prac-
tice, although periodically it is necessary to generate the binary tree from scratch
in order to avoid accumulated rounding error from becoming a significant problem.

3 The Mass Flow Algorithm

In this section we show how to implement an alternative algorithm that solves the
sintering-coagulation equation. The strategy is to write the original equation in
terms of the mass density rather than in terms of the number density. Having done
so we can proceed as with the direct simulation algorithm.

Eibeck & Wagner [24], and Wagner [26] describe the new approach which they call
the mass flow algorithm. This algorithm has a number of computational advantages
over the direct simulation algorithm hitherto exploited, it is also far better at mod-
elling gelling kernels, however this is not an issue for the kernel we are using in this
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paper. To cast Eq. (17) into a form suitable for analysis in terms of the mass flow
we write Q(s, dx) = νP (s, dx), so that Q is the measure-valued mass density. We
will call Q ∈ [0,∞)×Mb(R) a measure-valued solution to the sintering-coagulation
mass flow equation with initial distribution Q0 if Q(0, ·) = Q0 and∫

R
ϕ(x)Q(τ, dx) =

∫
R

ϕ(x)Q(0, dx) +

∫ τ

0

ds

∫
R
{ϕ(x − Λ) − ϕ(x)} ρΛ(x)Q(s, dx)

+

∫ τ

0

ds

∫
R

∫
R
{ϕ(x + x′) − ϕ(x)} K(x, x′)

ν ′ Q(s, dx)Q(s, dx′) (48)

holds for all bounded continuous functions ϕ defined on R and for all τ > 0.

Define the jump operator for all p ∈ Mb(R) and x, x′ ∈ R by

JMFA(p, x, x′) = p +
1

N
(δ2

x+x′ − δ2
x). (49)

For convenience set K̃(x, x′) = K̂(x, x′)/ν ′. Furthermore we will write

φ(x) = λ1σνα−5/2 + λ2σν− 3
2 ; ω(x) = λ1σνα−2 + λ2σν−1 (50)

and

MFA =
1

N

n∑
i,j=1

K̃(xi, xj). (51)

Set

1 =
n∑

k=1

θ(xk)
n∑

�=1

ν−1
� ; 2 = n

n∑
k=1

φ(xk); (52)

3 =
n∑

k=1

ψ(xk)
n∑

�=1

ν
− 3

2
� and 4 =

n∑
k=1

ω(xk)
n∑

�=1

ν
− 1

2
� . (53)

It is a simple matter to verify that

MFA =
1

N

4∑
k=1

k. (54)

Let us define probabilities by µk =
2k

NMFA

and define probability distributions p
(k)
ij

by

p
(1)
ij =

θ(xi)ν
−1
j

1

, p
(2)
ij =

φ(xj)

2

, p
(3)
ij =

ψ(xi)ν
− 3

2
j

3

, and p
(4)
ij =

ω(xj)ν
− 1

2
i

4

.

(55)
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Consequently we have that

K̃(xi, xj)

NMFA

=
4∑

k=1

µkp
(k)
ij . (56)

We are now in a position to write down the operator PN which determines the
transition from one state to the next,

PN(UN
s ) =

s

s + MFA

n∑
i=1

ρΛ(xi)

s

Js(U
N
s , xi)

+
MFA

s + MFA

n∑
i,j=1

{
K(xi, xj)

K̂(xi, xj)
JMFA(UN

s , xi, xj) +

(
1 − K(xi, xj)

K̂(xi, xj)

)
UN

s

}
4∑

k=1

µkp
(k)
ij

(57)

where s = (UN
s ) and MFA = MFA(UN

s ) in this equation. This is in a form where
the algorithm may be easily elucidated.

1. Choose values for the scaling parameter N and the surface area step size
parameter Λ. Set the time τ to zero.

2. Find an approximation p ∈ S̃
N
V to the initial particle distribution where

S̃
N
V =

{
p ∈ Mb(R)

∣∣∣∣∣ p =
1

N

n∑
i=1

δ2
xi

, p(R) � V

}
. (58)

3. Generate a random time τ̂ which is exponentially distributed with parameter
s + MFA. Increase τ by τ̂ .

4. With probability
s

s + MFA

(59)

perform a sintering event (step 5), otherwise perform a mass flow coagulation
event (step 6).

5. Sintering event:

(a) Pick an index i according to the distribution ρΛ(xi).

(b) Replace p by

p +
1

N
(δ2

xi−Λ − δ2
xi

). (60)

(c) Return to step 3.
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6. Mass flow coagulation event:

(a) With probabilities µk use p
(k)
ij to generate indices, step (k) below.

• (1) Pick indices i and j according to the distributions θ(xi) and ν−1
j

respectively.

• (2) Pick index j according to the distribution φ(xj) and choose i
uniformly.

• (3) Pick indices i and j according to the distributions ψ(xi) and ν
− 3

2
j

respectively.

• (4) Pick indices i and j according the distributions ν
− 1

2
i and ω(xj)

respectively.

(b) With probability
K(xi, xj)

K̂(xi, xj)
(61)

replace p by

p +
1

N
(δ2

xi+xj
− δ2

xi
) (62)

otherwise do nothing (a fictitious jump).

(c) Return to step 3.

4 Numerical Results

Both the direct simulation algorithm and the mass flow algorithm provided excellent
results. The mass flow algorithm was particularly impressive since it was both fast
and accurate. In order to study the convergence of the algorithms we compute
functionals of the form ∫

R
ϕ(x)P (τ, dx) (63)

which is the limit

lim
N→∞

1

N

n∑
i=1

ϕ(xi) (64)

in the direct simulation algorithm, and the limit

lim
N→∞

1

N

n∑
i=1

ϕ(xi)

νi

(65)
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in the mass flow algorithm. We define (following Eibeck & Wagner [24]) the con-
centration of particles with volumes within a given range by

C[a,b](τ) =

∫
R

11[a,b](ν)P (τ, dx) (66)

and the volume and area moments

Mk(τ) =

∫
R

νkP (τ, dx); mk(τ) =

∫
R

σkP (τ, dx) (67)

together with the correlation coefficient

ρ(σ, ν
2
3 ) =

(
M 4

3
M0 − M2

2
3

)− 1
2 (

m2M0 − m2
1

)− 1
2

[
M0

∫
R

σν
2
3 P (τ, dx) − m1M 2

3

]
(68)

which measures the extent to which the particles in the ensemble are spherical.

We begin the simulations with a monodisperse initial distribution with unit concen-
tration P0 = Q0 = δ2

(1,1). If we increase the initial particle concentration coagulation
events become the dominant process at the start of the simulation, this is because
particles are colliding so rapidly that the time scale between collisions is small com-
pared to the characteristic sintering time. At later times the concentration falls and
sintering becomes increasingly important compared to the coagulation events. This
behaviour is illustrated in Figure 2. The vertical scale is proportional to the particle
concentration. It is worth remarking that the region R is clearly visible. At time
τ = 0 we have the initial unit concentration of primary particles. Rapidly coagu-
lation events have occurred and the distribution is spread out predominantly along
the line σ = ν, corresponding to particle agglomerates where no sintering has taken
place. As time progresses, sintering becomes more important, and the particles are
distributed with a greater range of volumes and with surface areas that approach
that of perfect spheres, this corresponds to the line σ = ν

2
3 . At much later times the

primary particles have all undergone coagulation events and the system comprises
of a smaller number of large and essentially spherical particles.

It is worth making the point that the particle concentration represented by the
graphs in Figure 2 are zero when the volume does not take integral values; in par-
ticular the graphs do not form smooth surfaces, but rather form a collection of 100
two-dimensional sections supported on ν ∈ N. This may be rigorously established
from the sintering-coagulation equation as follows. If the initial distribution obeys
supp P (0, ·) ⊆ {x ∈ R | ν ∈ N} then taking ϕ(x) = ν11R\N∩[0,V ](ν) and writing

P̃ (τ, ·) = 11R\N(ν)P (τ, ·), we find that Eq. (17) leads to
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∫
R

ν11[0,V ](ν)P̃ (τ, dx)

= −1

2

∫ τ

0

ds

∫
R

∫
R

{
ν11[V −ν′,V ](ν) + ν ′11[V −ν,V ](ν

′)
}

K(x, x′)P̃ (s, dx)P̃ (s, dx′)

� 0 (69)

for all V ∈ R. This has the unique solution P̃ (τ, ·) = 0 a.e. for all time τ , as a

consequence of the non-negativity of P̃ . It follows that P (τ, ·) = P (τ, ·)11N(ν), i.e.,
P is supported on [0,∞) × {x ∈ R | ν ∈ N} establishing our assertion. We remark
that the algorithms presented automatically implement this constraint.

area
volume

area
volume

τ = 0 τ = 0.12

area
volume

area
volume

τ = 1.2 τ = 2.4

area
volume

area
volume

τ = 3.6 τ = 4.8
Figure 2: Evolution of the particle volume and area distribution

21



4.1 Comparison of the Two Algorithms

In this section we compare the direct simulation and mass flow algorithms with
parameters α = 0.8, DF = 2.3, Λ = 0.01, initial distribution P0 = δ2

(1,1) and a total
simulation time of T = 35, for a range of values of N . Since at fixed N the direct
simulation is faster than the mass flow algorithm, we will be comparing N for the
mass flow algorithm with 4.6N for the direct simulation, for my implementations,
these have very close total running times.

If we assume convergence of the method, the total error one makes when one uses
either algorithm is O(N−1), this is the best possible since the size of the jumps we
make at each event is inversely proportional to N . The extra power of νi � 1 in
the denominator of Eq. (65) has the effect of reducing the error for the mass flow
algorithm compared to the direct simulation at fixed N . The standard convergence
theory, if it can be established, would tell us of the convergence in distribution (of a
subsequence) of the sample paths as N → ∞. In order to improve the accuracy it is
possible to take a mean over L such sample paths at fixed N , however the statistical
error we make in doing so is O(L− 1

2 ). Since CPU time is proportional to both L and
proportional to N log N , it follows that for a fixed computational time it is better to
increase N than to increase L, however other considerations, such as the desire to
obtain numerically determined statistical confidence intervals for the results maybe
influential in choosing to perform many runs at fixed N .

For the computer implementations of the algorithms described, the mass flow algo-
rithm has a running time of approximately 0.0319N log N seconds per run, and the
direct simulation algorithm has a running time of approximately 0.000693N log N
seconds per run where particle doubling is implemented if the total number of par-
ticles decreases to below 30% of the starting value. The simulations were performed
on a stand-alone 1.2 GHz PC with AMD Athlon Processor.

Relative Error (%) Error (%)

Alg. N Run time M0 M2 M3 C[100,200] m1 m2 m3 ρ(σ, ν
2
3 )

DSA 35 0.14 s 15.861 19.954 37.833 172.495 4.946 47.204 68.635 1.223
MFA 16 0.14 s 9.006 34.720 121.069 72.211 1.852 23.142 60.725 1.511
DSA 1178 4 s 2.647 18.971 65.628 21.797 0.850 14.307 28.872 0.442
MFA 256 4 s 1.690 6.661 15.098 21.088 1.362 8.351 7.919 0.411
DSA 18842 1 m 35 s 0.663 5.788 18.269 8.473 0.291 5.529 7.211 0.209
MFA 4096 1 m 22 s 0.524 1.311 2.802 3.882 0.207 1.480 1.694 0.100
DSA 301466 35 m 26 s 0.079 0.504 1.669 0.869 0.040 0.847 0.957 0.084
MFA 65536 38 m 37 s 0.292 0.207 0.538 0.859 0.140 0.597 0.369 0.031

Table 1: Run times and errors for the algorithms

22



In Table 1 we have defined the absolute error in the computed value of a function
ϕ(τ) using the uniform norm on [0, T ], where T = 35 is the total simulation time,
i.e.,

ϕerror = ‖ϕN − ϕ‖∞ = sup
t∈[0,T ]

|ϕN(τ) − ϕ(τ)| (70)

where ϕ(τ) is the reference solution (obtained by a mass flow algorithm with 222

particles and sintering solved exactly with a run time of 25 h), and ϕN is the estimate
derived with N stochastic particles. The table indicates that the mass flow and
direct simulations are equally accurate for the zeroth moment, however the mass
flow produces significantly more accurate results for the higher volume and area
moments for a fixed computational time. The table also suggests convergence of
the sample paths generated by each algorithm to the solution of the corresponding
sintering-coagulation equation.
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Figure 3: Graphs of M0 and m1

The graphs of M0 and m1 illustrate that both algorithms have comparable accuracy
for the lowest volume and area moments for a given computation time. In the graphs
above only the case with computational time of 0.14 s was plotted, longer simulations
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produced results that are graphically indistinguishable from the reference solution.
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Figure 4: Graphs of M2 and M3

For the higher order volume moments, the mass flow algorithm converges more
quickly than the direct simulation. In particular the N = 4096 mass flow simula-
tion is almost graphically indistinguishable from the reference solution. The higher
surface area moments display the same property as can be seen below.
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Figure 5: Graphs of m2 and m3

Let us now consider the correlation coefficient ρ(σ, ν
2
3 ), the graphs for the two algo-

rithms are shown below.
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Figure 6: Graphs of the correlation coefficient ρ(σ, ν
2
3 )

It should be noted that the vertical axes runs from 0.98 and from 0.975 for the
DSA and MFA graphs respectively. Therefore the variations shown in these graphs
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are much smaller relative to the size of the solution than might be thought at a
cursory glance. Initially we begin the simulation with spherical primary particles,
immediately coagulation events dominate leading to non-spherical agglomerates. As
the simulation proceeds the sintering events become the dominate process, and the
correlation coefficient gradually rises to unity as the remaining particles become
increasingly spherical.
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Figure 7: Graphs of C[100,200]

The graphs of C[100,200] depend significantly on the stochastic particle number, which
for initial unit concentration equals the scaling parameter N . With only 16 or 35
stochastic particles there is not the resolution to produce accurate answers. For
higher N the mass flow and direct simulation algorithms give very similar results,
since C[100,200] is a truncated zeroth moment this agrees nicely with our comments for
M0. For larger N , the graphs of C[100,200] and M2 show surprisingly good agreement
with the results presented by Eibeck and Wagner in [24] using the free molecular

kernel: K(x, x′) = (ν− 1
2 + ν ′− 1

2 )(ν
1
3 + ν ′ 1

3 )2.

4.2 Sensitivity to Variation in the Model Parameter Λ

In this section we study the model parameter Λ. To this end we fix N = 216 and
run the mass flow simulation at various values of Λ. We have chosen Λ = 0.01, 0.1
and 0.5. The table below shows the relative error for a single run for each Λ, and
the associated run time.

Relative Error (%) Error (%)

Λ Run time M0 M2 M3 C[100,200] m1 m2 m3 ρ(σ, ν
2
3 )

0.01 38 m 37 s 0.292 0.207 0.538 0.859 0.140 0.597 0.369 0.031
0.1 8 m 8 s 0.347 0.857 2.354 0.830 0.135 0.510 1.167 0.167
0.5 5 m 35 s 0.374 1.038 2.024 3.237 2.021 7.835 4.211 0.882

Table 2: Run time and error dependence on Λ
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Figure 8: Graphs of the correlation coefficient ρ(σ, ν
2
3 ) for various Λ, N = 216

The graphs above show the correlation coefficient and m2 the second area moment.
The graph of the correlation coefficient is consistent with the convergence of the
solutions as Λ → 0. When Λ = 0.01, the plot is indistinguishable from the reference
solution. The area moments are most susceptible to inaccuracies in the area and
therefore to changes in Λ, however only the Λ = 0.5 simulation produced results
visually discernable from the reference solution.

The results presented in the table above suggest convergence in the limit Λ → 0 of
the solution of the Λ-dependent model given by Eq. (6) to the solution to the model:

∂Nτ (x)

∂τ
=

∂

∂σ

((
σ − ν

2
3

)
Nτ (x)

)
+

1

2

∫ ν

1

∫ ν′

ν′ 23
K(x − x′, x′)Nτ (x

′)Nτ (x − x′) d2x′

−
∫ ∞

1

∫ ν′

ν′ 23
K(x, x′)Nτ (x)Nτ (x

′) d2x′. (71)

A reasonable compromise of accuracy and speed is given by taking Λ = 0.1 and
N = 4096 in the mass flow algorithm. This gives good results for all the functionals
considered, with the possible exception of C[100,200], in a short computational time.

Relative Error (%) Error (%)

Run time M0 M2 M3 C[100,200] m1 m2 m3 ρ(σ, ν
2
3 )

23 s 1.066 1.176 1.467 6.609 0.777 2.424 1.947 0.209

Table 3: Run time and error dependence for the MFA with N = 4096 and Λ = 0.1

Given the experimental uncertainty in the measured parameters, and the approxi-
mations used in deriving the sintering-coagulation equation, it would be rare that
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the moments listed in the table of the solution to the sintering-coagulation equation
would be needed to much greater accuracy, though it is elementary to generate more
accurate results. As an illustration of the efficiency of these algorithms we remark
that the computational time of 23 seconds should be compared with that quoted by
Mühlenweg et al. [12] of 112 days using the 2D sectional method.

5 Conclusions

In this paper we have studied a model describing the coalescence of a system of
particles. This has included an analysis of the evolution of the surface areas of
the particles together with their volumes. The methods used provide a significant
improvement in efficiency over what has already been achieved by the sectional
method, [3, 12] and greater accuracy than less sophisticated Monte Carlo methods,
e.g., Rosner & Yu [17].

We have used two methods; the direct simulation and mass flow algorithms to study
the system. Each method shows rapid convergence to the solution of the sintering-
coagulation equation. There is a marked preference for using the mass flow algorithm
when higher volume and area moments are required; the direct simulation algorithm
is as good as the mass flow algorithm only for the lowest volume and area moments.

An alternative and in many ways superior method of solving the original sintering-
coagulation equation is to make use of the integral curves of the flow defined by the
partial differential-integral equation. This has the advantage that there is no need
to approximate the derivative with respect to surface area in Eq. (71) by a finite
difference, and therefore no need to introduce the model parameter Λ. Effectively
one solves a coagulation equation without sintering, but with a time dependent
kernel along each integral curve. The essence of the idea is to observe that(

∂Nτ (x)

∂τ

)
ν,σ

−
(

∂

∂σ

)
ν,τ

((
σ − ν

2
3

)
Nτ (x)

)
=

(
∂Nτ (x)

∂τ

)
ν,A

− Nτ (x) (72)

where σ = ν
2
3 + (A− ν

2
3 )e−τ . In general this approach requires an understanding of

the form of the integral curves, which may not always be analytically tractable or
computationally efficient to calculate in other models. In those cases we feel that
the approach developed in this paper may provide an efficient numerical algorithm
to generate the solution.
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