
A Simple and Efficient Approach to Unsupervised Instance Matching and its Application to Linked Data of Power Plants

Preprint Cambridge Centre for Computational Chemical Engineering ISSN 1473 – 4273

A Simple and Efficient Approach to Unsupervised
Instance Matching and its Application to Linked

Data of Power Plants

Andreas Eibeck1, Shaocong Zhang1, Mei Qi Lim1, Markus Kraft1,2,3,4

released: January 26, 2023

1 CARES
Cambridge Centre for Advanced
Research and Education in Singapore
1 Create Way
CREATE Tower, #05-05
Singapore, 138602

2 Department of Chemical Engineering
and Biotechnology
University of Cambridge
Philippa Fawcett Drive
Cambridge, CB3 0AS
United Kingdom

3 School of Chemical
and Biomedical Engineering
Nanyang Technological University
62 Nanyang Drive
Singapore, 637459

4 The Alan Turing Institute
London
United Kingdom

Preprint No. 293

Keywords: Semantic Web, Linked Data, knowledge graph, instance matching, database integration, power
plants

Edited by

CoMo
GROUP

Computational Modelling Group
Department of Chemical Engineering and Biotechnology
University of Cambridge
Philippa Fawcett Drive
Cambridge, CB3 0AS
United Kingdom

E-Mail: mk306@cam.ac.uk
World Wide Web: https://como.ceb.cam.ac.uk/

mailto:mk306@cam.ac.uk
https://como.ceb.cam.ac.uk/

Abstract

Knowledge graphs store and link semantically annotated data about real-world enti-
ties from a variety of domains and on a large scale. The World Avatar is based on
a dynamic decentralised knowledge graph and on semantic technologies to realise
complex cross-domain scenarios. Accurate computational results for such scenarios
require the availability of complete, high-quality data. This work focuses on instance
matching – one of the subtasks of automatically populating the knowledge graph with
data from a wide spectrum of external sources. Instance matching compares two data
sets and seeks to identify instances (data, records) referring to the same real-world
entity. We introduce AutoCal, a new instance matcher which does not require la-
belled data and runs out of the box for a wide range of domains without tuning
method-specific parameters. AutoCal achieves results competitive to recently pro-
posed unsupervised matchers from the field of Machine Learning. We also select an
unsupervised state-of-the-art matcher from the field of Deep Learning for a thorough
comparison. Our results show that neither AutoCal nor the state-of-the-art matcher
is superior regarding matching quality while AutoCal has only moderate hardware
requirements and runs 2.7 to 60 times faster. In summary, AutoCal is specifically
well-suited to be used in an automated environment. We present its prototypical in-
tegration into the World Avatar and apply AutoCal to the domain of power plants
which is relevant for practical environmental scenarios of the World Avatar.

Highlights
• A simple and efficient instance matcher designed for automated environments.

• Performance competitive to unsupervised Machine Learning methods for match-
ing.

• Integration of power plant instances into the knowledge-graph based World
Avatar.

1

Contents

1 Introduction 3

2 Outline of AutoCal 5

3 Related Work 7

4 Instance Matching 9

4.1 Token-Blocking . 9

4.2 Similarity Vectors . 10

4.3 AutoCal . 11

5 Evaluation 14

5.1 Data Sets . 14

5.2 Quality Metrics and Setup . 16

5.3 Results Regarding Matching Quality . 16

5.4 Comparison . 18

5.5 Results Regarding Applicability and Runtime Behaviour 19

6 Integration into the World Avatar 21

6.1 Core Principles and Prototype . 21

6.2 Use Case . 24

7 Conclusions 26

Nomenclature 28

A Appendix 29

A.1 RDF Graph Example . 29

A.2 Pseudocode for AutoCal with Token-Blocking 30

References 36

2

1 Introduction

The Semantic Web [3] and Linked Data [4] enable data integration and semantic interop-
erability over the World Wide Web. Ontologies [17] define semantic terms and relation-
ships of data in a formal way and provide the vocabularies necessary to describe entities
and their properties. Recently, knowledge graphs [18] became popular as large-scale data
structures storing and linking entity data.

The World Avatar builds on these concepts and related semantic technologies. While it
originally focused on simulation and optimisation of eco-industrial parks to reduce waste
and pollution [36], today it encompasses domains such as combustion chemistry [14],
power systems [11], and urban planning [6]. Its architecture consists of a dynamic, de-
centralised knowledge graph. Computational agents operate on the knowledge graph to
query, process and update its data. The same agents can be composed to solve complex
cross-domain tasks with varying scales and initial conditions.

The following three air pollution scenarios exemplify the idea of agent composition: In
the scenario presented by [13], a power plant agent computes emissions of a power plant
located in Berlin, and a dispersion agent estimates the dispersion profile in the plant’s
neighbourhood with respect to surrounding buildings and real-time data on weather con-
ditions. In a similar scenario [14], ship agents use real-time data of ship positions and
types in the vicinity of Singapore to simulate their emissions while the same dispersion
agent estimates the impact on a district of Singapore. In a future scenario, greenhouse
gas emissions from various emitters could be computed and aggregated nationwide by
creating more complex ensembles of agents. This scenario refers to a knowledge-graph
approach for national digital twins proposed by [1].

Such scenarios assume the availability of high-quality data on entities such as power
plants, ships and buildings to achieve accurate results. Additional agents which populate
and update the knowledge graph with data from a multitude of providers are desirable but
their automation is challenging because it involves several steps such as pre-processing,
schema matching, instance matching and data fusion. If these steps are not performed
correctly, the quality of the knowledge graph will degrade. In this paper, we focus on the
subtask of instance matching on tabular data sets as the first step towards automation.

Instance matching considers two data sets and aims to find all instances denoting the same
real-world entity. It can be regarded as a binary classification of pairs of instances which
are either a match or nonmatch. Providers frequently publish data in tabular form, e.g.
tables of power plants with properties (columns) for a plant’s name, owner, locality, fuel
type, design capacity, commissioning year, etc. In the case of tabular data, instance match-
ing is also called record linkage. For many years, both fields are under active research, and
a broad range of approaches was published, in particular from Machine Learning (ML)
and Deep Learning (DL). For an overview of recent approaches and frameworks we refer
to [15], [29], [20], [8], [23], [2].

DL methods for instance matching often concatenate property labels and values for each
instance to generate high-dimensional embeddings from pre-trained neural models for
training. By contrast, many ML methods rely on features which measure the similarity
between property values of two instances. The latter requires the alignment of related

3

or equivalent properties of both data sets. This is commonly provided manually or by a
preceding schema-matching step.

Supervised methods of instance matching require manual effort to label instance pairs.
The models trained can be validated automatically. This allows for the optimisation of
hyperparameters which are critical for matching performance. Unsupervised methods do
not need labelled pairs but frequently rely critically on the adjustment of specific param-
eters for the data sets at hand [20, 29]. While specifying domain-related parameters, such
as property alignments and similarity measures, is commonly not an issue, choosing the
proper values for technical, rather method-specific parameters can be difficult. Challenges
are thus to be expected when such methods are performed in an automated environment.
This was our starting point for designing a new instance matcher.

The purpose of this paper is to present our results and experiences with matching real-
world data such as data of power plants, with respect to matching quality, runtime be-
haviour and degree of automation. We introduce AutoCal, a new algorithm which can
be applied stand-alone to match tabular data or be wrapped as an agent populating the
knowledge graph of the World Avatar.

AutoCal does not require any labelled instance pairs. Like many ML approaches, AutoCal
expects the similarity features of properties as input. Since data sets frequently consist
of a mixture of expressive properties such as plant name or locality and more or less
discriminative properties, AutoCal “calibrates” automatically the similarity feature values
such that they become directly comparable and summable, and uses the resulting total
scores for predicting matches.

We evaluate AutoCal on two test scenarios for the domain of power plants and on four
test scenarios for other domains. The latter is used widely in the literature but gives more
weight to textual than numerical property values. AutoCal achieves matching results com-
parable to results published for semi-supervised and unsupervised ML methods. At the
same time, AutoCal exhibits only two technical parameters and shows stable behaviour
for the parameters’ default values. Hence, it can be used out of the box for new matching
scenarios and is particularly suitable for integration into an automated environment such
as the World Avatar.

Unsupervised DL methods usually perform better for the latter four test scenarios. For
a deeper analysis, we choose the unsupervised state-of-the-art DL matcher CollaborEM
[16] and compare it to AutoCal regarding the applicability, matching quality, and runtime
behaviour. It turned out that AutoCal performs significantly better on one of the four
widely used test scenarios and – after adding a missing “stop” criterion to CollaborEM
– slightly better on both power plant scenarios. AutoCal runs at least 2.6 times faster
than CollaborEM on a dedicated ML machine in the cloud and between 15 and 60 times
faster on a local machine with a powerful CPU but less GPU memory. AutoCal’s runtime
behaviour and moderate GPU requirements make it a good choice to run on the same
decentralised infrastructure as the World Avatar.

The paper is structured as follows: Section 2 outlines AutoCal and its matching pipeline.
Section 3 gives an overview of related work. Section 4 summarises token-blocking and
similarity functions, and presents AutoCal in detail. Section 5 evaluates AutoCal for the
six test scenarios, presents published results of existing instance matchers, and compares

4

the performance of AutoCal and CollaborEM. Section 6 summarises the World Avatar’s
architecture and AutoCal’s prototypical integration and demonstrates how matching is
applied in the case of the power plant domain. Conclusions are outlined in section 7.

2 Outline of AutoCal

Instance matching can be regarded as a binary classification task where two data sets A
and B are given and each pair of instances (a,b), a ∈ A, b ∈ B, is either a matching pair
(match) or a nonmatching pair (nonmatch). A pair is a match if a and b refer to the
same entity in the real world. The number of all pairs is |A| · |B| while the number of
matches only grows linearly with the size of A and B. For instance, 905 out of around 2
million pairs are matches in one of the power plant scenarios considered in this work. This
indicates that instance matching suffers from extreme imbalance and scalability issues.

Figure 1: Pipeline for instance matching: The green boxes denote preparatory steps com-
monly taken by methods of instance matching. The blue area refers to steps of
our proposed instance matcher AutoCal.

Figure 1 presents our complete pipeline for instance matching which consists of the
preparatory steps such as blocking and the computation of similarity vectors and the
characteristic steps of the AutoCal instance matcher. After pre-processing the data sets,
blocking discards pairs that are very likely to be nonmatches and keeps a much smaller
set of candidate pairs for classification. In practical applications, the overall performance
of instance matching is crucial, and the chosen blocking technique and set of similarity
features strongly impact it.

5

Before detailing token-blocking, similarity functions and AutoCal in section 4, we want
to summarise the core ideas behind AutoCal. The entire pseudocode for token-blocking
and AutoCal is presented in appendix A.2. The corresponding Python code was published
on GitHub1.

First of all, AutoCal splits values of string-valued properties into tokens and considers
certain subsets of pairs of instances sharing tokens. Roughly speaking, for each subset,
AutoCal selects the pair with the highest similarity values, i.e. the “most similar” pair,
if it exists. Heuristically, the “most similar” pair has a higher chance of being a match
compared to all competing pairs in the same subset and can be regarded as a potential
matching candidate. AutoCal also considers the case if such a pair does not exist, but for
the sake of simplicity, we ignore this case here. The complete procedure refers to step
Maximum Similarity Vectors in Figure 1.

AutoCal’s next step Distribution Replacement aims towards the conditional probability
that the pair (a,b) is a match given sk(a,b) ∈ I. Here, I ⊂ [0,1] is a small interval and
sk(a,b) denotes the similarity value between instances a and b regarding the k-th property.
The conditional probability can be approximated by the ratio between all true matches
having their similarity value in I and all pairs (both matches and nonmatches) having their
similarity value in I as well. This ratio measures much better than the similarity value
itself how relevant a similarity value is for matching. We illustrate this observation for
instances representing power plants: If two instances have the same value for property
fuel, the corresponding similarity value is 1, but it is unlikely that both instances match
because there are many more nonmatching than matching pairs with the same fuel type.
In this case, the ratio would be quite small. On the other hand, if two instances have
only a similarity value of 0.6 for property name but corresponding values for nonmatches
usually fall below 0.5, the ratio may be pushed towards 1.

Of course, the counts for true matches are not known. For this reason, AutoCal com-
putes approximated ratios by replacing the unknown counts with the known counts for
the “most similar” matching candidates from step 1. In summary, AutoCal converts the
original similarity values property-wise into matching-relevant ratios. We call these ra-
tios calibrated scores because – in contrast to the original scores – the ratios for different
properties are directly comparable to each other in the context of instance matching. The
last step, Threshold Estimation in Figure 1, computes a total score for each instance pair
just by averaging its calibrated scores and predicts pairs with a total score above a certain
threshold as matches. Since the calibration works in an unsupervised way without any
labelled pairs, we call our algorithm “auto calibration” or “AutoCal” for short.

We regard AutoCal as a simple algorithm which is based on statistics and heuristics: Au-
toCal employs only basic statistics throughout all steps, such as histograms with equally-
sized bins to represent distributions of similarity values on the range [0,1]. In addition,
the replacement of the unknown distribution of true matches by the empirical distribution
of “most similar” pairs is motivated heuristically. However, AutoCal does also make use
of a pre-trained language model to derive string similarity features.

1 https://github.com/cambridge-cares/TheWorldAvatar/tree/main/Agents/

OntoMatchAgent

6

https://github.com/cambridge-cares/TheWorldAvatar/tree/main/Agents/OntoMatchAgent
https://github.com/cambridge-cares/TheWorldAvatar/tree/main/Agents/OntoMatchAgent

3 Related Work

In this section, we outline some existing methods for instance matching which are unsu-
pervised or require only a small amount of labelled pairs, and which are thus candidates
for an automated environment. The selected methods cover a variety of approaches and
achieve results close to or among state-of-the-art in ML and DL. Many of them use sim-
ilarity functions which score the similarity between two property values, where the score
ranges from 0 (no similarity) to 1 (equality). We refer to [20] for details about semi- and
unsupervised methods in instance matching. For the sake of simplicity, we use the terms
instance, entity and record synonymously, and likewise the terms property, column and
attribute.

Auto-FuzzyJoin [26] considers instance matching as an optimisation problem that maxi-
mises recall for a user-defined minimum precision value. The algorithm is based on a
geometric argument and searches iteratively for combinations of distance functions and
upper distance bounds to define proper matching rules.

Wombat [34] is a state-of-the-art approach for link discovery. Link discovery can pre-
dict relations of any type between instances in knowledge graphs and is not restricted
to instance matching or tabular data. Wombat relies exclusively on positive examples,
i.e., on an initial subset of labelled matches in case of instance matching. It learns rules
which specify properties, similarity functions and similarity thresholds for linking (match-
ing) two instances. Wombat starts with simple rules and applies set-valued operators to
combine and refine them such that the resulting more complex rules provide a higher
performance on the initial subset of labelled matches.

Christen [7] presents an iterative self-supervised approach: First of all, a given percent-
age of pairs with similarity vectors closest to the 1-vector (e.g. closest with respect to
Manhattan or Euclidean metric) is labelled as matches while those closest to the 0-vector
are labelled as nonmatches. These labelled seed pairs are used to initially train a Support
Vector Machine (SVM) classifier. After training, the “strongest” predictions for matches
and nonmatches, i.e. the predictions that are furthest away from the SVM decision bound-
ary, are added to the training set, and a new SVM classifier is trained. This procedure is
repeated as long as the size of the training set is below a given threshold.

Kejriwal and Miranker [21] propose an iterative semi-supervised method requiring a small
seed set of labelled training pairs initially. Their method trains an ensemble of base classi-
fiers (either Random Forests or Multilayer Percepton) using boosting. Similarly to [7], the
most confident predictions for matches and nonmatches are added to the training set for
training a new boosted classifier. The training loop terminates after a configured number
of iterations.

Jurek et al. [19] also train an ensemble of base classifiers (SVM) iteratively but their
approach is unsupervised and includes several initial steps to select a set of seed pairs
for each base classifier such that the sets exhibit a high diversity. These steps include the
selection of similarity functions and the computation of property weights that express the
distinguishing power of the property values.

ZeroER [35] models the unknown match and nonmatch distributions as a Gaussian mix-
ture. It is based on the expectation-maximisation algorithm to estimate the unknown

7

parameters for the Gaussian distributions and the mixture ratio between matches and non-
matches. The method exploits the fact that matches tend to have higher similarity values
than nonmatches and provides an adaptive regularisation strategy to prevent overfitting.

EmbDI [5] converts records from both data sets into a common graph and learns neural
embeddings for the graph nodes. The graph defines three types of nodes to represent
record IDs (entities), column IDs (properties), and tokens. Nodes representing two records
are connected indirectly via a common token node if the records share a token. Next,
random walks are performed on the graph nodes, and the visited nodes of each random
walk are concatenated to a sentence containing record IDs, column IDs and tokens. The
total of all sentences generated allows it to learn embeddings in an unsupervised fashion.
Finally, the cosine distance between embeddings representing a pair of records serves as
a matching criterion.

ErGAN [33] is a semi-supervised generative adversarial network which is specifically de-
signed for instance matching. Initially, it computes the median of all similarity values for
each property and divides the set of unlabelled pairs into subsets according to whether
their similarity values are smaller or greater than the median values. Then, for each train-
ing iteration, its diversity module gives unlabelled pairs a higher priority if they belong to
a smaller subset. In combination with the propagation module, the diversity module tack-
les the problem of imbalance between matches and nonmatches and avoids overfitting.

CollaborEM [16] is a self-supervised framework running two phases: The first phase com-
putes embedding vectors for each record by means of Sentence-BERT [32]. By using the
cosine distance and additional constraints, record pairs are identified that are very likely
to be true matches or true nonmatches. The second phase uses this auto-generated seed set
of labelled pairs for supervised training: each record is converted into a multi-relational
graph, and a graph neural network is trained to learn four types of graph features (em-
beddings) for labelled pairs. Afterwards, both the trained graph features and the sentence
representations of record pairs are used in a collaborative way to fine-tune a pre-trained
transformer model and to make a final matching decision.

Regarding its paradigm, AutoCal is most comparable to Auto-FuzzyJoin. By contrast,
many previously outlined methods train standard ML classifiers or use neural embeddings.
Of course, all ML methods take advantage of the fact that the similarity of property values
tends to be greater for matches than for nonmatches. But AutoCal strictly exploits this
fact in its first step when identifying “most similar” instance pairs. On closer inspection,
some of them also reveal implicit assumptions or steps similar to those of AutoCal. For
example, EmbDi’s graph conversion relies on common tokens, and ErGAN’s propagation
module uses some statistics.

While the previously outlined methods are unsupervised and partly achieve state-of-the-
art results, some of them have requirements which may reduce their applicability in an
automated environment. For instance, Auto-FuzzyJoin assumes a reference data set not
containing any duplicates, while Wombat requires a specific coverage threshold for prop-
erties. Jurek-Loughrey and Deepak [20] point out that it can be problematic to adapt
method-specific parameters for new data sets without labelled pairs. CollaborEM lacks a
criterion to stop the fine-tuning. In contrast to all of those methods, AutoCal can be used
out of the box.

8

4 Instance Matching

4.1 Token-Blocking

Many data sets contain columns with highly expressive string values, like instance names,
descriptions, or addresses. Because of their expressiveness, such values are valuable for
instance matching. Each of the string values can be split into a set of tokens. While the
respective strings related to matching entities may differ in detail, they usually contain
some equal tokens. We thus choose token-blocking, which considers two instances as a
candidate pair for matching if they share at least one token. While AutoCal may be com-
bined with other blocking techniques, token-blocking suits AutoCal in a natural way since
the subsets for which AutoCal’s first step identifies the “most similar” instance pairs can
be easily created and managed in parallel. Token-blocking was introduced by Papadakis
et al. [31]; we refer the reader to [30] for an overview of further unsupervised blocking
approaches.

Figure 2 demonstrates token-blocking by means of instances from two data sets A and
B. Here, A and B are two data sets of power plants in Germany which we will also use
for evaluation later on in this paper. Among the instances of the data sets, we find an
instance a3 ∈ A with name “moabit” and an instance b1 ∈ B with name “berlin moabit
power station”. Both instances share the token “moabit” in their name, which denotes a
district of the city of Berlin. We thus add them to the set of all instances from A and B,
resp., which also contain the token. Since the name of instance b1 contains three more
tokens “berlin”, “power”, and “station”, the instance is also added to the corresponding
sets of these three tokens.

We create a mapping IndexA from the set of all tokens to their related instances in data set
A by iterating over all instances in A, tokenising their names and further string values of
other properties, and finally adding the instances to the corresponding sets. For IndexB,
we proceed likewise. The block for a given token t is defined as the Cartesian product
IndexA(t)× IndexB(t). The set of candidate pairs is the union of all blocks for all found
tokens. Blocks for two different tokens overlap if some instances a ∈ A and b ∈ B share
both tokens. However, the candidate pair (a,b) only appears once in the union set. A
token found only in instances from one of the data sets would lead to an empty block and
is ignored.

If the index considered only tokens derived from equivalent properties in A and B, then
there may be instances of A that do not share any tokens with instances of B. For example,
23 % of the instances in one of the data sets of power plants in Germany miss values for the
property name. On the other hand, most of these instances provide a non-empty string for
the property address locality. For this reason, token-blocking takes tokens from multiple
properties in order to create the index. It subsequently considers instances as potential
matching partners that would be filtered out otherwise.

Frequent tokens are less distinctive and increase the number of candidate pairs dispro-
portionately. Our implementation of token-blocking provides the “maximum token fre-
quency” (MTF) as a configuration parameter and ignores those tokens for which the num-
ber of corresponding instances either in A or in B exceeds the configured MTF value. In

9

Figure 2: Token-blocking identifies those entity pairs that share at least one token. This
technique reduces the number of candidate pairs that have to be classified as
match or nonmatch. It thus avoids issues of scalability and extreme imbalance.

Figure 2, this is indicated by two red crosses for tokens “power” and “station” for the case
MFT = 5. MFT strongly impacts the number of candidate pairs and plays an important
role in the overall performance of instance matching.

4.2 Similarity Vectors

Two instances a and b can be regarded as similar if their property values are similar.
The similarity of two property values v1,v2 ∈ V is measured by a similarity function
f : V × V → [0,1]. The similarity value f (v1,v2) is 1 if v1 and v2 are equal, close to
1 if they are very similar, and 0 if they are completely different. A wide range of similar-
ity functions was devised, each being applicable for particular domains, e.g. Cohen et al.
[9] evaluates various similarity functions for matching names.

Table 1 lists the similarity functions considered for matching in this paper. Note that a
distance function such as the absolute error can easily be converted into a similarity func-
tion by composing with a suitable increasing function g : [0,∞)→ [0,1] and subtracting
from 1. The last two rows refer to cosine similarity which is defined for two (non-zero)
vectors v and w by the normalised dot product v ·w/∥v∥∥w∥. Here, v and w are vector
representations of two given strings. “Weighted” means that each vector component cor-
responds to a separate token and is set to its tf-idf weight, see e.g. [9], while the last row
refers to sentence embeddings [32]2.

2 see https://github.com/UKPLab/sentence-transformers

10

https://github.com/UKPLab/sentence-transformers

Table 1: Similarity functions.

Data type Name Description

any equality 1{x=y}
number absolute error 1−g(|x− y|)
number relative error 1− |x−y|

max{|x|,|y|}
string cosine similarity - weighted tf-idf weights, [9]
string cosine similarity - sentence embeddings [32]

AutoCal requires a mapping between related properties of data sets A and B as well as
respective suitable similarity functions. This mapping may be derived manually or au-
tomatically by schema matching, for example. The selection of similarity function for a
pair of mapped properties may also be automated, e.g., by preliminary analysis of type
and range of property values in data set A and B. The similarity functions from Table 1
cover all data types relevant to this work and may be modified or extended, for instance
for a new data type such as date. For the evaluation of AutoCal in section 5, we applied
both cosine similarity functions to each mapped pair of string-valued properties since they
complement each other: The cosine similarity between weighted vectors works well for
short strings with a few expressive tokens such as names or locations while the cosine sim-
ilarity between sentence embeddings expresses the semantic similarity for longer strings
such as product descriptions.

We describe the mapping by K triples of the form (pk,qk, fk),k = 1, . . . ,K. Here, pk

and qk denote properties of instances a ∈ A and b ∈ B resp., and fk a suitable similarity
function that can be applied to the pair a.pk and b.qk of property values. The definition
of a mapping allows the application of several distinct similarity functions for the same
related properties. Each fk may also map to the special case null to indicate missing
property values. Finally, a given mapping of K triples defines a mapping from the set of
candidate pairs into the space of similarity vectors by

s(a,b) = (f1(a.p1,b.q1), . . . , fK(a.pK,b.qK)) ∈ ([0,1]∪{null})K . (1)

Each similarity vector consists of K similarity values. In the following, we will use the
term k-th component, k-th triple or k-th property interchangeably to refer to its individual
similarity values.

4.3 AutoCal

AutoCal requires the set C of candidate pairs and corresponding similarity vectors s(·, ·)
from the two previous subsections as input and consists of three steps as shown in Fig-
ure 1. For a given candidate pair (a,b), the three steps often perform calculations and
comparisons on the subsets

C(a) = {(a, b̃) ∈C} and C(b) = {(ã,b) ∈C} (2)

and hence consider two directions: The first keeps a fixed and varies associated b̃ ∈ B,
while the second keeps b fixed and varies associated ã ∈ A. Due to token-blocking, asso-

11

ciated instances b̃ are those that share at least one token with a. However, two instances
b̃1 and b̃2 associated both with a might not have any tokens in common by themselves.
The same holds for the other direction.

The first step of AutoCal computes the maximum similarity vector for each a ∈ A:

smax(a) = (max{sk(a, b̃) : (a, b̃) ∈C})K
k=1 ∈ ([0,1]∪{null})K (3)

The maximum similarity vector smax(b) for each b ∈ B is determined likewise.

The maximum similarity vector is larger than or equal to all associated similarity vectors
in any of the K components. The left diagram in Figure 3 illustrates this concept for a
power plant instance a3 with only K = 2 properties fuel and name. Of the three pairs
shown, the maximum similarity vector is the one coloured turquoise. It may happen that
none of the similarity vectors can be identified as best. This situation is illustrated in the
right diagram of Figure 3. In this case, smax(a) is not associated to any pair (a, b̃) ∈C and
we consider it as “virtual” vector. Moreover, if the value for the k-th property is missing
for a or b̃, then sk(a, b̃) is also missing, and is ignored when computing the maximum in
eq. 3. If the k-th value is missing for all (a, b̃), smax

k (a) is set to null. This propagation
of missing values through operations and comparisons is straightforward and will not be
mentioned further in the following.

Figure 3: Candidate pair (a3,b4) is more likely to be a match compared to (a3,b1) and
(a3,b5) since its similarity vector (turquoise diamond in the left diagram) is
larger in all its components. If no such “best” pair exists, a “virtual” maximum
similarity vector (turquoise diamond in the right diagram) is computed.

The heuristic behind definition 3 is that if we choose any a∈ A and look at the subset C(a)
of candidate pairs, we would suppose that a pair with similarity vector in the vicinity of
smax(a) has a higher chance to be a match than pairs with similarity vectors further away
— as long as the similarity functions employed are reasonable and do not contradict the
concept of similarity. Likewise for b ∈ B and C(b). Nevertheless, such a pair does not
have to be a match.

The second step of AutoCal uses the maximum similarity vectors and a statistical ap-
proach to decide for each of the K components which similarity values are both typical

12

and relevant for matches. It is based a) on the replacement of the unknown match dis-
tribution by the known empirical distribution for the maximum similarity vectors, and
b) on a rough estimation for the mixture of the marginal match and nonmatch distribu-
tions. Figure 4 illustrates this concept for the k-th triple referring to property name. The
upper left diagram depicts the counts of matches and nonmatches for the k-th component.
In the lower left diagram, the match counts are replaced by counts derived from the k-th
component of all maximum similarity vectors. Usually, the counts from the maximum
similarity vectors differ from the match counts, in particular in the vicinity of 0 and 1.
They provide a very rough approximation of the actual match distribution; however, if the
bias is not too strong, the counts help to rate the relevance of similarity values for instance
matching in form of scores.

Figure 4: The unknown marginal distributions of matches (upper left diagram) are re-
placed by the empirical marginal distributions of all calculated maximum sim-
ilarity vectors (lower left diagram). For each property, an auto-calibrated score
is calculated as the ratio between the replacement distribution and the overall
distribution of matches and nonmatches (upper right diagram).

The upper right diagram of figure 4 demonstrates how AutoCal uses the counts to calculate
the score for the k-th triple in case of the specific candidate pair (a3,b1) with similarity
value t = sk(a3,b1) = 0.3: First of all, it counts all ã ∈ A for which the k-th component
smax

k (ã) of the corresponding maximum similarity vector belongs to the ∆-neighbourhood
of t, i.e. it counts those in the turquoise area of width 2∆. Next, it counts all candidate
pairs (ã, b̃) with similarity value sk(ã, b̃) in the same ∆-neighbourhood, i.e. it counts those
in the grey hatched area. Finally, it calculates the ratio of both counts, as in the lower

13

left diagram for t = 0.3, and uses the maximum of the ratio and 1 as property score
scoreA

k (a3,b1) to rate the relevance of the k-th component. Here, superscript A indicates
that the nominator of the ratio was calculated with respect to smax

k (ã), ã ∈ A. Likewise, the
property score scoreB

k (a3,b1) is computed with respect to smax
k (b̃), b̃ ∈ B.

Appendix A.2 shows the general formulae for the counts and the ratio, and an efficient
procedure for their approximate calculation. We also provide an interpretation of the
property scores as rough estimates for the conditional probability that the pair (a,b) is a
match given its k-th similarity value.

So far, AutoCal has transformed the k-th similarity value sk(a,b) for an arbitrary pair
(a,b) ∈C into property scores scoreA

k (a,b) and scoreB
k (a,b) which rate the relevance for

(a,b) being a match. The first step collected the best similarity values on subsets C(a) and
C(b), resp., while the second step applied them to “calibrate” similarity values property-
wise.

The third step aggregates the property scores from the previous steps into total scores
and estimates a threshold to separate matches from nonmatches. To this end, it applies
operations to the total scores similar to the property-wise operations in the previous two
steps.

The property scores are first aggregated by taking their average, denoted by scoreA(a,b)
and scoreB(a,b), resp., and the total score is computed as maximum

score(a,b) = max{scoreA(a,b),scoreB(a,b)} ∈ [0,1] . (4)

Similar to the property-wise construction of the maximum similarity vectors, we would
suppose that – given a ∈ A – the pair with the maximum total score among all pairs
in C(a) has the highest chance to be a match. Likewise for b ∈ B and C(b). AutoCal
shortlists all these pairs with maximum total scores as potential matches CM and considers
the remaining candidate pairs as nonmatches. Next, it increases the threshold value t
starting from 0 by steps of size 2∆ and calculates the counts

nM(t) = #{(a,b) ∈CM : t−∆≤ score(a,b)≤ t +∆} ,
nN(t) = #{(a,b) ∈C \CM : t−∆≤ score(a,b)≤ t +∆} .

If the threshold value satisfies the condition nM(t) ≥ nN(t)+ 1 three times in sequence,
it is chosen as estimated threshold test . This is a compromise between values far below
test which may lead to a low precision, and values far above test which may lead to a low
recall. Finally, AutoCal predicts all (a,b) ∈CM satisfying score(a,b)≥ test as matches.

5 Evaluation

5.1 Data Sets

Table 2 presents the scenarios for the evaluation of instance matching (IM) in this work.
Each IM scenario consists of two data sets A and B and an evaluation set with labelled
ground truth matches and nonmatches. The table contains the number of instances in

14

A and B, the number of properties used for matching, the size of the evaluation set, the
number of matches within the evaluation set, and an ID that we will use for reference in
this work.

Table 2: Scenarios for evaluating instance matchers.

ID Data Set A #A Data Set B #B #Prop #Eval #Matches

KG KWL 1,983 GPPD DE 982 5 (+1) 10,392 905
DG DUKES 1,184 GPPD GB 2,536 4 13,509 950
FZ Fodor 533 Zagat 331 5 946 110
DA DBLP 2,616 ACM 2,294 4 12,363 2,220
DS DBLP 2,616 Scholar 64,263 4 28,707 5,347
AG Amazon 1,363 Google 3,226 3 11,460 1,167

The first two rows present the scenarios of the power plant domain. Scenario KG refers
to matching data of power plants in Germany published by the Federal Network Agency3

with data from the Global Power Plant Database (GPPD)4, while scenario DG refers to
matching data of power plants in the United Kingdom published by the Department for
Business, Energy and Industrial Strategy5 with data from GPPD. All data sets involved
provide the properties name, primary fuel, capacity (in MW) and owner, which are con-
sidered for matching. In scenario KG, we also take into account the property commission-
ing year.

For both KG and DG, we created the ground truth manually step by step: Candidate
pairs were generated iteratively by token-blocking for increasing MTF and by means
of the Python Record Linkage Toolkit [10], and were classified as match or nonmatch
manually in each iteration. In addition, we considered the property address locality for
token-blocking in scenario KG. This property is only available for data set A and helps to
compensate for missing power plant names in this data set. Finally, for both KG and DG,
the candidate set created by token-blocking for MTF = 50, combined with the manually
identified labels, serves as an evaluation set. Candidate pairs not identified previously are
considered nonmatches.

Scenarios in all but the first two rows of Table 2 were widely used for evaluation in other
papers and refer to the domains restaurant, bibliography, and product, respectively. The
labelled data for DA, DS and AG originate from [24]. For a fair comparison, we down-
loaded the data from the Magellan Data Repository6 which is frequently used for recent
research in matching. Since AutoCal is unsupervised and CollaborEM is self-supervised,
we use the union of the downloaded train, validation and test sets as an evaluation set.

For future use, the new data for KG and DG is publicly available1 in the same format as

3https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/

Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/

Kraftwerksliste/start.html, version 01/04/2020
4https://datasets.wri.org/dataset/globalpowerplantdatabase, version 1.2.0
5https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-

united-kingdom-energy-statistics-dukes, DUKES 5.11 2019
6https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

15

https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/start.html
https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/start.html
https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/start.html
https://datasets.wri.org/dataset/globalpowerplantdatabase
https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-united-kingdom-energy-statistics-dukes
https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-united-kingdom-energy-statistics-dukes
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

provided by the Magellan Data Repository.

5.2 Quality Metrics and Setup

Given an evaluation set, the quality metrics precision P, recall R, and F1-score are defined
by

P =
T M

T M+FM
, R =

T M
T M+FN

, F1 =
2PR

P+R
, (5)

where T M, FM and FN denote the number of true predicted matches (true positives),
false predicted matches (false positives) and false predicted nonmatches (false negatives)
on the evaluation set. AutoCal estimates a threshold to make matching decisions for all
pairs within the candidate set. Since the candidate set is no superset of the evaluation set
in general, we set all pairs outside the candidate set as predicted nonmatches, i.e. true
matches outside the candidate set are counted correctly as false predicted nonmatches.

AutoCal requires some parameter values to be provided: The bin width ∆ is set to 0.025 for
all six IM scenarios. First, we will vary the MTF value to analyse its effect on the matching
quality. Then we fix it to the suitable default value of 50. We defined a fixed property
(column) mapping for each scenario, comprising similarity functions from Table 1: For
numerical properties, we either applied the absolute or the relative error, for properties
with enumerated values (such as fuel type) we used the equality function, and for string-
valued properties, we used the cosine similarity both for TF-IDF weights and sentence
embeddings. In effect, we employed two similarity values per string-valued property and
otherwise one.

Concerning CollaborEM, we applied the same setup including default parameter values
as is described in [16]. For DS we use the same graph features as for DA, while for KG
and DG we use all available four graph features.

Both AutoCal and CollaborEM ran on machines of a major cloud provider – equipped
with an Intel Xeon CPU, 89 GB RAM and NVIDIA A100 GPU with 40 GB memory. In
addition, we run both methods on a laptop with an Intel Core i7-11800H CPU, 32 GB
RAM and NVIDIA GeForce RTX 3070 GPU with 8 GB memory. In the first case, we
trained CollaborEM with batch size 64 as in [16]; in the second case, we had to reduce
the batch size to 16 to avoid GPU memory problems.

5.3 Results Regarding Matching Quality

Figure 5 summarises the results of our ablation study for AutoCal and answers the fol-
lowing questions: How does the choice of MTF impact AutoCal’s matching quality, and
how much do AutoCal’s steps contribute to it respectively? Each diagram refers to one of
the IM scenarios and contains three groups that we will discuss one after another.

The first group “est” shows F1-scores on the evaluation sets for the estimated threshold
test with MTF values 20, 50, 100 and 200. The second group “max” presents maximum
F1-scores. They are calculated by increasing the threshold t from 0 to 1 in small steps,
computing the F1-score for each threshold value and taking the maximum maxt F1(t).

16

Figure 5: Dependency of F1-scores on maximum token frequency (MTF) and on Auto-
Cal’s steps for both threshold estimation (“est”) and maximum similarity vec-
tors (“MSV”)

The maximum F1-scores are slightly larger than their counterparts in the first group —
except for small-sized data sets of FZ. The large difference for the “easiest” scenario FZ
is caused by a relatively small number of matches compared to the bin width ∆ which we
fixed to 0.025 for all six IM scenarios. This leads to sparsely populated bins and hence,
to an inaccurate estimation of the threshold. In contrast, the threshold estimation step
achieves sufficiently accurate results for mid-sized data sets.

The F1-scores in both groups are surprisingly stable for a wide range of MTF-values
— except for DS in combination with MTF = 20. This indicates that MTF = 50 is a
reasonable choice when performing instance matching with AutoCal on other mid-sized
data sets. Therefore, we use MTF = 50 as the default value in the following. Table 3
shows the resulting number of tokens and candidate pairs and AutoCal’s matching quality
in terms of precision, recall, and F1-score for the estimated threshold test .

The results in the last group “MSV” of Figure 5 are obtained only when relying on Au-
toCal’s first step. In this case, a candidate pair is predicted as a match if and only if its
similarity vector is a maximum similarity vector. The resulting F1-scores do not depend
on any threshold. They indicate that maximum similarity vectors – taken in isolation – do
not provide acceptable F1-scores. Nevertheless, computing maximum similarity vectors
is necessary to obtain an empirical distribution that produces useful auto-calibrated scores
for all candidate pairs.

17

Table 3: The number of tokens and candidate pairs due to token-blocking for MTF = 50
and resulting precision, recall and F1-scores in % for AutoCal.

ID # Tokens # Candidates P R F1

KG 962 10,392 95.1 73.5 82.9
DG 1,043 13,509 90.6 84.9 87.7
FZ 727 8,979 67.1 100.0 80.3
DA 6,647 202,565 97.8 92.2 94.9
DS 4,238 124,545 92.5 72.7 81.4
AG 1,781 54,831 61.7 61.5 61.6

5.4 Comparison

In this section, we compare AutoCal’s matching quality with some unsupervised, semi-
supervised and supervised methods of instance matching. Table 4 summarises published
F1-scores for FZ, DA, DS and AG. When a result was achieved by using at most 2 % of
labelled matches from the complete ground truth, we assigned it to the upper category,
otherwise to the lower category. The highest score for each IM scenario in each category
is underlined. The “Setup” column provides additional information that might be helpful
for a fair comparison: “strat. 60 % + 20 %” means that stratified sampling was applied
to create training and validation sets with 60 % and 20 %, resp., of the labelled candidate
pairs while the remaining 20 % were used for testing, “CV” stands for “cross validation”,
and if no percentage is specified, it means no manual labelling is required. There are
further relevant differences that are not shown in the table such as the use of various
blocking methods and sets of similarity functions.

AutoCal belongs to the upper category; the first row shows its F1-scores copied over from
Table 3 for convenient comparison. All other methods in the upper category were already
introduced in section 3.

We also added supervised ML and DL methods as the second category to Table 4 since
they define an upper limit for the matching quality and give an idea of what we can
presently expect at most in an automated environment. The second category starts with
Wombat [34] as a state-of-the-art approach for link discovery; this time, the results shown
were achieved using 30 % of the labelled matches. Magellan [22] is an ML framework
for instance matching which integrates various methods for blocking, feature generation
and matching (such as Random Forests and Support Vector Machine). The last three rows
refer to state-of-the-art DL models DeepMatcher [28], DITTO [27] and DeepER [12].
Supervised methods usually achieve higher F1-scores than those from the upper category
but require a large number of labelled matching pairs. It is out of scope here to describe
these models in detail; instead, we refer to [2] for a survey of DL instance matchers.

The upper category of Table 4 shows that unsupervised methods employing embeddings
and deep learning, i.e. EmbDI [5], ErGAN [33] and CollaborEM [16], frequently achieve
higher F1-scores. In particular, self-supervised CollaborEM obtains the best scores for
FZ, DA and AG. DL approaches benefit fully from high-dimensional embedding vectors
instead of only using the cosine similarity between them. AutoCal achieves F1-scores

18

Table 4: F1-scores in % for unsupervised, semi-supervised and supervised approaches.
The best F1-score for each scenario in each category is underlined.

Method Setup FZ DA DS AG
ze

ro
an

d
lo

w
re

so
ur

ce
s AutoCal test 80.3 94.9 81.4 61.6

Auto-FuzzyJoin [26] 88.9 97.7 - -
SBC [21] 2 % seed matches 94.7 94.7 - 43.0
Wombat [34] 2 % seed matches 98 94 - 53
Ensemble Learning [19] 94 92 55 -
ZeroER [35] 100 96 86 48
EmbDI [5] 99 95 92 59
ErGAN [33] 1 % seed matches - 96.9 85.9 -
CollaborEM [16] 100 98.6 - 68.6

m
id

to
hi

gh

Wombat [34] 30 % matches 97 95 91 54
Magellan [22] [28] strat. 60 % + 20 % 100 98.4 92.3 49.1
DeepMatcher [28] strat. 60 % + 20 % 100 98.4 94.7 69.3
DITTO [27] strat. 60 % + 20 % 100 99.0 95.6 75.6
DeepER [12] 10 % + 5-fold CV 100 98.6 97.7 96.0

which are competitive to results for ML methods, but at first sight, DL approaches seem
to achieve superior matching results.

On the other hand, DL approaches often interpret numerical data such as product prices
as strings and missing data as empty strings. Since the power plant scenarios KG and
DG contain numerical data and short strings, it is not clear whether unsupervised DL
approaches can use this information effectively and achieve better performance for KG
and DG – out of the box, to be specific – than AutoCal. Moreover, we are also interested in
further aspects that are relevant when applying instance matching in real-world projects.
For this reason, we will have a deeper look at these aspects in the next subsection and
choose the state-of-the-art DL matcher CollaborEM for intensive study.

5.5 Results Regarding Applicability and Runtime Behaviour

This section compares AutoCal and CollaborEM in more detail and focuses on applica-
bility in real-world projects as well as runtime behaviour. For this purpose, the number
of epochs is crucial for CollaborEM’s training process, i.e., for fine-tuning a pre-trained
language model. According to [16], the number of epochs depends on the size of the data
sets, but it is not specified how to choose the number in case of new datasets such as KG
and DG. We thus run CollaborEM in two ways.

Firstly, we run CollaborEM as described in [16] but always for 30 epochs. After each
epoch, we apply the fined-tuned model to the evaluation set and calculate the F1-score.
Finally, we take the maximum F1-score over all 30 epochs. Since the maximum slightly
depends on the initial random seed, we run CollaborEM for initial values 1 to 5. The sec-
ond row of Table 5 shows the resulting maximum F1-scores averaged over these five runs.

19

The average scores are close to the published results for CollaborEM as shown in Table 4.
However, the evaluation set consists of ground truth matches and nonmatches which are
not available in an automated environment or in the context of unsupervised methods.
Thus, the evaluation set cannot be consulted for selecting the best epoch. Consequently,
the values in the second row should rather be interpreted as upper bounds for F1-scores
achievable in real-world projects. The first line shows AutoCal’s maximum F1-scores for
MTF = 50 which are also upper bounds and can only be obtained by an optimal proce-
dure for threshold estimation. Please note that averaging is not necessary in the case of
AutoCal because it is a completely deterministic algorithm which does not depend on any
random seed.

Table 5: Maximum F1-scores and F1-scores in practice (in %) for AutoCal and Colla-
borEM.

Method Setup FZ DA DS AG KG DG

AutoCal maximum over t ∈ [0,1] 98.2 97.4 85.4 66.8 87.2 87.7
CollaborEM maximum over 30 epochs 100.0 98.3 66.9 67.1 86.5 88.3

AutoCal estimated threshold test 80.3 94.9 81.4 61.6 82.9 87.7
CollaborEM validation 30 epochs 94.1 97.1 63.5 66.2 81.4 86.6
CollaborEM validation 10 epochs 94.1 96.6 62.5 64.1 80.1 85.9

Secondly, we consider the following approach: At the beginning, CollaborEM automati-
cally generates a seed set of matches and nonmatches. Instead of using the entire seed set
for fine-tuning, we use only 90 % for fine-tuning and the rest as the validation set. Again,
we run CollaborEM for 30 epochs, but this time we apply the fine-tuned model to the
validation set instead of the evaluation set after each epoch. Then, we choose the epoch
≤ 30 with the maximum F1-score on the validation set. If the maximum value results from
more than one epoch, then we choose the smallest of those epochs. We finally apply the
fine-tuned model corresponding to the selected epoch for instance matching and calculate
the F1-score on the evaluation set. The fourth row of Table 5 shows the resulting F1-scores
- again averaged over five runs. The last row shows the analogous results for running
CollaborEM for only 10 epochs. Not surprisingly, the averaged scores tend to decrease.

For the sake of comparison, the third row contains AutoCal’s F1-scores for the estimated
threshold test , copied over from Table 3. The best score for each IM scenario within the
lower block is underlined. AutoCal’s F1-scores for KG and DG are slightly better than
CollaborEM’s F1-scores. However, AutoCal’s F1-score for DS is even significantly larger
than CollaborEM’s maximum F1-score. We did not vary the ratio for the train-validation
split or apply any further criteria for selecting the “best” epoch, possibly improving Col-
laborEM’s F1-scores. Nevertheless, Table 3 illustrates AutoCal’s matching quality in real-
world projects and indicates that none of both methods is clearly superior when applied
in practice.

All matching results presented so far were achieved on a machine in the cloud with 40 GB
GPU memory. Another important aspect in practice is the runtime behaviour which we
checked additionally on a complementary environment: a laptop with 8 GB GPU memory.
Table 6 summarises the total times (in seconds).

20

Table 6: Runtime in seconds of AutoCal and CollaborEM in two different hardware envi-
ronments.

Method Setup FZ DA DS AG KG DG

C
lo

ud AutoCal 32 464 548 113 31 46

CollaborEM validation 10 epochs 99 1,231 2,982 310 364 275

L
ap

to
p AutoCal 18 260 369 71 19 24

CollaborEM validation 10 epochs 393 4,588 5,687 1,103 1,145 1,143

AutoCal makes use of the GPU only when computing sentence embeddings [32]2 for
string-valued properties (using the CPU for this task is possible but slower). Due to an
efficient implementation of this task, AutoCal benefits from a powerful GPU with large
memory only for a small fraction of its total time. On the other hand, AutoCal runs faster
on the laptop due to a CPU being more powerful than the CPU on the machine in the
cloud.

In contrast, CollaborEM’s runtime behaviour relies heavily on a powerful GPU, allowing
large batches for fine-tuning the language model. According to Table 5, fine-tuning over
10 epochs comes with an acceptable loss in matching quality. Therefore, we also consider
only 10 epochs when computing CollaborEM’s total time. The total times in Table 6
contain all of CollaborEM’s processing steps, except the computation of F1-scores on the
evaluation set. Contrary to AutoCal, the total times increase when running CollaborEM
on the laptop since fine-tuning contributes to the largest portion of the total time and slows
down with a smaller batch size (16 instead of 64 samples) on a less powerful GPU.

A comparison of the total times in Table 6 shows that AutoCal runs at least 2.6 times faster
than CollaborEM in the cloud. On the laptop, AutoCal performs even 15 to 20 times faster
for FZ, DA, DS and AG, and 60 and 47 times faster for KG and DG, respectively.

6 Integration into the World Avatar

AutoCal was designed as a first step towards the automated merging and linking of data
from various providers, and towards continuously populating the knowledge graph of the
World Avatar (TWA). This section summarises TWA’s core principles and presents how
AutoCal is integrated into TWA. Finally, we demonstrate how the prototype is applied in
TWA in the domain of power plants.

6.1 Core Principles and Prototype

TWA is built on the Semantic Web [3] and the principles of Linked Data [4]. These ap-
proaches and related semantic technologies are designed to integrate distributed data from
various domains. TWA consists of two layers: the knowledge graph and the active agents.

21

We first describe the knowledge graph which represents the semantically annotated data
of TWA. We refer to [1], [13] and [37] for details of TWA and its architecture.

An ontology is a collection of classes and properties in a domain of interest. It can be
considered a vocabulary used to express statements about the instances of this domain and
about the relations between instances of this domain or other domains. Each statement is
expressed as a triple consisting of a subject, a predicate and an object. For instance, power
plant a3 which was already introduced in Figure 2 may be described by triples such as (a3,
type, FossilFuelPlant) and (a3, name, “moabit”). Here, type and name denote properties,
a3 is an instance of type (class) FossilFuelPlant and “moabit” is a plain string. Since each
triple can be regarded as two nodes (the subject and the object) connected by an edge (the
predicate), all triples in total form a large graph: the knowledge graph.

Figure 6: Architecture of the World Avatar using the example of the instance matching
agent and triples for the power plant domain

Figure 6 illustrates TWA’s core architecture and the prototypical integration of instance
matching. The lower layer of Figure 6 shows some part of the knowledge graph that
is relevant for our prototype. Triples are usually organised in topical sets which can be
stored on different servers. The triples in the green circles use different vocabularies
visualised as blue circles, e.g. a3 is an instance of class FossilFuelPlant which in turn is
part of the class hierarchy defined by OntoPowSys [11], an ontology for describing power
systems. Another example is the address of a3 which is described by means of properties
streetAddress, postalCode and addressLocality from the schema.org vocabulary7. These
references to classes and properties are indicated by blue lines between green and blue
circles.

TWA uses the Resource Description Framework (RDF)8 and the Web Ontology Language
(OWL)9 to define properties and classes, and to describe instances formally. We refer to

7https://schema.org/
8https://www.w3.org/TR/rdf11-primer/
9https://www.w3.org/TR/owl2-overview/

22

https://schema.org/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/owl2-overview/

appendix A.1 for the formal and complete description of a3 as an example. While we use
short terms in this work for better readability, TWA actually employs Uniform Resource
Identifiers (URIs) according to RDF and OWL. Each URI identifies either an instance, a
property or a class; for example, the complete identifier for class FossilFuelPlant is stated
as:

http://www.theworldavatar.com/ontology/ontopowsys/
PowSysRealization.owl#FossilFuelPlant

Due to the principles of Linked Data, this URI can be used to retrieve further information
about FossilFuelPlant by means of an HTTP request. In this way, the knowledge graph
becomes distributed over the World Wide Web, can link to other published data sources
and knowledge graphs, and can be accessed and understood by other applications.

The upper layer of Figure 6 illustrates how agents operate on the knowledge graph. They
call each other by HTTP requests, query and update data in the knowledge graph by means
of SPARQL10, a semantic query language.

For the prototype, we implemented a new Instance Matcher agent which wraps AutoCal
and the matching pipeline from Figure 1. The agent requires a configuration set that
specifies data sets A and B, and parameters for token-blocking, property mapping, and
optional evaluation. In section 5, the data sets A and B were provided in Magellan’s
CSV format and described by the same column names which simplifies the evaluation
of AutoCal and CollaborEM. Here, the matching context is different: Both data sets are
triple sets. Data set A contains new data that we want to integrate into the knowledge
graph while data set B is a suitable existing subset of the knowledge graph. As soon as
the Instance Matcher agent is called (step 1 in Figure 6), it reads the triple sets (step 2),
performs the pipeline and adds a triple of the form (a, sameAs, b) to the knowledge graph
for each predicted match (a,b) (step 3). The property sameAs is a standard property
defined as part of OWL. It declares instances a and b as the same. In Figure 6, the
turquoise lines between the triple sets for A and B indicate resulting sameAs-triples.

The upper layer also shows an Output Agent which in this case, allows a user to query
or visualise data from the knowledge graph (step 4). This agent could be a standard
SPARQL query browser to query matched power plants for example or a tool to visualise
the geographical distribution of power plants as demonstrated in the next subsection.

TWA aims for a high degree of automation. What are the implications for instance match-
ing? First of all, neither AutoCal nor CollaborEM requires manually labelled instance
pairs. Moreover, we showed that AutoCal’s default parameter values ensure an accept-
able matching quality for a wide range of IM scenarios. This suggests that AutoCal can
be applied to new incoming data (from other domains) out-of-the-box, i.e., without the
need to fine-tune parameters on an extra set of labelled pairs. As pointed out in subsec-
tion 5.5, CollaborEM must be equipped with a criterion for selecting the “best” epoch.
Once this is done, its default parameter values can be used likewise for instance matching
in real-world projects.

10https://www.w3.org/TR/sparql11-query/

23

https://www.w3.org/TR/sparql11-query/

In general, the names of the respective columns or properties describing new data and data
in the knowledge graph differ. This requires preliminary property matching. In future, an
agent could automate this task by applying existing methods from the field of schema
matching. Figure 6 illustrates such an agent by dashed lines. Likewise, the choice of
similarity functions in the case of AutoCal and the choice of graph features in the case of
CollaborEM could be automated by analysing the type and range of data for each column
or property.

In summary, both AutoCal and CollaborEM are suitable building blocks for automated
instance matching within TWA. While none of them is superior with respect to matching
quality they significantly differ regarding runtime behaviour and hardware requirements.
Contrary to other published knowledge graphs such as DBpedia [25], TWA knowledge
graph is not centralised but its triples are distributed over several Web nodes. Moreover,
its agents may run on the same nodes which often are server machines with strong CPUs
but less powerful GPUs. Since AutoCal allows faster instance matching on the same
hardware, it is particularly suited for deployment on TWA.

6.2 Use Case

This section presents how the instance-matching prototype was applied to the power plant
data instantiated in TWA knowledge graph. Prior to applying the instance matching,
the power plant instances in TWA knowledge graph are mainly fossil fuel types based
on data obtained from the Global Energy Observatory11, Global Power Plant Database12

and Enipedia13. The instance matching prototype creates an owl:sameAs semantic link
between the existing TWA power plant instances and its equivalent within the KWL and
DUKES datasets. 111 pairs of German power plants and 30 pairs of UK power plants
have been identified by the instance matching prototype to be matches. Consequently,
TWA can now simultaneously query data present in the KWL and DUKES datasets for
power plants in Germany and the UK, respectively, in addition to its original power plant
data. Figure 7 presents a map of the geographical distribution of the fossil fuel power
plants in the UK. The map was created by a visualisation agent which queries the fossil
fuel power plants and their geographic coordinates directly from TWA knowledge graph.

Tables 7 and 8 show examples of additional data queried from TWA before and after
instance matching for a power plant, each from Germany and the UK, respectively. As
shown in Tables 7 and 8, instance matching may increase the amount of data that can be
queried in TWA. This is important as it allows relevant knowledge of the same entity in
the real world that is represented in numerous forms to be linked, thereby creating a more
comprehensive world model. For example, as shown in Table 7, for the Gersteinwerk
Block K power plant, the KWL dataset augmented the original data in TWA knowledge
graph with more precise location information, i.e. Werne, Nordrhein-Westfalen, 59368.
Moreover, additional information was also retrieved for the fuel type, year of construction
and design capacity for the Gersteinwerk Block K power plant. Upon further investiga-

11http://globalenergyobservatory.org
12https://datasets.wri.org/dataset/globalpowerplantdatabase
13https://archive.ph/20140610231532/http://enipedia.tudelft.nl/

24

http://globalenergyobservatory.org
https://datasets.wri.org/dataset/globalpowerplantdatabase
https://archive.ph/20140610231532/http://enipedia.tudelft.nl/

Figure 7: Geographical distribution of fossil fuel power plants in the UK

Table 7: Examples of additional data queried from TWA before and after the instance
matching for the Gersteinwerk Block K Power Plant in Germany.

Before matching After matching
Coordinates 51.6739, 7.7195 51.6739, 7.7195; 51.66318, 7.635119
Address Germany Germany; Werne, Nordrhein-Westfalen, 59368
Fuel Coal Coal; Gas
Year of Construction 1981 1981; 1984
Design Capacity (MW) 770 770; 112
Owner RWE RWE; RWE Generation SE

Table 8: Examples of additional data queried from TWA before and after the instance
matching for the Damhead Creek Power Plant in the UK.

Before matching After matching
Coordinates 51.424915, 0.601426 51.424915, 0.601426; 51.42, 0.601
Year of Construction 1996 1996; 2000
Design Capacity (MW) 140 140; 805
Owner RWE_npower_plc RWE_npower_plc; Drax Power

25

tion, it is revealed that the Gersteinwerk Block K power plant consists of: 1) a K1 block
that uses natural gas as the fuel and 2) a K2 block that uses coal as the fuel14. The Ger-
steinwerk Block K power plant has been predominately generating electricity using coal
from the nearby collieries since its operation till March 2019, when the K2 block, the
coal-fired part of the plant, was decommissioned15. The K1 block, the part that uses nat-
ural gas, continues to operate. The original data in TWA knowledge graph reflects the
status of the Gersteinwerk Block K power plant before the decommissioning of the K2
block, while the KWL dataset reflects the status of the Gersteinwerk Block K power plant
after the decommissioning of the K2 block.

7 Conclusions

In the first part of this paper, we presented AutoCal, a new algorithm for unsupervised
instance matching of tabular data sets. AutoCal consists of three steps based on heuris-
tics and statistics: It computes maximum similarity vectors on subsets of paired instances
sharing tokens. It uses their empirical marginal distributions to derive calibrated prop-
erty scores. Finally, it estimates a matching threshold for the aggregated property scores.
Token-blocking suits AutoCal’s first step in a natural way and is applied – in combina-
tion with the maximum token frequency – as a preparatory step to reduce the number of
candidate pairs to a feasible size.

We evaluated AutoCal with six different scenarios for instance matching: Two new sce-
narios with power plant entities exhibiting a mixture of properties with short string, nu-
merical and missing values, as well as four scenarios from other domains which are fre-
quently used in the literature and which contain a large portion of text. We collected a
wide variety of state-of-the-art methods for instance matching for a comprehensive com-
parison with AutoCal and summarised the results published for the four scenarios. Our
results for AutoCal show that its matching quality is competitive to recent unsupervised
and semi-supervised instance matchers from the field of Machine Learning.

Unsupervised Deep Learning methods frequently achieve better matching results on said
four common scenarios. Within this class of methods, we selected CollaborEM as a state-
of-the-art matcher for a detailed comparison with AutoCal. Both CollaborEM equipped
with a stop criterion and AutoCal can be applied out-of-the-box for new matching tasks
without manually adapting default values for method-specific parameters. Unexpectedly,
it turned out that neither AutoCal nor CollaborEM are superior regarding matching qual-
ity. Moreover, AutoCal runs 2.7 up to 60 times faster than CollaborEM for the six match-
ing scenarios.

While AutoCal can run stand-alone, we illustrated in the second part of the paper how
the new method is integrated prototypically into the World Avatar (TWA) as an agent.
TWA is a dynamic knowledge graph approach for digital twins and aims for a high degree
of automation. Since AutoCal achieves competitive matching results and can run out of

14https://de.wikipedia.org/wiki/Gersteinwerk
15https://www.rwe.com/en/the-group/countries-and-locations/gersteinwerk-

power-plant

26

https://de.wikipedia.org/wiki/Gersteinwerk
https://www.rwe.com/en/the-group/countries-and-locations/gersteinwerk-power-plant
https://www.rwe.com/en/the-group/countries-and-locations/gersteinwerk-power-plant

the box, it is an important step towards automatically and continuously populating the
knowledge graph with new or updated data from external sources. TWA’s knowledge
graph and agents are distributed over several Web nodes. Due to its runtime behaviour
and moderate hardware requirements, AutoCal is particularly suitable to run on the same
decentralised infrastructure.

Finally, we demonstrated how AutoCal matches new data from the power plant domain
with existing instances in the knowledge graph. In the presence of additional information
and/or discrepancies in data, the current instance matching prototype is not yet able to de-
termine whether they are explainable or pure data errors. Despite this, the prototype has
increased the amount of power plant data that can be queried in TWA. It can highlight data
that need more investigation. As the next step, we will extend existing ontologies and de-
velop new ontologies to integrate publicly available data, which can act as supplementary
information, into TWA to discern such situations. We will also examine state-of-the-art
approaches to automatically discover data relevant to TWA on the World Wide Web.

Research data

Research data supporting this publication is available in the University of Cambridge data
repository (doi:10.17863/CAM.82548).

Acknowledgements

This project is funded by the National Research Foundation (NRF), Prime Minister’s Of-
fice, Singapore under its Campus for Research Excellence and Technological Enterprise
(CREATE) programme. Part of this work was supported by Towards Turing 2.0 under
the EPSRC Grant EP/W037211/1 & The Alan Turing Institute. M.K. gratefully acknowl-
edges the support of the Alexander von Humboldt Foundation. The authors thank Dr
Feroz Farazi for discussions, Jörg Preisendörfer for commenting extensively on the paper,
Andrew Breeson for proofreading, and Wanni Xie for providing semantically annotated
data.

27

https://doi.org/10.17863/CAM.82548

Nomenclature

AG IM scenario for products - Amazon vs. Google Products
DA IM scenario for bibliography - DBLP vs. ACM
DG IM scenario for power plants in the United Kingdom
DL Deep Learning
DS IM scenario for bibliography - DBLP vs. Google Scholar
FZ IM scenario for restaurants - Fodor vs. Zagat
GPPD Global Power Plant Database
HTTP Hypertext Transfer Protocol
IM Instance Matching
KG IM scenario for power plants in Germany
ML Machine Learning
MTF Maximum Token Frequency
OWL Web Ontology Language
RDF Resource Description Framework
SPARQL SPARQL Protocol and RDF Query Language
SVM Support Vector Machine
TWA The World Avatar
URI Uniform Resource Identifier

28

A Appendix

A.1 RDF Graph Example

The code shown below demonstrates how an entry (record) of the data source KWL (see
Table 2) is represented in the knowledge graph of the World Avatar. Although the World
Avatar can import data in a variety of syntaxes, we use the Turtle16 syntax here for demon-
stration, since it is particularly human readable. The data description uses terms from
different vocabularies (such as OntoPowSys, OntoCAPE, schema.org). Each column is
mapped to a suitable property, nested in part by means of the brackets notation “[...]” for
blank nodes17.

@prefix base: <http://www.theworldavatar.com/kb/powsys/kwl/> .
@prefix psreal: <http://www.theworldavatar.com/ontology/

ontopowsys/PowSysRealization.owl#> .
@prefix cpsys: <http://www.theworldavatar.com/ontology/

ontocape/upper_level/system.owl#> .
@prefix sdo: <https://schema.org/> .
...

base:BNA0085a_Moabit_DE a psreal:FossilFuelPlant;
rdfs:label "Moabit"@en ;
dbo:country dbr:Germany ;
cptecsys:realizes [pow:consumesPrimaryFuel "Coal"] ;
pow:hasYearOfBuilt [cpsys:hasValue [
cpsys:numericalValue 1990]] ;

eipreal:designCapacity [cpsys:hasValue [
cpsys:hasUnitOfMeasure cpunit:MW ;
cpsys:numericalValue 8.9e+01]] ;

cpsysv1:isOwnedBy [
cpsysv1:hasName "Vattenfall Wärme Berlin AG"] ;

sdo:address [
sdo:addressCountry "DE" ;
sdo:addressLocality "Berlin" ;
sdo:addressRegion "Berlin" ;
sdo:postalCode 13353 ;
sdo:streetAddress "Friedrich-Krause-Ufer 10- 15"] .

16https://en.wikipedia.org/wiki/Turtle_(syntax)
17https://en.wikipedia.org/wiki/Blank_node

29

https://en.wikipedia.org/wiki/Turtle_(syntax)
https://en.wikipedia.org/wiki/Blank_node

A.2 Pseudocode for AutoCal with Token-Blocking

Algorithm 1 shows the pseudocode for AutoCal. Its main part AUTOCAL-WITH-TOKEN-
-BLOCKING corresponds to the steps in Figure 1 while subsequent procedures shown
in algorithm 1 describe its steps in detail. For completeness, we included the steps for
token-blocking and for computing the similarity vectors in lines 1–4. The pseudocode
for creating the token-based index (lines 13–22), for creating the set of candidate pairs
(lines 23–31) and for computing the similarity vectors (lines 32–38) is straight-forward
and follows the explanation given in sections 4.1 and 4.2. Thus, we focus on the three sub
steps of AutoCal here.

Line 5 calls COMPUTE-MAX-SIM-VECTORS with the set CandPairs (the result of CREATE-
-CANDIDATE-PAIRS) and with the similarity vectors s (the result of COMPUTE-SIM-
-VECTORS). Lines 39–49 only apply definition 3 and create the maximum similarity vec-
tors smax in both directions, i.e. for all a ∈ A and for all b ∈ B. By contrast, lines 6 and 7
call REPLACE-DISTRIBUTION for each direction separately, once for computing scoreA

and once for computing scoreB.

The pseudocode for procedure REPLACE-DISTRIBUTION in lines 50–78 expects as input
the set E of instances (which is either A or B), the candidate pairs, the similarity vectors s,
the maximum similarity vectors smax, as well as the bin width ∆ and the mapping triples.
In accordance with figure 4, this procedure computes property scores as estimated ratio
between match and nonmatch counts, given a candidate pair (a,b) and its similarity values
sk(a,b),k = 1, . . . ,K.

Since calculating the counts for each candidate pair was very inefficient, AutoCal calcu-
lates them only once for a small subset of equidistant points of the form t = 2∆ j as in lines
53 and 54. The counts themselves are computed in lines 56 and 57 for the k-th property:
Line 56 counts the instances for which the k-th component of their maximum similarity
vectors is in the ∆-neighbourhood of t. This count refers to the turquoise area in the right
upper diagram of Figure 4 and is used as rough estimate for the counts with respect to
the unknown matches. Line 57 counts all candidate pairs (matches and nonmatches) for
which the k-th component of their similarity vectors is in the ∆-neighbourhood of t. This
count refers to the grey hatched area in the right upper diagram. Finally, the property
ratio is computed in line 58. Since the count in the nominator may become larger than the
count in the denominator, line 58 takes the maximum to restrict the ratio to 1. However,
the effect of this clamping to 1 is negligible.

The second part of procedure REPLACE-DISTRIBUTION starts with the computation of
the numbers of different and same property pairs (lines 61–65) which are needed for
averaging (line 75 and 72, resp.). Afterwards, it iterates over all candidate pairs (line 67).
For each similarity value sk(a,b), line 71 computes the integer j for the closest t = 2∆ j.
The corresponding property ratios computed in the first part are aggregated by summing
them up (lines 69 and 72) and by taking the average over all different pairs (lines 75).
These lines produce the auto-calibrated property scores. The averaging in line 72 has the
effect that the same scores are computed even if a triple was added again to the mapping
triples. Finally, line 77 returns the resulting scores for all candidate pairs.

Before presenting the last procedure, we would like to note that the ratio in line 58 is re-

30

lated to conditional probabilities: Suppose random variables B1, . . . ,BJ take values 0 (non-
match) and 1 (match) with probability q and 1− q, resp., and X0

1 , . . . ,X
0
J and X1

1 , . . . ,X
1
J

are distributed on [0,1] with probability p0(·) and p1(·), resp. All random variables are
supposed to be independently distributed. Moreover, set Yj = X0

j if B j = 0 and Yj = X1
j if

B j = 1. For a given interval I ⊂ [0,1], sufficiently large J and a fixed l with 1≤ l ≤ J, the
conditional probability for Bl = 1 given Yl ∈ I can be approximated by

Prob(Bl = 1|Yl ∈ I) =
Prob(Bl = 1,Yl ∈ I)

Prob(Yl ∈ I)
≈ #{ j : 1≤ j ≤ J,B j = 1,Yj ∈ I}

#{ j : 1≤ j ≤ J,Yj ∈ I}
. (A.1)

AutoCal chooses a small interval I (of size 2∆) containing sk(a,b) and replaces the un-
known count of matches in the nominator of eq. A.1 by the count in line 56 and the count
in the denominator by the count in line 57. Consequently, the ratio in line 58 can be inter-
preted as rough approximation of the probability that a candidate pair – given its similarity
value sk(a,b) – is a match.

Line 8 in the main algorithm calls the last procedure ESTIMATE-THRESHOLD with scores
scoreA(a,b) and scoreB(a,b), previously computed for all candidate pairs (a,b). Lines
79–100 show the implementation of the procedure. It requires the same parameter ∆ as
before. The code in lines 80–82 determines potential matches as pairs with maximum
scores among those sharing a token. The remaining candidate pairs are regarded as non-
matches (line 83). Lines 85–87 define the total score for each candidate pair as the max-
imum of scoreA(a,b) and scoreB(a,b). In lines 89 and 90 the threshold t is iterated over
equidistant points of the form 2∆ j (as in lines 53 and 54). Line 91 counts the potential
matches with total scores in the ∆-neighbourhood of t and line 92 does the same for the
remaining nonmatches. In line 93, the ratio of both counts is computed and in line 95, the
threshold test is determined as the minimum t for which the ratio is above 1 three times in
sequence. After setting the score for nonmatches to 0 (lines 96–98), the updated scores
and the estimated threshold are returned (line 99).

Finally, the returned scores and the threshold are used in line 12 of the main algorithm to
predict the matches. If the optional ground truth in form of a set of matches was given as
part of the input, line 10 calls an additional evaluation procedure (which is not specified
here) to compute the matching performance in terms of precision, recall and F1-score.

31

Algorithm 1 AUTOCAL-WITH-TOKEN-BLOCKING
Input:

data set A, data set B
subsets PA, PB of properties of A, B for tokenization
mapping triples ((pk,qk, fk))

K
k=1

maximum token frequency MT F
bin width ∆

ground truth for evaluation (optional)
1: IndexA← CREATE-INDEX(A,PA)
2: IndexB← CREATE-INDEX(B,PB)
3: CandPairs← CREATE-CANDIDATE-PAIRS(IndexA, IndexB,MT F)
4: s← COMPUTE-SIM-VECTORS(CandPairs,MappingTriples)
5: smax← COMPUTE-MAX-SIM-VECTORS(A,B,CandPairs,s)
6: scoreA← REPLACE-DISTRIBUTION(A,CandPairs,s,smax,∆,MappingTriples)
7: scoreB← REPLACE-DISTRIBUTION(B,CandPairs,s,smax,∆,MappingTriples)
8: score, test ← ESTIMATE-THRESHOLD(CandPairs,scoreA,scoreB,∆)
9: if GroundTruth is given then

10: EVALUATE(score, test ,GroundTruth)
11: end if
12: return {(a,b) ∈CandPairs : score(a,b)≥ test}

13: procedure CREATE-INDEX(E,P)
14: Index← []
15: for instance ∈ E do
16: TokenSet← TOKENIZE(instance,P)
17: for token ∈ TokenSet do
18: Index[token]← Index[token]∪{instance}
19: end for
20: end for
21: return Index
22: end procedure

23: procedure CREATE-CANDIDATE-PAIRS(IndexA, IndexB,MT F)
24: CandPairs← /0
25: for token t ∈ IndexA∩ IndexB do
26: if #IndexA[t]≤MFT AND #IndexB[t]≤MFT then
27: CandPairs←CandPairs ∪ {(a,b) : a ∈ IndexA[t], b ∈ IndexB[t]}
28: end if
29: end for
30: return CandPairs
31: end procedure

32

32: procedure COMPUTE-SIM-VECTORS(CandPairs,MappingTriples)
33: s← []
34: for (a,b) ∈CandPairs do
35: s(a,b)← ((fk(a.pk,b.qk))

K
k=1

36: end for
37: return s
38: end procedure

39: procedure COMPUTE-MAX-SIM-VECTORS(A,B,CandPairs,s)
40: K← Dimension of similarity vectors s
41: smax← []
42: for a ∈ A do
43: smax(a)← (max{sk(a, b̃) : (a, b̃) ∈CandPairs})K

k=1
44: end for
45: for b ∈ B do
46: smax(b)← (max{sk(ã,b) : (ã,b) ∈CandPairs})K

k=1
47: end for
48: return smax

49: end procedure

33

50: procedure REPLACE-DISTRIBUTION(E,CandPairs,s,smax,∆,MappingTriples)
51: K← dimension of similarity vectors s
52: ratio← []
53: for j ∈ {0, . . . ,⌈1/2∆⌉} do
54: t← 2∆ j
55: for k ∈ {1, . . . ,K} do
56: nmax← #{e ∈ E : t−∆≤ smax

k (e)≤ t +∆}
57: n← #{(a,b) ∈CandPairs : t−∆≤ sk(a,b)≤ t +∆}
58: ratio(j,k)←max{1, nmax/(n+1)}
59: end for
60: end for
61: di f f PropPairs← #{(pk,qk) : k = 1, . . . ,K}
62: samePropPairs← []
63: for k ∈ {1, . . . ,K} do
64: samePropPairs(k)← #{l : (pl,ql) = (pk,qk)}
65: end for
66: score← []
67: for (a,b) ∈CandPairs do
68: sum← 0
69: for k ∈ {1, ...,K} do
70: if sk(a,b) is not missing then
71: j← ⌊sk(a,b)/(2∆)+0.5⌋
72: sum← sum+ ratio(j,k)/samePropPairs(k)
73: end if
74: end for
75: score(a,b)← sum/di f f erentPropPairs
76: end for
77: return score
78: end procedure

34

79: procedure ESTIMATE-THRESHOLD(CandPairs,scoreA,scoreB,∆)
80: BestA←{(a,b) ∈CandPairs : scoreA(a,b) = max(a,b̃)∈CandPairs scoreA(a, b̃) }
81: BestB←{(a,b) ∈CandPairs : scoreB(a,b) = max(ã,b)∈CandPairs scoreB(ã,b) }
82: CandMatches = BestA∪BestB

83: CandNonMatches =CandPairs\CandMatches
84: score← []
85: for (a,b) ∈CandPairs do
86: score(a,b)←max{scoreA(a,b),scoreB(a,b)}
87: end for
88: ratio← []
89: for j ∈ {0, . . . ,⌈1/2∆⌉} do
90: t← 2∆ j
91: nM← #{(a,b) ∈CandMatches : t−∆≤ score(a,b)≤ t +∆}
92: nN ← #{(a,b) ∈CandNonMatches : t−∆≤ score(a,b)≤ t +∆}
93: ratio(j)← nM/(nN +1)
94: end for
95: test = min{ j : ratio(j)≥ 1,ratio(j+1)≥ 1,ratio(j+2)≥ 1}
96: for (a,b) ∈CandNonMatches do
97: score(a,b) = 0
98: end for
99: return score, test

100: end procedure

35

References
[1] J. Akroyd, S. Mosbach, A. Bhave, and M. Kraft. Universal digital twin – a dynamic

knowledge graph. Data-Centric Engineering, 2, 2021.

[2] N. Barlaug and J. A. Gulla. Neural networks for entity matching: A survey. ACM
Transactions on Knowledge Discovery from Data (TKDD), 15(3):1–37, 2021.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data: The story so far. In Semantic
services, interoperability and web applications: emerging concepts, pages 205–227.
IGI global, 2011.

[5] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan. Creating embeddings of het-
erogeneous relational datasets for data integration tasks. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pages 1335–
1349, 2020.

[6] A. Chadzynski, S. Li, A. Grisiute, F. Farazi, C. Lindberg, S. Mosbach, P. Herthogs,
and M. Kraft. Semantic 3d city agents — an intelligent automation for dynamic
geospatial knowledge graphs. Energy and AI, page 100137, 2022.

[7] P. Christen. Automatic record linkage using seeded nearest neighbour and support
vector machine classification. In Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 151–159, 2008.

[8] P. Christen. Data matching. Springer, 2012.

[9] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string metrics for match-
ing names and records. In KDD workshop on data cleaning and object consolida-
tion, volume 3, pages 73–78, 2003.

[10] J. De Bruin. Python Record Linkage Toolkit: A toolkit for record linkage and dupli-
cate detection in Python, 12 2019. URL https://doi.org/10.5281/zenodo.
3559043.

[11] A. Devanand, G. Karmakar, N. Krdzavac, R. Rigo-Mariani, Y. F. Eddy, I. A. Karimi,
and M. Kraft. OntoPowSys: A power system ontology for cross domain interactions
in an eco industrial park. Energy and AI, 1:100008, 2020.

[12] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang. Distributed
representations of tuples for entity resolution. Proceedings of the VLDB Endowment,
11(11):1454–1467, 2018.

[13] A. Eibeck, M. Q. Lim, and M. Kraft. J-Park Simulator: An ontology-based platform
for cross-domain scenarios in process industry. Computers & Chemical Engineering,
131:106586, 2019.

36

https://doi.org/10.5281/zenodo.3559043
https://doi.org/10.5281/zenodo.3559043

[14] F. Farazi, M. Salamanca, S. Mosbach, J. Akroyd, A. Eibeck, L. K. Aditya,
A. Chadzynski, K. Pan, X. Zhou, S. Zhang, et al. Knowledge graph approach to
combustion chemistry and interoperability. ACS omega, 5(29):18342–18348, 2020.

[15] A. Ferrara, A. Nikolov, and F. Scharffe. Data linking for the Semantic Web. Inter-
national Journal on Semantic Web and Information Systems (IJSWIS), 7(3):46–76,
2011.

[16] C. Ge, P. Wang, L. Chen, X. Liu, B. Zheng, and Y. Gao. CollaborEM: A self-
supervised entity matching framework using multi-features collaboration. IEEE
Transactions on Knowledge and Data Engineering, 2021.

[17] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge
acquisition, 5(2):199–220, 1993.

[18] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. d. Melo, C. Gutierrez, S. Kir-
rane, J. E. L. Gayo, R. Navigli, S. Neumaier, et al. Knowledge graphs. Synthesis
Lectures on Data, Semantics, and Knowledge, 12(2):1–257, 2021.

[19] A. Jurek, J. Hong, Y. Chi, and W. Liu. A novel ensemble learning approach to
unsupervised record linkage. Information Systems, 71:40–54, 2017.

[20] A. Jurek-Loughrey and P. Deepak. Semi-supervised and unsupervised approaches
to record pairs classification in multi-source data linkage. In Linking and Mining
Heterogeneous and Multi-view Data, pages 55–78. Springer, 2019.

[21] M. Kejriwal and D. P. Miranker. Semi-supervised instance matching using boosted
classifiers. In European semantic web conference, pages 388–402. Springer, 2015.

[22] P. Konda, S. Das, P. S. GC, A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi,
H. Zhang, J. Naughton, et al. Magellan: Toward building entity matching manage-
ment systems. Proceedings of the VLDB Endowment, 9(12), 2016.

[23] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69(2):197–210, 2010.

[24] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on
real-world match problems. Proceedings of the VLDB Endowment, 3(1-2):484–493,
2010.

[25] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. Van Kleef, S. Auer, et al. DBpedia – a large-scale, multilingual
knowledge base extracted from Wikipedia. Semantic web, 6(2):167–195, 2015.

[26] P. Li, X. Cheng, X. Chu, Y. He, and S. Chaudhuri. Auto-FuzzyJoin: Auto-program
fuzzy similarity joins without labeled examples. In Proceedings of the 2021 Inter-
national Conference on Management of Data, pages 1064–1076, 2021.

[27] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan. Deep entity matching with pre-
trained language models. arXiv preprint arXiv:2004.00584, 2020.

37

[28] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute,
and V. Raghavendra. Deep learning for entity matching: A design space exploration.
In Proceedings of the 2018 International Conference on Management of Data, pages
19–34, 2018.

[29] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, and E. Rahm. A survey of current
link discovery frameworks. Semantic Web, 8(3):419–436, 2017.

[30] K. O’Hare, A. Jurek-Loughrey, and C. de Campos. A review of unsupervised and
semi-supervised blocking methods for record linkage. Linking and Mining Hetero-
geneous and Multi-view Data, pages 79–105, 2019.

[31] G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Efficient entity resolu-
tion for large heterogeneous information spaces. In Proceedings of the fourth ACM
international conference on Web search and data mining, pages 535–544, 2011.

[32] N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese
BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 11 2019.
URL https://arxiv.org/abs/1908.10084.

[33] J. Shao, Q. Wang, A. Wijesinghe, and E. Rahm. ErGAN: Generative adversarial
networks for entity resolution. In 2020 IEEE International Conference on Data
Mining (ICDM), pages 1250–1255. IEEE, 2020.

[34] M. A. Sherif, A.-C. Ngonga Ngomo, and J. Lehmann. WOMBAT – a generaliza-
tion approach for automatic link discovery. In European Semantic Web Conference,
pages 103–119. Springer, 2017.

[35] R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan. ZeroER: Entity
resolution using zero labeled examples. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pages 1149–1164, 2020.

[36] L. Zhou, M. Pan, J. J. Sikorski, S. Garud, L. K. Aditya, M. J. Kleinelanghorst, I. A.
Karimi, and M. Kraft. Towards an ontological infrastructure for chemical process
simulation and optimization in the context of eco-industrial parks. Applied Energy,
204:1284–1298, 2017.

[37] X. Zhou, A. Eibeck, M. Q. Lim, N. B. Krdzavac, and M. Kraft. An agent com-
position framework for the J-Park Simulator – a knowledge graph for the process
industry. Computers & Chemical Engineering, 130:106577, 2019.

38

https://arxiv.org/abs/1908.10084

	Introduction
	Outline of AutoCal
	Related Work
	Instance Matching
	Token-Blocking
	Similarity Vectors
	AutoCal

	Evaluation
	Data Sets
	Quality Metrics and Setup
	Results Regarding Matching Quality
	Comparison
	Results Regarding Applicability and Runtime Behaviour

	Integration into the World Avatar
	Core Principles and Prototype
	Use Case

	Conclusions
	Nomenclature
	Appendix
	RDF Graph Example
	Pseudocode for AutoCal with Token-Blocking

	References

